Nearest-neighbour modelling of reciprocal chains

This paper focuses on the class of finite-state, discrete-index, reciprocal processes (reciprocal chains). Such a class of processes seems to be a suitable setup in many applications and, in particular, it appears well-suited for image-processing. While addressing this issue, the aim is 2-fold: theo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stochastics (Abingdon, Eng. : 2005) Ročník 80; číslo 6; s. 525 - 584
Hlavný autor: Carravetta, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 01.12.2008
Predmet:
ISSN:1744-2508, 1744-2516
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper focuses on the class of finite-state, discrete-index, reciprocal processes (reciprocal chains). Such a class of processes seems to be a suitable setup in many applications and, in particular, it appears well-suited for image-processing. While addressing this issue, the aim is 2-fold: theoretic and practical. As to the theoretic purpose, some new results are provided: first, a general stochastic realization result is provided for reciprocal chains endowed with a known, arbitrary, distribution. Such a model has the form of a fixed-degree, nearest-neighbour polynomial model. Next, the polynomial model is shown to be exactly linearizable, which means it is equivalent to a nearest-neighbour linear model in a different set of variables. The latter model turns out to be formally identical to the Levi-Frezza-Krener linear model of a Gaussian reciprocal process, although actually non-linear with respect to the chain's values. As far as the practical purpose is concerned, in order to yield an example of application an estimation issue is addressed: a suboptimal (polynomial-optimal) solution is derived for the smoothing problem of a reciprocal chain partially observed under non-Gaussian noise. To this purpose, two kinds of boundary conditions (Dirichlet and Cyclic), specifying the reciprocal chain on a finite interval, are considered, and in both cases the model is shown to be well-posed, in a 'wide-sense'. Under this view, some well-known representation results about Gaussian reciprocal processes extend, in a sense, to a 'non-Gaussian' case.
AbstractList This paper focuses on the class of finite-state, discrete-index, reciprocal processes (reciprocal chains). Such a class of processes seems to be a suitable setup in many applications and, in particular, it appears well-suited for image-processing. While addressing this issue, the aim is 2-fold: theoretic and practical. As to the theoretic purpose, some new results are provided: first, a general stochastic realization result is provided for reciprocal chains endowed with a known, arbitrary, distribution. Such a model has the form of a fixed-degree, nearest-neighbour polynomial model. Next, the polynomial model is shown to be exactly linearizable, which means it is equivalent to a nearest-neighbour linear model in a different set of variables. The latter model turns out to be formally identical to the Levi-Frezza-Krener linear model of a Gaussian reciprocal process, although actually non-linear with respect to the chain's values. As far as the practical purpose is concerned, in order to yield an example of application an estimation issue is addressed: a suboptimal (polynomial-optimal) solution is derived for the smoothing problem of a reciprocal chain partially observed under non-Gaussian noise. To this purpose, two kinds of boundary conditions (Dirichlet and Cyclic), specifying the reciprocal chain on a finite interval, are considered, and in both cases the model is shown to be well-posed, in a 'wide-sense'. Under this view, some well-known representation results about Gaussian reciprocal processes extend, in a sense, to a 'non-Gaussian' case.
