A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm
•A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient. This article acquaints a new method to forecast th...
Uložené v:
| Vydané v: | Computers in industry Ročník 111; s. 121 - 139 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2019
|
| Predmet: | |
| ISSN: | 0166-3615, 1872-6194 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient.
This article acquaints a new method to forecast the time series dataset based on neutrosophic-quantum optimization approach. This study uses neutrosophic set (NS) theory to represent the inherited uncertainty of time series dataset with three different memberships as truth, indeterminacy and false. We refer such representations of time series dataset as neutrosophic time series (NTS). This NTS is further utilized for modeling and forecasting time series dataset. Study showed that the performance of NTS modeling approach is highly dependent on the optimal selection of the universe of discourse and its corresponding intervals. To resolve this issue, this study selects quantum optimization algorithm (QOA) and ensembles with the NTS modeling approach. QOA improves the performance of the NTS modeling approach by selecting the globally optimal universe of discourse and its corresponding intervals from the list of local optimal solutions. The proposed hybrid model (i.e., NTS-QOA model) is verified and validated with datasets of university enrollment of Alabama (USA), Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corporation (TSEC) weighted index. Various experimental results signify the efficiency of the proposed NTS-QOA model over existing benchmark models in terms of average forecasting error rates (AFERs) of 0.44%, 0.066% and 1.27% for the university enrollment, TAIFEX index and TSEC weighted index, respectively. |
|---|---|
| AbstractList | •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient.
This article acquaints a new method to forecast the time series dataset based on neutrosophic-quantum optimization approach. This study uses neutrosophic set (NS) theory to represent the inherited uncertainty of time series dataset with three different memberships as truth, indeterminacy and false. We refer such representations of time series dataset as neutrosophic time series (NTS). This NTS is further utilized for modeling and forecasting time series dataset. Study showed that the performance of NTS modeling approach is highly dependent on the optimal selection of the universe of discourse and its corresponding intervals. To resolve this issue, this study selects quantum optimization algorithm (QOA) and ensembles with the NTS modeling approach. QOA improves the performance of the NTS modeling approach by selecting the globally optimal universe of discourse and its corresponding intervals from the list of local optimal solutions. The proposed hybrid model (i.e., NTS-QOA model) is verified and validated with datasets of university enrollment of Alabama (USA), Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corporation (TSEC) weighted index. Various experimental results signify the efficiency of the proposed NTS-QOA model over existing benchmark models in terms of average forecasting error rates (AFERs) of 0.44%, 0.066% and 1.27% for the university enrollment, TAIFEX index and TSEC weighted index, respectively. |
| Author | Huang, Yo-Ping Singh, Pritpal |
| Author_xml | – sequence: 1 givenname: Pritpal surname: Singh fullname: Singh, Pritpal email: drpritpalsingh82@gmail.com organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan – sequence: 2 givenname: Yo-Ping surname: Huang fullname: Huang, Yo-Ping email: yphuang@ntut.edu.tw organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan |
| BookMark | eNqFkE1OwzAQRi0EEm3hCEi-QIKdpE4iFqiq-JMqsYG15diTxiWxg-2CyulxaVdsOhppNvM-zbwpOjfWAEI3lKSUUHa7SaUdRm1UmhFap4SlhBRnaEKrMksYrYtzNIl7LMkZnV-iqfcbEqss2QR9LLCBb9ztGqcVDnoA7MFp8Li1DqTwQZs1HqyCHjfCg8LW4NBBpLbBWW_HTsuIBCyMwp9bYcJ2wHaMSfpHBB23Rb-2ToduuEIXreg9XB_nDL0_Prwtn5PV69PLcrFKZF6wkFBBoVG1aGrIYiul8oIUdZWXGSvbulSkZGXV1LmQrBCykYQoSRhUqpUNzFU-Q3eHXBkP9A5aLnX4uyU4oXtOCd974xt-9Mb33jhhPHqL9PwfPTo9CLc7yd0fOIivfWlw3EsNRoLSUWTgyuoTCb9Z9pDH |
