Implementation of a robust SQP algorithm

This paper presents an implementation of a sequential quadratic programming (SQP) algorithm for the solution of nonlinear programming (NLP) problems. In the proposed algorithm, a solution to the NLP problem is found by minimizing the L 1 exact penalty function. The search direction for the penalty f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 23; číslo 6; s. 827 - 846
Hlavní autor: Fabien, Brian C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 01.12.2008
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an implementation of a sequential quadratic programming (SQP) algorithm for the solution of nonlinear programming (NLP) problems. In the proposed algorithm, a solution to the NLP problem is found by minimizing the L 1 exact penalty function. The search direction for the penalty function minimization is determined by solving a strictly convex quadratic programming (QP) problem. Here, we make the basic SQP algorithm more robust (i) by solving a relaxed, strictly convex, QP problem in cases where the constraints are inconsistent, (ii) by performing a non-monotone line search to improve efficiency, and (iii) by using second-order corrections to avoid the Maratos effect. The robustness of the algorithm is demonstrated via a C language implementation that is applied to numerous parameter optimization and optimal control problems that have appeared in the literature. The results obtained show that both non-monotone line searches and second-order corrections can significantly reduce the amount of work required to solve parameter optimization problems.
ISSN:1055-6788
1029-4937
DOI:10.1080/10556780801996228