Author Carravetta, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  surname: Carravetta
  fullname: Carravetta, Francesco
  email: francesco.carravetta@iasi.cnr.it
  organization: Istituto di Analisi dei Sistemi ed Informatica 'A. Ruberti', Consiglio Nazionale delle Ricerche
BookMark eNqNj91KAzEQhYNUsK0-gHf7AquTZDe7BW-k-AdFb_Q6TLJJG9kmJYlo394tFS8sFGFgDgPfmXMmZOSDN4RcUrii0MI1baqK1TBIBm1b0-aEjHe3ktVUjH41tGdkktI7QMU4hzGBZ4PRpFx645YrFT5isQ6d6Xvnl0WwRTTabWLQ2Bd6hc6nc3JqsU_m4mdPydv93ev8sVy8PDzNbxel5pXIJQOBnCmBoGZWVSioQU4FdmAVp0pAbQ1w4DOuLWtUo-kwhqMY4lrsOJ8SuvfVMaQUjZWb6NYYt5KC3FWWB5UHpvnDaJcxu-BzRNcfJW_2pPM2xDV-hth3MuO2D9FG9Nolyf_x-Ah-QMn8lfk3vRiAuw
CitedBy_id crossref_primary_10_1016_j_cam_2015_10_008
crossref_primary_10_1017_jpr_2022_98
crossref_primary_10_1109_TSP_2019_2919410
crossref_primary_10_1109_TAES_2020_3031836
crossref_primary_10_1109_TAC_2019_2958532
crossref_primary_10_1109_TAC_2011_2107114
crossref_primary_10_1109_TAC_2011_2141510
crossref_primary_10_1109_TAC_2012_2183176
crossref_primary_10_1016_j_ic_2020_104667
crossref_primary_10_1109_TAC_2019_2958834
Cites_doi 10.1109/CDC.2004.1428937
10.1109/TIT.1972.1054786
10.1109/9.948466
10.1109/TIT.1981.1056361
10.1023/A:1024813508835
10.1109/5.54803
10.1016/S0165-1684(99)00154-1
10.1080/17442508808833525
10.1007/s004400050085
10.1137/S0363012999365261
10.1080/17442509108833674
10.1007/BF00532864
10.1137/S0895479801368622
10.1109/9.618240
10.1109/CDC.2005.1583131
10.1007/BF02547188
10.1109/9.58529
10.1137/S0363012994265900
10.1016/S0096-3003(02)00364-8
10.1007/BFb0120969
10.1002/0471200611
10.1137/0323050
10.1063/1.530141
10.1016/S0165-1684(97)00032-7
10.1137/S0363012993252899
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
DBID AAYXX
CITATION
DOI 10.1080/17442500802088517
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1744-2516
EndPage 584
ExternalDocumentID 10_1080_17442500802088517
309017
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACIWK
ACTCW
ACTIO
ADCVX
ADGTB
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
ACAGQ
AGROQ
AHMOU
ALCKM
AMEWO
AMVHM
CITATION
CRFIH
DMQIW
LJTGL
NUSFT
QCRFL
ID FETCH-LOGICAL-c346t-206a32b6a0b9fb4a61ea316ad0fb31b605fe030393cf27b7c17c1e3a6516fad33
IEDL.DBID TFW
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000207633200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1744-2508
IngestDate Sat Nov 29 03:21:31 EST 2025
Tue Nov 18 21:09:44 EST 2025
Mon May 13 12:09:24 EDT 2019
Mon Oct 20 23:39:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-206a32b6a0b9fb4a61ea316ad0fb31b605fe030393cf27b7c17c1e3a6516fad33
PageCount 60
ParticipantIDs crossref_primary_10_1080_17442500802088517
informaworld_taylorfrancis_310_1080_17442500802088517
crossref_citationtrail_10_1080_17442500802088517
PublicationCentury 2000
PublicationDate 2008-12-00
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-00
PublicationDecade 2000
PublicationTitle Stochastics (Abingdon, Eng. : 2005)
PublicationYear 2008
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Borkar V.S. (CIT0004) 2001; 40
Bellman R. (CIT0002) 1970
Thieullen M. (CIT0032) 2002; 16
Abrahams J. (CIT0001) 1981; 27
CIT0031
CIT0012
CIT0011
Lèvy P. (CIT0016) 1956; 2
CIT0033
Krener A.J. (CIT0013) 1997; 107
Lèvy B.C. (CIT0020) 1991; 34
Cover T. (CIT0008) 1991
Schrodinger E. (CIT0030) 1932; 2
Guyon X. (CIT0010) 1991
Laakso T.I. (CIT0014) 2000; 80
Elia N. (CIT0009) 2001; 46
Nakamori S. (CIT0024) 1997; 58
CIT0018
Schrodinger E. (CIT0029) 1931; 144
Sand J.A. (CIT0028) 1996; 32
CIT0021
CIT0022
Masani P. (CIT0023) 1960; 104
Rodgers G.S. (CIT0027) 1980
Lèvy B.C. (CIT0015) 1990
Lèvy B.C. (CIT0017) 1990; 78
Nakamori S. (CIT0025) 2003; 143
CIT0003
CIT0005
CIT0026
CIT0007
CIT0006
Lèvy B.C. (CIT0019) 1990; 35
References_xml – ident: CIT0031
  doi: 10.1109/CDC.2004.1428937
– ident: CIT0033
  doi: 10.1109/TIT.1972.1054786
– volume: 46
  start-page: 384
  year: 2001
  ident: CIT0009
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.948466
– volume: 27
  start-page: 523
  year: 1981
  ident: CIT0001
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1981.1056361
– volume: 16
  start-page: 1
  year: 2002
  ident: CIT0032
  publication-title: Potential Anal.