| CitedBy_id | crossref_primary_10_1007_s40815_020_00879_w crossref_primary_10_3390_axioms11100527 crossref_primary_10_1016_j_cie_2021_107795 crossref_primary_10_1007_s12190_025_02520_1 crossref_primary_10_1002_int_22523 crossref_primary_10_1007_s10614_023_10502_3 crossref_primary_10_1016_j_isatra_2020_12_009 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_1109_ACCESS_2020_3012280 crossref_primary_10_1007_s40819_025_01975_x crossref_primary_10_1016_j_ins_2021_02_024 crossref_primary_10_1109_ACCESS_2020_3027206 crossref_primary_10_32604_cmc_2022_030806 crossref_primary_10_1016_j_compind_2022_103803 crossref_primary_10_1109_ACCESS_2020_2982825 crossref_primary_10_1177_03611981221124591 crossref_primary_10_1108_JFMM_03_2022_0044 crossref_primary_10_1109_ACCESS_2022_3204798 crossref_primary_10_3233_JIFS_211093 crossref_primary_10_1007_s11036_023_02105_x crossref_primary_10_1007_s13042_024_02466_z crossref_primary_10_1007_s40815_020_01009_2 |
| Cites_doi | 10.1142/S0217984917500075 10.1002/int.20145 10.1016/j.asoc.2012.05.002 10.1016/j.eswa.2009.10.013 10.1080/01969722.2012.637014 10.1016/j.eswa.2010.08.059 10.1016/j.eswa.2006.12.013 10.1016/0165-0114(94)90152-X 10.1109/TSMCB.2010.2042055 10.1016/S0165-0114(00)00057-9 10.1016/j.eswa.2011.02.096 10.1016/j.eswa.2009.06.102 10.1109/TSMCB.2006.890303 10.1016/j.eswa.2010.02.049 10.1016/j.eswa.2012.04.039 10.1007/s10115-012-0603-9 10.1088/0253-6102/64/1/47 10.1007/s40815-018-0479-2 10.1016/j.engappai.2013.07.012 10.1080/00207160410001712288 10.1016/j.econmod.2012.09.047 10.1007/s10700-006-0025-9 10.1152/ajpheart.2000.278.6.H2039 10.1109/3477.558818 10.1142/S0217732318502085 10.1016/j.eswa.2008.07.043 10.1016/j.jocs.2018.05.008 10.1007/s00521-016-2261-4 10.1016/j.knosys.2013.01.030 10.1016/0165-0114(93)90355-L 10.1016/j.techfore.2005.07.004 10.1016/j.ijar.2013.09.014 10.1016/j.eswa.2006.09.007 10.1016/j.eswa.2007.05.016 10.1016/S0019-9958(72)90199-4 10.1016/j.asoc.2017.01.043 10.1109/49.192730 10.1016/S0019-9958(65)90241-X 10.1016/j.engappai.2018.04.017 10.1109/TFUZZ.2006.876367 10.1007/s13042-015-0332-y 10.1016/j.engappai.2018.02.015 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compind.2019.06.004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-6194 |
| EndPage | 139 |
| ExternalDocumentID | 10_1016_j_compind_2019_06_004 S0166361518309072 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K TAE TAF TN5 U5U UNMZH VH1 WH7 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c346t-1a1ebd9ab9e29e2ddd34049837267f97d07678b93ac64acbc00dc06e8dfcbe5d3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-3615 |
| IngestDate | Sat Nov 29 07:27:06 EST 2025 Tue Nov 18 21:38:47 EST 2025 Fri Feb 23 02:30:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time series forecasting Quantum optimization algorithm (QOA) Neutrosophic set Entropy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c346t-1a1ebd9ab9e29e2ddd34049837267f97d07678b93ac64acbc00dc06e8dfcbe5d3 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compind_2019_06_004 crossref_primary_10_1016_j_compind_2019_06_004 elsevier_sciencedirect_doi_10_1016_j_compind_2019_06_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers in industry |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Radmehr, Gharneh (bib0130) 2012; 23 Singh, Borah (bib0260) 2013; 46 Singh, Borah (bib0040) 2014; 38 Avazbeigi, Doulabi, Karimi (bib0065) 2010; 37 Wong, Bai, Chu (bib0095) 2010; 40 Huarng (bib0240) 2001; 123 Coates, Janacek, Lever (bib0210) 1988; 6 Wei, Chen, Ho (bib0055) 2011; 38 Sullivan, Woodall (bib0255) 1994; 64 Luca, Termini (bib0185) 1972; 20 Liu (bib0105) 2007; 6 Kuo, Horng, Chen, Run, Kao, Chen, Lai, Lin (bib0080) 2010; 37 Singh, Rabadiya (bib0165) 2018 Joshi, Kumar (bib0230) 2012; 43 Singh, Borah (bib0265) 2014; 55 Bai, Wong, Chu, Xia, Pan (bib0075) 2011; 38 Kundu, Islam (bib0155) 2018; 20 Singh, Borah (bib0110) 2013; 26 Cheng, Wei, Liu, Chen (bib0070) 2013; 30 Cheng, Cheng, Wang (bib0090) 2008; 34 Yu, Huarng (bib0045) 2008; 34 Huarng, Yu (bib0060) 2012; 8 Gangwar, Kumar (bib0225) 2012; 39 Chen, Chung (bib0125) 2006; 21 Song, Chissom (bib0010) 1993; 54 