  doi: 10.1023/A:1024813508835
– volume: 78
  start-page: 627
  year: 1990
  ident: CIT0017
  publication-title: Proc. IEEE
  doi: 10.1109/5.54803
– volume: 80
  start-page: 567
  year: 2000
  ident: CIT0014
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(99)00154-1
– ident: CIT0012
  doi: 10.1080/17442508808833525
– volume: 107
  start-page: 243
  year: 1997
  ident: CIT0013
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s004400050085
– volume: 40
  start-page: 135
  year: 2001
  ident: CIT0004
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012999365261
– volume: 34
  start-page: 29
  year: 1991
  ident: CIT0020
  publication-title: Stoch. Stoch. Rep.
  doi: 10.1080/17442509108833674
– ident: CIT0011
  doi: 10.1007/BF00532864
– volume: 2
  start-page: 133
  volume-title: Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability
  year: 1956
  ident: CIT0016
– ident: CIT0018
  doi: 10.1137/S0895479801368622
– ident: CIT0006
  doi: 10.1109/9.618240
– ident: CIT0007
  doi: 10.1109/CDC.2005.1583131
– volume: 104
  start-page: 141
  year: 1960
  ident: CIT0023
  publication-title: Acta Math.
  doi: 10.1007/BF02547188
– volume: 35
  start-page: 1013
  year: 1990
  ident: CIT0019
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.58529
– volume: 32
  start-page: 507
  year: 1996
  ident: CIT0028
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012994265900
– volume-title: Introduction to Matrix Analysis
  year: 1970
  ident: CIT0002
– volume: 143
  start-page: 319
  year: 2003
  ident: CIT0025
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00364-8
– volume: 2
  start-page: 269
  year: 1932
  ident: CIT0030
  publication-title: Ann. Inst. H. Poincare
– volume-title: Proceedings of Mathematical Theory of Networks and Systems (MTNS-89)
  year: 1990
  ident: CIT0015
– ident: CIT0026
  doi: 10.1007/BFb0120969
– volume: 144
  year: 1931
  ident: CIT0029
  publication-title: Phys. Math.
– volume-title: Elments of Information Theory
  year: 1991
  ident: CIT0008
  doi: 10.1002/0471200611
– ident: CIT0003
– ident: CIT0022
  doi: 10.1137/0323050
– volume-title: Matrix Derivatives
  year: 1980
  ident: CIT0027
– ident: CIT0021
  doi: 10.1063/1.530141
– volume: 58
  start-page: 309
  year: 1997
  ident: CIT0024
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(97)00032-7
– volume-title: Random Fields on a Network: Modeling, Statistics, and Applications
  year: 1991
  ident: CIT0010
– ident: CIT0005
  doi: 10.1137/S0363012993252899
SSID ssj0042330
Score 1.8575034
Snippet This paper focuses on the class of finite-state, discrete-index, reciprocal processes (reciprocal chains). Such a class of processes seems to be a suitable...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Markov chains
Markov fields
nearest-neighbour models
reciprocal processes
smoothing algorithms
stochastic realization
Title Nearest-neighbour modelling of reciprocal chains
URI https://www.tandfonline.com/doi/abs/10.1080/17442500802088517
Volume 80
WOSCitedRecordID wos000207633200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1744-2516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042330
  issn: 1744-2508
  databaseCode: TFW
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6keNCDb7G-2IMnIZhs0qQ5ili8WDxU7G1JsgkWZCvdVfz5Jtnd0lLtQWFPS2Z2SWYyk8nMNwBXaeq8qAiGFHEOsRwrJJniSKZC5UZIjXMVm02I4bA_HsunJjenbNIqwxna1UARca8Oyq102WbE3XjWXtJilajXkR4JteTeqw_yPRq8tPuw9xNoUw7JkB_eb-80f-KwZJWWMEsXrM1g95__uQc7jZuZ3NZysQ8btjiA7cc5Rmt5CHgY4GvLChUhOhqCm0lsixPq05OpSwLsRTBvno15VZOiPILnwf3o7gE1_ROQoYxXXgG4oqnmCmvptF8BYhUlXOXYaUq0P8g463WcSmpcKrQwxD-WKt4j3Kmc0mPoFNPCnkDiWC5tn1mTC8cow1pJJ60U1Ar_iosu4Hb-MtOAi4ceF28ZaTBIVyajC9dzkvcaWWPdYLy4KFkVwxmu7j2yOjyrvqou9NaQ0F8_dfpHujPYirkkMdXlHDrV7MNewKb5rCbl7DKK5jeMH96o
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90CuqD3-L87INPQrBt0mR5FHFM3IYPE_dWkjbBgXSyVvHPN0nbsTHdg0Kfyt21JHe55HL3O4CrMNRGVRhBItAakdQXiBNBEQ-ZSBPGpZ8K12yC9fut4ZA_VQG3vEqrtGdoXQJFuLXaGrcNRtcpcTdGtlE1VyZqjCQK2CqsRcbP2pS-QfulXonNTgFXBZEEGfpWfav5k4g5vzSHWjrjb9o7__3TXdiudprebakae7Cisn3Y6k1hWvMD8PsWwTYvUGYDpDa-6bnOOLZE3RtrzyJfWA9nxCSvYpTlh_Dcvh_cdVDVQgElmNDC2AAVOJRU-JJraSYhUAIHVKS-ljiQ5iyjlTFzzHGiQyZZEphHYUGjgGqRYnwEjWycqWPwNEm5ahGVpEwTTHwpuOaKM6yYeUVZE_x6AOOkwhe3bS7e4qCCIV0YjCZcT1neS3CNZcT-7KzEhYto6LL9yCJ5XHwVTYiWsOBfP3XyR75L2OgMet24-9B_PIVNl1riMl_OoFFMPtQ5rCefxSifXDg9_QaioOLJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-L87INPQrBpsmZ5FHUoatnDxL2VtElwIN1Yq_jnm6Tt2JjuQaFP5e5akrtccrn7HcBFEGijKowigbVGVPoCcSpCxAMmZMp44kvhmk2wKGr3-7xb5ebkVVqlPUPrEijCrdXWuEdS1xlxV0a00TRXJWpspIXZMqw4YCyjzr3Oa70Qm40CqeohKTL07fpS8ycRM25pBrR0yt10tv75o9uwWe0zvetSMXZgSWW7sPE8AWnN98CPLH5tXqDMhkdtdNNzfXFsgbo31J7FvbD-zYhJ38Qgy_fhpXPXu7lHVQMFlBIaFsYCQkGCJBR-wnVipgArQXAopK8TghNzktHKGDnhJNUBS1iKzaOICFs41EIScgCNbJipQ_A0lVy1qUol05RQPxFcc8UZUcy8ClkT_Hr84rRCF7dNLt5jXIGQzg1GEy4nLKMSWmMRsT89KXHh4hm6bD4yTx4XX0UTWgtYyK-fOvoj3zmsdW878dND9HgM6y6vxKW9nECjGH-oU1hNP4tBPj5zWvoN4JHhbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearest-neighbour+modelling+of+reciprocal+chains&rft.jtitle=Stochastics+%28Abingdon%2C+Eng.+%3A+2005%29&rft.au=Carravetta%2C+Francesco&rft.date=2008-12-01&rft.issn=1744-2508&rft.eissn=1744-2516&rft.volume=80&rft.issue=6&rft.spage=525&rft.epage=584&rft_id=info:doi/10.1080%2F17442500802088517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17442500802088517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-2508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-2508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-2508&client=summon