Lee, Chou (bib0020) 2004; 81 Cheng, Chang, Yeh (bib0025) 2006; 73 Kuo, Horng, Kao, Lin, Lee, Pan (bib0235) 2009; 36 Gupta, Jain, Tayal, Castillo (bib0115) 2018; 71 Atanassov (bib0150) 1983 Jiang, Dong, Li, Lian (bib0140) 2017; 55 Singh, Dhiman (bib0135) 2018; 27 Aladag, Yolcu, Egrioglu, Dalar (bib0085) 2012; 12 Melkikh (bib0195) 2017; 31 Bas, Grosan, Egrioglu, Yolcu (bib0120) 2018; 72 Zadeh (bib0005) 1965; 8 Lee, Wang, Chen, Leu (bib0245) 2006; 14 Qiu, Liu, Li (bib0100) 2011; 38 Deb (bib0215) 2001 Singh (bib0220) 2015 Smarandache (bib0160) 1999 Majumdar, Samanta (bib0190) 2014; 26 Richman, Moorman (bib0170) 2000; 278 Melkikh (bib0200) 2015; 64 Schr”odinger (bib0205) 1935; 23 Huarng, Yu, Hsu (bib0250) 2007; 37 Lee, Wang, Chen (bib0035) 2008; 34 Singh (bib0175) 2017; 28 Yu, Huarng (bib0050) 2010; 37 Wang, Smarandache, Zhang, Sunderraman (bib0180) 2005 Singh, Dhiman, Kaur (bib0145) 2018; 33 Singh (bib0015) 2017; 8 Huang, Yu (bib0030) 1997; 27 Kuo (10.1016/j.compind.2019.06.004_bib0235) 2009; 36 Kuo (10.1016/j.compind.2019.06.004_bib0080) 2010; 37 Gupta (10.1016/j.compind.2019.06.004_bib0115) 2018; 71 Cheng (10.1016/j.compind.2019.06.004_bib0025) 2006; 73 Lee (10.1016/j.compind.2019.06.004_bib0020) 2004; 81 Melkikh (10.1016/j.compind.2019.06.004_bib0195) 2017; 31 Singh (10.1016/j.compind.2019.06.004_bib0135) 2018; 27 Melkikh (10.1016/j.compind.2019.06.004_bib0200) 2015; 64 Yu (10.1016/j.compind.2019.06.004_bib0050) 2010; 37 Liu (10.1016/j.compind.2019.06.004_bib0105) 2007; 6 Atanassov (10.1016/j.compind.2019.06.004_bib0150) 1983 Bas (10.1016/j.compind.2019.06.004_bib0120) 2018; 72 Schr"odinger (10.1016/j.compind.2019.06.004_bib0205) 1935; 23 Sullivan (10.1016/j.compind.2019.06.004_bib0255) 1994; 64 Wei (10.1016/j.compind.2019.06.004_bib0055) 2011; 38 Singh (10.1016/j.compind.2019.06.004_bib0145) 2018; 33 Huarng (10.1016/j.compind.2019.06.004_bib0240) 2001; 123 Huarng (10.1016/j.compind.2019.06.004_bib0060) 2012; 8 Singh (10.1016/j.compind.2019.06.004_bib0015) 2017; 8 Avazbeigi (10.1016/j.compind.2019.06.004_bib0065) 2010; 37 Joshi (10.1016/j.compind.2019.06.004_bib0230) 2012; 43 Jiang (10.1016/j.compind.2019.06.004_bib0140) 2017; 55 Luca (10.1016/j.compind.2019.06.004_bib0185) 1972; 20 Zadeh (10.1016/j.compind.2019.06.004_bib0005) 1965; 8 Smarandache (10.1016/j.compind.2019.06.004_bib0160) 1999 Yu (10.1016/j.compind.2019.06.004_bib0045) 2008; 34 Singh (10.1016/j.compind.2019.06.004_bib0040) 2014; 38 Deb (10.1016/j.compind.2019.06.004_bib0215) 2001 Singh (10.1016/j.compind.2019.06.004_bib0260) 2013; 46 Huarng (10.1016/j.compind.2019.06.004_bib0250) 2007; 37 Singh (10.1016/j.compind.2019.06.004_bib0175) 2017; 28 Wang (10.1016/j.compind.2019.06.004_bib0180) 2005 Huang (10.1016/j.compind.2019.06.004_bib0030) 1997; 27 Coates (10.1016/j.compind.2019.06.004_bib0210) 1988; 6 Wong (10.1016/j.compind.2019.06.004_bib0095) 2010; 40 Majumdar (10.1016/j.compind.2019.06.004_bib0190) 2014; 26 Lee (10.1016/j.compind.2019.06.004_bib0035) 2008; 34 Lee (10.1016/j.compind.2019.06.004_bib0245) 2006; 14 Gangwar (10.1016/j.compind.2019.06.004_bib0225) 2012; 39 Aladag (10.1016/j.compind.2019.06.004_bib0085) 2012; 12 Qiu (10.1016/j.compind.2019.06.004_bib0100) 2011; 38 Singh (10.1016/j.compind.2019.06.004_bib0265) 2014; 55 Bai (10.1016/j.compind.2019.06.004_bib0075) 2011; 38 Cheng (10.1016/j.compind.2019.06.004_bib0070) 2013; 30 Chen (10.1016/j.compind.2019.06.004_bib0125) 2006; 21 Radmehr (10.1016/j.compind.2019.06.004_bib0130) 2012; 23 Singh (10.1016/j.compind.2019.06.004_bib0220) 2015 Singh (10.1016/j.compind.2019.06.004_bib0165) 2018 Cheng (10.1016/j.compind.2019.06.004_bib0090) 2008; 34 Singh (10.1016/j.compind.2019.06.004_bib0110) 2013; 26 Song (10.1016/j.compind.2019.06.004_bib0010) 1993; 54 Richman (10.1016/j.compind.2019.06.004_bib0170) 2000; 278 Kundu (10.1016/j.compind.2019.06.004_bib0155) 2018; 20 |
| References_xml | – volume: 72 start-page: 350 year: 2018 end-page: 356 ident: bib0120 article-title: High order fuzzy time series method based on pi-sigma neural network publication-title: Eng. Appl. Artif. Intell. – volume: 21 start-page: 485 year: 2006 end-page: 501 ident: bib0125 article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms publication-title: Int. J. Intell. Syst. – volume: 27 start-page: 370 year: 2018 end-page: 385 ident: bib0135 article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches publication-title: J. Comput. Sci. – volume: 81 start-page: 781 year: 2004 end-page: 789 ident: bib0020 article-title: Fuzzy forecasting based on fuzzy time series publication-title: Int. J. Comput. Math. – volume: 123 start-page: 387 year: 2001 end-page: 394 ident: bib0240 article-title: Effective lengths of intervals to improve forecasting in fuzzy time series publication-title: Fuzzy Sets Syst. – volume: 38 start-page: 669 year: 2014 end-page: 690 ident: bib0040 article-title: An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors publication-title: Knowl. Inf. Syst. – volume: 26 start-page: 2443 year: 2013 end-page: 2457 ident: bib0110 article-title: An efficient time series forecasting model based on fuzzy time series publication-title: Eng. Appl. Artif. Intell. – volume: 31 start-page: 1750007 year: 2017 ident: bib0195 article-title: Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields publication-title: Mod. Phys. Lett. B – volume: 26 start-page: 1245 year: 2014 end-page: 1252 ident: bib0190 article-title: On similarity and entropy of neutrosophic sets publication-title: J. Intell. Fuzzy Syst. – volume: 36 start-page: 6108 year: 2009 end-page: 6117 ident: bib0235 article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – year: 2015 ident: bib0220 article-title: Applications of Soft Computing in Time Series Forecasting: Simulation and Modeling Techniques, vol. 330 – volume: 30 start-page: 442 year: 2013 end-page: 448 ident: bib0070 article-title: OWA-based ANFIS model for TAIEX forecasting publication-title: Econ. Model. – year: 1999 ident: bib0160 article-title: A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, Set and Logic – volume: 64 start-page: 47 year: 2015 ident: bib0200 article-title: Nonlinearity of quantum mechanics and solution of the problem of wave function collapse publication-title: Commun. Theor. Phys. – volume: 278 start-page: H2039 year: 2000 end-page: H2049 ident: bib0170 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circul. Physiol. – volume: 34 start-page: 2945 year: 2008 end-page: 2952 ident: bib0045 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. – volume: 37 start-page: 3366 year: 2010 end-page: 3372 ident: bib0050 article-title: A neural network-based fuzzy time series model to improve forecasting publication-title: Expert Syst. Appl. – year: 2005 ident: bib0180 article-title: Single valued neutrosophic sets publication-title: Proceedings of 10th International Conference on Fuzzy Theory & Technology – volume: 6 start-page: 63 year: 2007 end-page: 80 ident: bib0105 article-title: An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers publication-title: Fuzzy Optim. Decis. Mak. – volume: 71 start-page: 175 year: 2018 end-page: 189 ident: bib0115 article-title: ClusFuDE: forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution publication-title: Eng. Appl. Artif. Intell. – volume: 12 start-page: 3291 year: 2012 end-page: 3299 ident: bib0085 article-title: A new time invariant fuzzy time series forecasting method based on particle swarm optimization publication-title: Appl. Soft Comput. – volume: 34 start-page: 1235 year: 2008 end-page: 1242 ident: bib0090 article-title: Multi-attribute fuzzy time series method based on fuzzy clustering publication-title: Expert Syst. Appl. – volume: 37 start-page: 1494 year: 2010 end-page: 1502 ident: bib0080 article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0005 article-title: Fuzzy sets publication-title: Inf. Control – volume: 38 start-page: 2701 year: 2011 end-page: 2707 ident: bib0075 article-title: A heuristic time-invariant model for fuzzy time series forecasting publication-title: Expert Syst. Appl. – volume: 28 start-page: 3851 year: 2017 end-page: 3868 ident: bib0175 article-title: High-order fuzzy-neuro-entropy integration-based expert system for time series forecasting publication-title: Neural Comput. Appl. – volume: 55 start-page: 812 year: 2014 end-page: 833 ident: bib0265 article-title: Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization publication-title: Int. J. Approx. Reason. – volume: 20 start-page: 1986 year: 2018 end-page: 1994 ident: bib0155 article-title: Neutrosophic goal geometric programming problem and its application to multi-objective reliability optimization model publication-title: Int. J. Fuzzy Syst. – volume: 43 start-page: 34 year: 2012 end-page: 47 ident: bib0230 article-title: Intuitionistic fuzzy sets based method for fuzzy time series forecasting publication-title: Cybern. Syst. – volume: 37 start-page: 836 year: 2007 end-page: 846 ident: bib0250 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B (Cybernetics) – volume: 8 start-page: 7415 year: 2012 end-page: 7426 ident: bib0060 article-title: Modeling fuzzy time series with multiple observations publication-title: Int. J. Innov. Comput. Inf. Control – year: 2018 ident: bib0165 article-title: Information classification, visualization and decision-making: a neutrosophic set theory based approach publication-title: Proceedings of 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018) – volume: 54 start-page: 1 year: 1993 end-page: 9 ident: bib0010 article-title: Forecasting enrollments with fuzzy time series – part I publication-title: Fuzzy Sets Syst. – volume: 27 start-page: 284 year: 1997 end-page: 292 ident: bib0030 article-title: The hybrid grey-based models for temperature prediction publication-title: IEEE Trans. Systems Man Cybern. B: Cybernetics – volume: 14 start-page: 468 year: 2006 end-page: 477 ident: bib0245 article-title: Handling forecasting problems based on two-factors high-order fuzzy time series publication-title: IEEE Trans. Fuzzy Syst. – volume: 38 start-page: 13625 year: 2011 end-page: 13631 ident: bib0055 article-title: A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market publication-title: Expert Syst. Appl. – volume: 55 start-page: 44 year: 2017 end-page: 62 ident: bib0140 article-title: A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction publication-title: Appl. Soft Comput. – volume: 40 start-page: 1531 year: 2010 end-page: 1542 ident: bib0095 article-title: Adaptive time-variant models for fuzzy-time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B: Cybernetics – volume: 39 start-page: 12158 year: 2012 end-page: 12164 ident: bib0225 article-title: Partitions based computational method for high-order fuzzy time series forecasting publication-title: Expert Syst. Appl. – volume: 20 start-page: 301 year: 1972 end-page: 312 ident: bib0185 article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory publication-title: Inf. Control – volume: 37 start-page: 5630 year: 2010 end-page: 5639 ident: bib0065 article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production publication-title: Expert Syst. Appl. – volume: 64 start-page: 279 year: 1994 end-page: 293 ident: bib0255 article-title: A comparison of fuzzy forecasting and Markov modeling publication-title: Fuzzy Sets Syst. – volume: 23 year: 1935 ident: bib0205 publication-title: Naturwissenschaften – volume: 34 start-page: 328 year: 2008 end-page: 336 ident: bib0035 article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques publication-title: Expert Syst. Appl. – volume: 6 start-page: 58 year: 1988 end-page: 66 ident: bib0210 article-title: Monte Carlo simulation and random number generation publication-title: IEEE J. Sel. Areas Commun. – volume: 73 start-page: 524 year: 2006 end-page: 542 ident: bib0025 article-title: Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost publication-title: Technol. Forecast. Soc. Change – volume: 33 start-page: 1850208 year: 2018 end-page: 1850231 ident: bib0145 article-title: A quantum approach for time series data based on graph and Schr“odinger equations methods publication-title: Mod. Phys. Lett. A – year: 2001 ident: bib0215 article-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 46 start-page: 12 year: 2013 end-page: 21 ident: bib0260 article-title: High-order fuzzy-neuro expert system for time series forecasting publication-title: Knowl. Based Syst. – volume: 23 start-page: 176 year: 2012 end-page: 190 ident: bib0130 article-title: Forecasting method based on high order fuzzy time series and simulated annealing technique publication-title: S. Afr. J. Ind. Eng. – volume: 38 start-page: 10446 year: 2011 end-page: 10453 ident: bib0100 article-title: A generalized method for forecasting based on fuzzy time series publication-title: Expert Syst. Appl. – start-page: 16840 year: 1983 end-page: 21697 ident: bib0150 article-title: Intuitionistic fuzzy sets publication-title: Proc. VII ITKR's Session – volume: 8 start-page: 397 year: 2017 end-page: 420 ident: bib0015 article-title: A brief review of modeling approaches based on fuzzy time series publication-title: Int. J. Mach. Learn. Cybern. – volume: 31 start-page: 1750007 year: 2017 ident: 10.1016/j.compind.2019.06.004_bib0195 article-title: Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984917500075 – volume: 21 start-page: 485 year: 2006 ident: 10.1016/j.compind.2019.06.004_bib0125 article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20145 – volume: 12 start-page: 3291 year: 2012 ident: 10.1016/j.compind.2019.06.004_bib0085 article-title: A new time invariant fuzzy time series forecasting method based on particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.002 – volume: 23 year: 1935 ident: 10.1016/j.compind.2019.06.004_bib0205 publication-title: Naturwissenschaften – volume: 37 start-page: 3366 year: 2010 ident: 10.1016/j.compind.2019.06.004_bib0050 article-title: A neural network-based fuzzy time series model to improve forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.013 – volume: 43 start-page: 34 year: 2012 ident: 10.1016/j.compind.2019.06.004_bib0230 article-title: Intuitionistic fuzzy sets based method for fuzzy time series forecasting publication-title: Cybern. Syst. doi: 10.1080/01969722.2012.637014 – volume: 38 start-page: 2701 year: 2011 ident: 10.1016/j.compind.2019.06.004_bib0075 article-title: A heuristic time-invariant model for fuzzy time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.059 – volume: 34 start-page: 1235 year: 2008 ident: 10.1016/j.compind.2019.06.004_bib0090 article-title: Multi-attribute fuzzy time series method based on fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.12.013 – volume: 64 start-page: 279 year: 1994 ident: 10.1016/j.compind.2019.06.004_bib0255 article-title: A comparison of fuzzy forecasting and Markov modeling publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90152-X – volume: 26 start-page: 1245 year: 2014 ident: 10.1016/j.compind.2019.06.004_bib0190 article-title: On similarity and entropy of neutrosophic sets publication-title: J. Intell. Fuzzy Syst. – start-page: 16840 year: 1983 ident: 10.1016/j.compind.2019.06.004_bib0150 article-title: Intuitionistic fuzzy sets – volume: 40 start-page: 1531 year: 2010 ident: 10.1016/j.compind.2019.06.004_bib0095 article-title: Adaptive time-variant models for fuzzy-time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B: Cybernetics doi: 10.1109/TSMCB.2010.2042055 – volume: 123 start-page: 387 year: 2001 ident: 10.1016/j.compind.2019.06.004_bib0240 article-title: Effective lengths of intervals to improve forecasting in fuzzy time series publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(00)00057-9 – year: 1999 ident: 10.1016/j.compind.2019.06.004_bib0160 – year: 2005 ident: 10.1016/j.compind.2019.06.004_bib0180 article-title: Single valued neutrosophic sets – volume: 38 start-page: 10446 year: 2011 ident: 10.1016/j.compind.2019.06.004_bib0100 article-title: A generalized method for forecasting based on fuzzy time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.096 – volume: 37 start-page: 1494 year: 2010 ident: 10.1016/j.compind.2019.06.004_bib0080 article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.102 – volume: 37 start-page: 836 year: 2007 ident: 10.1016/j.compind.2019.06.004_bib0250 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B (Cybernetics) doi: 10.1109/TSMCB.2006.890303 – volume: 37 start-page: 5630 year: 2010 ident: 10.1016/j.compind.2019.06.004_bib0065 article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.02.049 – volume: 39 start-page: 12158 year: 2012 ident: 10.1016/j.compind.2019.06.004_bib0225 article-title: Partitions based computational method for high-order fuzzy time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.039 – volume: 38 start-page: 669 year: 2014 ident: 10.1016/j.compind.2019.06.004_bib0040 article-title: An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0603-9 – volume: 64 start-page: 47 year: 2015 ident: 10.1016/j.compind.2019.06.004_bib0200 article-title: Nonlinearity of quantum mechanics and solution of the problem of wave function collapse publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/64/1/47 – volume: 20 start-page: 1986 year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0155 article-title: Neutrosophic goal geometric programming problem and its application to multi-objective reliability optimization model publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-018-0479-2 – volume: 26 start-page: 2443 year: 2013 ident: 10.1016/j.compind.2019.06.004_bib0110 article-title: An efficient time series forecasting model based on fuzzy time series publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.07.012 – volume: 81 start-page: 781 year: 2004 ident: 10.1016/j.compind.2019.06.004_bib0020 article-title: Fuzzy forecasting based on fuzzy time series publication-title: Int. J. Comput. Math. doi: 10.1080/00207160410001712288 – volume: 23 start-page: 176 year: 2012 ident: 10.1016/j.compind.2019.06.004_bib0130 article-title: Forecasting method based on high order fuzzy time series and simulated annealing technique publication-title: S. Afr. J. Ind. Eng. – volume: 30 start-page: 442 year: 2013 ident: 10.1016/j.compind.2019.06.004_bib0070 article-title: OWA-based ANFIS model for TAIEX forecasting publication-title: Econ. Model. doi: 10.1016/j.econmod.2012.09.047 – volume: 6 start-page: 63 year: 2007 ident: 10.1016/j.compind.2019.06.004_bib0105 article-title: An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1007/s10700-006-0025-9 – volume: 278 start-page: H2039 year: 2000 ident: 10.1016/j.compind.2019.06.004_bib0170 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circul. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 27 start-page: 284 year: 1997 ident: 10.1016/j.compind.2019.06.004_bib0030 article-title: The hybrid grey-based models for temperature prediction publication-title: IEEE Trans. Systems Man Cybern. B: Cybernetics doi: 10.1109/3477.558818 – volume: 33 start-page: 1850208 year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0145 article-title: A quantum approach for time series data based on graph and Schr"odinger equations methods publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732318502085 – volume: 36 start-page: 6108 year: 2009 ident: 10.1016/j.compind.2019.06.004_bib0235 article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.043 – volume: 27 start-page: 370 year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0135 article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.05.008 – volume: 28 start-page: 3851 year: 2017 ident: 10.1016/j.compind.2019.06.004_bib0175 article-title: High-order fuzzy-neuro-entropy integration-based expert system for time series forecasting publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2261-4 – year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0165 article-title: Information classification, visualization and decision-making: a neutrosophic set theory based approach – volume: 46 start-page: 12 year: 2013 ident: 10.1016/j.compind.2019.06.004_bib0260 article-title: High-order fuzzy-neuro expert system for time series forecasting publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.01.030 – volume: 54 start-page: 1 year: 1993 ident: 10.1016/j.compind.2019.06.004_bib0010 article-title: Forecasting enrollments with fuzzy time series – part I publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90355-L – volume: 73 start-page: 524 year: 2006 ident: 10.1016/j.compind.2019.06.004_bib0025 article-title: Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2005.07.004 – volume: 55 start-page: 812 year: 2014 ident: 10.1016/j.compind.2019.06.004_bib0265 article-title: Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.09.014 – year: 2001 ident: 10.1016/j.compind.2019.06.004_bib0215 – volume: 34 start-page: 328 year: 2008 ident: 10.1016/j.compind.2019.06.004_bib0035 article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.09.007 – volume: 8 start-page: 7415 year: 2012 ident: 10.1016/j.compind.2019.06.004_bib0060 article-title: Modeling fuzzy time series with multiple observations publication-title: Int. J. Innov. Comput. Inf. Control – volume: 34 start-page: 2945 year: 2008 ident: 10.1016/j.compind.2019.06.004_bib0045 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.016 – volume: 20 start-page: 301 year: 1972 ident: 10.1016/j.compind.2019.06.004_bib0185 article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory publication-title: Inf. Control doi: 10.1016/S0019-9958(72)90199-4 – volume: 55 start-page: 44 year: 2017 ident: 10.1016/j.compind.2019.06.004_bib0140 article-title: A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.043 – volume: 6 start-page: 58 year: 1988 ident: 10.1016/j.compind.2019.06.004_bib0210 article-title: Monte Carlo simulation and random number generation publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.192730 – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.compind.2019.06.004_bib0005 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 72 start-page: 350 year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0120 article-title: High order fuzzy time series method based on pi-sigma neural network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.017 – volume: 38 start-page: 13625 year: 2011 ident: 10.1016/j.compind.2019.06.004_bib0055 article-title: A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market publication-title: Expert Syst. Appl. – year: 2015 ident: 10.1016/j.compind.2019.06.004_bib0220 – volume: 14 start-page: 468 year: 2006 ident: 10.1016/j.compind.2019.06.004_bib0245 article-title: Handling forecasting problems based on two-factors high-order fuzzy time series publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.876367 – volume: 8 start-page: 397 year: 2017 ident: 10.1016/j.compind.2019.06.004_bib0015 article-title: A brief review of modeling approaches based on fuzzy time series publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-015-0332-y – volume: 71 start-page: 175 year: 2018 ident: 10.1016/j.compind.2019.06.004_bib0115 article-title: ClusFuDE: forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.02.015 |
| SSID | ssj0000776 |
| Score | 2.4170873 |
| Snippet | •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | Entropy Neutrosophic set Quantum optimization algorithm (QOA) Time series forecasting |
| Title | A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.compind.2019.06.004 |
| Volume | 111 |
| WOSCitedRecordID | wos000488306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6194 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000776 issn: 0166-3615 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEeUHmJAkV74GYZ_Njseo8RKgIOFRJFCidrX6EpiZ0mDir_ntmHNwaqQg9IkRVZml1n58vO7HhmPoReapYrqXOTgj2dpaSSJJW2EWRhSkMrrpVi0pFNsJOTajrl_RvdjaMTYE1TXV7y1X9VNdwDZdvS2RuoOw4KN-A7KB2uoHa4_pPiJ5YlPDn7YUuxHHV8Yqc1ru-CUWLj8pwdAU5iTZgOrwtAatutHavBXIGIzzy_2MLKb5dJCzvLMpRsJmLxtV3Pu7Pl0LPt6SFcfu3cE4LEcP0nmNPHb0BuJRY7MIVw9Zc2_dgb0RCDyHnMZothSUrTkvrCzLivhl3U74y5L4QORjb3HYz-2L99KOHcLv8KHtWm3nHXX9VzFP_aL_s3OxazC_vEtfM6DFPbYWqXwEduo72CjXk1QnuT98fTDzuzzRwTYfwpu3Kv11c-z9WOzMA5OT1A98KpAk88Gu6jW6Z5gPYHvSYfom8TDLjAHhfY4gJ7XOABLrDDBXa4wG2DARd4iAsQ6TDgAgdc4CEucMTFI_T57fHpm3dpYNpIVUlol-YiN1JzIbkp4KO1LgkcHauSFZTNONMZA6dG8lIoSoSSKsu0yqip9ExJM9blYzRq2sY8QZgLTg2cGURWcGIInEZVZRQhY1VQI0p5iEi_bLUKbegtG8qivlZth-hVFFv5Pix_E6h6ndTBmfROYg1Yu1706U3neobu7v4Vz9GoW2_NEbqjvnfzzfpFANpPyOWe0w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+time+series+forecasting+model+based+on+the+neutrosophic+set+and+quantum+optimization+algorithm&rft.jtitle=Computers+in+industry&rft.au=Singh%2C+Pritpal&rft.au=Huang%2C+Yo-Ping&rft.date=2019-10-01&rft.issn=0166-3615&rft.volume=111&rft.spage=121&rft.epage=139&rft_id=info:doi/10.1016%2Fj.compind.2019.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2019_06_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon |