A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm

•A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient. This article acquaints a new method to forecast th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers in industry Ročník 111; s. 121 - 139
Hlavní autori: Singh, Pritpal, Huang, Yo-Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2019
Predmet:
ISSN:0166-3615, 1872-6194
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient. This article acquaints a new method to forecast the time series dataset based on neutrosophic-quantum optimization approach. This study uses neutrosophic set (NS) theory to represent the inherited uncertainty of time series dataset with three different memberships as truth, indeterminacy and false. We refer such representations of time series dataset as neutrosophic time series (NTS). This NTS is further utilized for modeling and forecasting time series dataset. Study showed that the performance of NTS modeling approach is highly dependent on the optimal selection of the universe of discourse and its corresponding intervals. To resolve this issue, this study selects quantum optimization algorithm (QOA) and ensembles with the NTS modeling approach. QOA improves the performance of the NTS modeling approach by selecting the globally optimal universe of discourse and its corresponding intervals from the list of local optimal solutions. The proposed hybrid model (i.e., NTS-QOA model) is verified and validated with datasets of university enrollment of Alabama (USA), Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corporation (TSEC) weighted index. Various experimental results signify the efficiency of the proposed NTS-QOA model over existing benchmark models in terms of average forecasting error rates (AFERs) of 0.44%, 0.066% and 1.27% for the university enrollment, TAIFEX index and TSEC weighted index, respectively.
AbstractList •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model is compared with various existing models.•The proposed model is found to be very efficient. This article acquaints a new method to forecast the time series dataset based on neutrosophic-quantum optimization approach. This study uses neutrosophic set (NS) theory to represent the inherited uncertainty of time series dataset with three different memberships as truth, indeterminacy and false. We refer such representations of time series dataset as neutrosophic time series (NTS). This NTS is further utilized for modeling and forecasting time series dataset. Study showed that the performance of NTS modeling approach is highly dependent on the optimal selection of the universe of discourse and its corresponding intervals. To resolve this issue, this study selects quantum optimization algorithm (QOA) and ensembles with the NTS modeling approach. QOA improves the performance of the NTS modeling approach by selecting the globally optimal universe of discourse and its corresponding intervals from the list of local optimal solutions. The proposed hybrid model (i.e., NTS-QOA model) is verified and validated with datasets of university enrollment of Alabama (USA), Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corporation (TSEC) weighted index. Various experimental results signify the efficiency of the proposed NTS-QOA model over existing benchmark models in terms of average forecasting error rates (AFERs) of 0.44%, 0.066% and 1.27% for the university enrollment, TAIFEX index and TSEC weighted index, respectively.
Author Huang, Yo-Ping
Singh, Pritpal
Author_xml – sequence: 1
  givenname: Pritpal
  surname: Singh
  fullname: Singh, Pritpal
  email: drpritpalsingh82@gmail.com
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
– sequence: 2
  givenname: Yo-Ping
  surname: Huang
  fullname: Huang, Yo-Ping
  email: yphuang@ntut.edu.tw
  organization: Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
BookMark eNqFkE1OwzAQRi0EEm3hCEi-QIKdpE4iFqiq-JMqsYG15diTxiWxg-2CyulxaVdsOhppNvM-zbwpOjfWAEI3lKSUUHa7SaUdRm1UmhFap4SlhBRnaEKrMksYrYtzNIl7LMkZnV-iqfcbEqss2QR9LLCBb9ztGqcVDnoA7MFp8Li1DqTwQZs1HqyCHjfCg8LW4NBBpLbBWW_HTsuIBCyMwp9bYcJ2wHaMSfpHBB23Rb-2ToduuEIXreg9XB_nDL0_Prwtn5PV69PLcrFKZF6wkFBBoVG1aGrIYiul8oIUdZWXGSvbulSkZGXV1LmQrBCykYQoSRhUqpUNzFU-Q3eHXBkP9A5aLnX4uyU4oXtOCd974xt-9Mb33jhhPHqL9PwfPTo9CLc7yd0fOIivfWlw3EsNRoLSUWTgyuoTCb9Z9pDH
CitedBy_id crossref_primary_10_1007_s40815_020_00879_w
crossref_primary_10_3390_axioms11100527
crossref_primary_10_1016_j_cie_2021_107795
crossref_primary_10_1007_s12190_025_02520_1
crossref_primary_10_1002_int_22523
crossref_primary_10_1007_s10614_023_10502_3
crossref_primary_10_1016_j_isatra_2020_12_009
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1109_ACCESS_2020_3012280
crossref_primary_10_1007_s40819_025_01975_x
crossref_primary_10_1016_j_ins_2021_02_024
crossref_primary_10_1109_ACCESS_2020_3027206
crossref_primary_10_32604_cmc_2022_030806
crossref_primary_10_1016_j_compind_2022_103803
crossref_primary_10_1109_ACCESS_2020_2982825
crossref_primary_10_1177_03611981221124591
crossref_primary_10_1108_JFMM_03_2022_0044
crossref_primary_10_1109_ACCESS_2022_3204798
crossref_primary_10_3233_JIFS_211093
crossref_primary_10_1007_s11036_023_02105_x
crossref_primary_10_1007_s13042_024_02466_z
crossref_primary_10_1007_s40815_020_01009_2
Cites_doi 10.1142/S0217984917500075
10.1002/int.20145
10.1016/j.asoc.2012.05.002
10.1016/j.eswa.2009.10.013
10.1080/01969722.2012.637014
10.1016/j.eswa.2010.08.059
10.1016/j.eswa.2006.12.013
10.1016/0165-0114(94)90152-X
10.1109/TSMCB.2010.2042055
10.1016/S0165-0114(00)00057-9
10.1016/j.eswa.2011.02.096
10.1016/j.eswa.2009.06.102
10.1109/TSMCB.2006.890303
10.1016/j.eswa.2010.02.049
10.1016/j.eswa.2012.04.039
10.1007/s10115-012-0603-9
10.1088/0253-6102/64/1/47
10.1007/s40815-018-0479-2
10.1016/j.engappai.2013.07.012
10.1080/00207160410001712288
10.1016/j.econmod.2012.09.047
10.1007/s10700-006-0025-9
10.1152/ajpheart.2000.278.6.H2039
10.1109/3477.558818
10.1142/S0217732318502085
10.1016/j.eswa.2008.07.043
10.1016/j.jocs.2018.05.008
10.1007/s00521-016-2261-4
10.1016/j.knosys.2013.01.030
10.1016/0165-0114(93)90355-L
10.1016/j.techfore.2005.07.004
10.1016/j.ijar.2013.09.014
10.1016/j.eswa.2006.09.007
10.1016/j.eswa.2007.05.016
10.1016/S0019-9958(72)90199-4
10.1016/j.asoc.2017.01.043
10.1109/49.192730
10.1016/S0019-9958(65)90241-X
10.1016/j.engappai.2018.04.017
10.1109/TFUZZ.2006.876367
10.1007/s13042-015-0332-y
10.1016/j.engappai.2018.02.015
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compind.2019.06.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6194
EndPage 139
ExternalDocumentID 10_1016_j_compind_2019_06_004
S0166361518309072
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
TAE
TAF
TN5
U5U
UNMZH
VH1
WH7
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c346t-1a1ebd9ab9e29e2ddd34049837267f97d07678b93ac64acbc00dc06e8dfcbe5d3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-3615
IngestDate Sat Nov 29 07:27:06 EST 2025
Tue Nov 18 21:38:47 EST 2025
Fri Feb 23 02:30:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series forecasting
Quantum optimization algorithm (QOA)
Neutrosophic set
Entropy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-1a1ebd9ab9e29e2ddd34049837267f97d07678b93ac64acbc00dc06e8dfcbe5d3
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_compind_2019_06_004
crossref_primary_10_1016_j_compind_2019_06_004
elsevier_sciencedirect_doi_10_1016_j_compind_2019_06_004
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers in industry
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Radmehr, Gharneh (bib0130) 2012; 23
Singh, Borah (bib0260) 2013; 46
Singh, Borah (bib0040) 2014; 38
Avazbeigi, Doulabi, Karimi (bib0065) 2010; 37
Wong, Bai, Chu (bib0095) 2010; 40
Huarng (bib0240) 2001; 123
Coates, Janacek, Lever (bib0210) 1988; 6
Wei, Chen, Ho (bib0055) 2011; 38
Sullivan, Woodall (bib0255) 1994; 64
Luca, Termini (bib0185) 1972; 20
Liu (bib0105) 2007; 6
Kuo, Horng, Chen, Run, Kao, Chen, Lai, Lin (bib0080) 2010; 37
Singh, Rabadiya (bib0165) 2018
Joshi, Kumar (bib0230) 2012; 43
Singh, Borah (bib0265) 2014; 55
Bai, Wong, Chu, Xia, Pan (bib0075) 2011; 38
Kundu, Islam (bib0155) 2018; 20
Singh, Borah (bib0110) 2013; 26
Cheng, Wei, Liu, Chen (bib0070) 2013; 30
Cheng, Cheng, Wang (bib0090) 2008; 34
Yu, Huarng (bib0045) 2008; 34
Huarng, Yu (bib0060) 2012; 8
Gangwar, Kumar (bib0225) 2012; 39
Chen, Chung (bib0125) 2006; 21
Song, Chissom (bib0010) 1993; 54
Lee, Chou (bib0020) 2004; 81
Cheng, Chang, Yeh (bib0025) 2006; 73
Kuo, Horng, Kao, Lin, Lee, Pan (bib0235) 2009; 36
Gupta, Jain, Tayal, Castillo (bib0115) 2018; 71
Atanassov (bib0150) 1983
Jiang, Dong, Li, Lian (bib0140) 2017; 55
Singh, Dhiman (bib0135) 2018; 27
Aladag, Yolcu, Egrioglu, Dalar (bib0085) 2012; 12
Melkikh (bib0195) 2017; 31
Bas, Grosan, Egrioglu, Yolcu (bib0120) 2018; 72
Zadeh (bib0005) 1965; 8
Lee, Wang, Chen, Leu (bib0245) 2006; 14
Qiu, Liu, Li (bib0100) 2011; 38
Deb (bib0215) 2001
Singh (bib0220) 2015
Smarandache (bib0160) 1999
Majumdar, Samanta (bib0190) 2014; 26
Richman, Moorman (bib0170) 2000; 278
Melkikh (bib0200) 2015; 64
Schr”odinger (bib0205) 1935; 23
Huarng, Yu, Hsu (bib0250) 2007; 37
Lee, Wang, Chen (bib0035) 2008; 34
Singh (bib0175) 2017; 28
Yu, Huarng (bib0050) 2010; 37
Wang, Smarandache, Zhang, Sunderraman (bib0180) 2005
Singh, Dhiman, Kaur (bib0145) 2018; 33
Singh (bib0015) 2017; 8
Huang, Yu (bib0030) 1997; 27
Kuo (10.1016/j.compind.2019.06.004_bib0235) 2009; 36
Kuo (10.1016/j.compind.2019.06.004_bib0080) 2010; 37
Gupta (10.1016/j.compind.2019.06.004_bib0115) 2018; 71
Cheng (10.1016/j.compind.2019.06.004_bib0025) 2006; 73
Lee (10.1016/j.compind.2019.06.004_bib0020) 2004; 81
Melkikh (10.1016/j.compind.2019.06.004_bib0195) 2017; 31
Singh (10.1016/j.compind.2019.06.004_bib0135) 2018; 27
Melkikh (10.1016/j.compind.2019.06.004_bib0200) 2015; 64
Yu (10.1016/j.compind.2019.06.004_bib0050) 2010; 37
Liu (10.1016/j.compind.2019.06.004_bib0105) 2007; 6
Atanassov (10.1016/j.compind.2019.06.004_bib0150) 1983
Bas (10.1016/j.compind.2019.06.004_bib0120) 2018; 72
Schr"odinger (10.1016/j.compind.2019.06.004_bib0205) 1935; 23
Sullivan (10.1016/j.compind.2019.06.004_bib0255) 1994; 64
Wei (10.1016/j.compind.2019.06.004_bib0055) 2011; 38
Singh (10.1016/j.compind.2019.06.004_bib0145) 2018; 33
Huarng (10.1016/j.compind.2019.06.004_bib0240) 2001; 123
Huarng (10.1016/j.compind.2019.06.004_bib0060) 2012; 8
Singh (10.1016/j.compind.2019.06.004_bib0015) 2017; 8
Avazbeigi (10.1016/j.compind.2019.06.004_bib0065) 2010; 37
Joshi (10.1016/j.compind.2019.06.004_bib0230) 2012; 43
Jiang (10.1016/j.compind.2019.06.004_bib0140) 2017; 55
Luca (10.1016/j.compind.2019.06.004_bib0185) 1972; 20
Zadeh (10.1016/j.compind.2019.06.004_bib0005) 1965; 8
Smarandache (10.1016/j.compind.2019.06.004_bib0160) 1999
Yu (10.1016/j.compind.2019.06.004_bib0045) 2008; 34
Singh (10.1016/j.compind.2019.06.004_bib0040) 2014; 38
Deb (10.1016/j.compind.2019.06.004_bib0215) 2001
Singh (10.1016/j.compind.2019.06.004_bib0260) 2013; 46
Huarng (10.1016/j.compind.2019.06.004_bib0250) 2007; 37
Singh (10.1016/j.compind.2019.06.004_bib0175) 2017; 28
Wang (10.1016/j.compind.2019.06.004_bib0180) 2005
Huang (10.1016/j.compind.2019.06.004_bib0030) 1997; 27
Coates (10.1016/j.compind.2019.06.004_bib0210) 1988; 6
Wong (10.1016/j.compind.2019.06.004_bib0095) 2010; 40
Majumdar (10.1016/j.compind.2019.06.004_bib0190) 2014; 26
Lee (10.1016/j.compind.2019.06.004_bib0035) 2008; 34
Lee (10.1016/j.compind.2019.06.004_bib0245) 2006; 14
Gangwar (10.1016/j.compind.2019.06.004_bib0225) 2012; 39
Aladag (10.1016/j.compind.2019.06.004_bib0085) 2012; 12
Qiu (10.1016/j.compind.2019.06.004_bib0100) 2011; 38
Singh (10.1016/j.compind.2019.06.004_bib0265) 2014; 55
Bai (10.1016/j.compind.2019.06.004_bib0075) 2011; 38
Cheng (10.1016/j.compind.2019.06.004_bib0070) 2013; 30
Chen (10.1016/j.compind.2019.06.004_bib0125) 2006; 21
Radmehr (10.1016/j.compind.2019.06.004_bib0130) 2012; 23
Singh (10.1016/j.compind.2019.06.004_bib0220) 2015
Singh (10.1016/j.compind.2019.06.004_bib0165) 2018
Cheng (10.1016/j.compind.2019.06.004_bib0090) 2008; 34
Singh (10.1016/j.compind.2019.06.004_bib0110) 2013; 26
Song (10.1016/j.compind.2019.06.004_bib0010) 1993; 54
Richman (10.1016/j.compind.2019.06.004_bib0170) 2000; 278
Kundu (10.1016/j.compind.2019.06.004_bib0155) 2018; 20
References_xml – volume: 72
  start-page: 350
  year: 2018
  end-page: 356
  ident: bib0120
  article-title: High order fuzzy time series method based on pi-sigma neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 21
  start-page: 485
  year: 2006
  end-page: 501
  ident: bib0125
  article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms
  publication-title: Int. J. Intell. Syst.
– volume: 27
  start-page: 370
  year: 2018
  end-page: 385
  ident: bib0135
  article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches
  publication-title: J. Comput. Sci.
– volume: 81
  start-page: 781
  year: 2004
  end-page: 789
  ident: bib0020
  article-title: Fuzzy forecasting based on fuzzy time series
  publication-title: Int. J. Comput. Math.
– volume: 123
  start-page: 387
  year: 2001
  end-page: 394
  ident: bib0240
  article-title: Effective lengths of intervals to improve forecasting in fuzzy time series
  publication-title: Fuzzy Sets Syst.
– volume: 38
  start-page: 669
  year: 2014
  end-page: 690
  ident: bib0040
  article-title: An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors
  publication-title: Knowl. Inf. Syst.
– volume: 26
  start-page: 2443
  year: 2013
  end-page: 2457
  ident: bib0110
  article-title: An efficient time series forecasting model based on fuzzy time series
  publication-title: Eng. Appl. Artif. Intell.
– volume: 31
  start-page: 1750007
  year: 2017
  ident: bib0195
  article-title: Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields
  publication-title: Mod. Phys. Lett. B
– volume: 26
  start-page: 1245
  year: 2014
  end-page: 1252
  ident: bib0190
  article-title: On similarity and entropy of neutrosophic sets
  publication-title: J. Intell. Fuzzy Syst.
– volume: 36
  start-page: 6108
  year: 2009
  end-page: 6117
  ident: bib0235
  article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bib0220
  article-title: Applications of Soft Computing in Time Series Forecasting: Simulation and Modeling Techniques, vol. 330
– volume: 30
  start-page: 442
  year: 2013
  end-page: 448
  ident: bib0070
  article-title: OWA-based ANFIS model for TAIEX forecasting
  publication-title: Econ. Model.
– year: 1999
  ident: bib0160
  article-title: A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, Set and Logic
– volume: 64
  start-page: 47
  year: 2015
  ident: bib0200
  article-title: Nonlinearity of quantum mechanics and solution of the problem of wave function collapse
  publication-title: Commun. Theor. Phys.
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: bib0170
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circul. Physiol.
– volume: 34
  start-page: 2945
  year: 2008
  end-page: 2952
  ident: bib0045
  article-title: A bivariate fuzzy time series model to forecast the TAIEX
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 3366
  year: 2010
  end-page: 3372
  ident: bib0050
  article-title: A neural network-based fuzzy time series model to improve forecasting
  publication-title: Expert Syst. Appl.
– year: 2005
  ident: bib0180
  article-title: Single valued neutrosophic sets
  publication-title: Proceedings of 10th International Conference on Fuzzy Theory & Technology
– volume: 6
  start-page: 63
  year: 2007
  end-page: 80
  ident: bib0105
  article-title: An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 71
  start-page: 175
  year: 2018
  end-page: 189
  ident: bib0115
  article-title: ClusFuDE: forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution
  publication-title: Eng. Appl. Artif. Intell.
– volume: 12
  start-page: 3291
  year: 2012
  end-page: 3299
  ident: bib0085
  article-title: A new time invariant fuzzy time series forecasting method based on particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 1235
  year: 2008
  end-page: 1242
  ident: bib0090
  article-title: Multi-attribute fuzzy time series method based on fuzzy clustering
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 1494
  year: 2010
  end-page: 1502
  ident: bib0080
  article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib0005
  article-title: Fuzzy sets
  publication-title: Inf. Control
– volume: 38
  start-page: 2701
  year: 2011
  end-page: 2707
  ident: bib0075
  article-title: A heuristic time-invariant model for fuzzy time series forecasting
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 3851
  year: 2017
  end-page: 3868
  ident: bib0175
  article-title: High-order fuzzy-neuro-entropy integration-based expert system for time series forecasting
  publication-title: Neural Comput. Appl.
– volume: 55
  start-page: 812
  year: 2014
  end-page: 833
  ident: bib0265
  article-title: Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization
  publication-title: Int. J. Approx. Reason.
– volume: 20
  start-page: 1986
  year: 2018
  end-page: 1994
  ident: bib0155
  article-title: Neutrosophic goal geometric programming problem and its application to multi-objective reliability optimization model
  publication-title: Int. J. Fuzzy Syst.
– volume: 43
  start-page: 34
  year: 2012
  end-page: 47
  ident: bib0230
  article-title: Intuitionistic fuzzy sets based method for fuzzy time series forecasting
  publication-title: Cybern. Syst.
– volume: 37
  start-page: 836
  year: 2007
  end-page: 846
  ident: bib0250
  article-title: A multivariate heuristic model for fuzzy time-series forecasting
  publication-title: IEEE Trans. Syst. Man Cybern. B (Cybernetics)
– volume: 8
  start-page: 7415
  year: 2012
  end-page: 7426
  ident: bib0060
  article-title: Modeling fuzzy time series with multiple observations
  publication-title: Int. J. Innov. Comput. Inf. Control
– year: 2018
  ident: bib0165
  article-title: Information classification, visualization and decision-making: a neutrosophic set theory based approach
  publication-title: Proceedings of 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018)
– volume: 54
  start-page: 1
  year: 1993
  end-page: 9
  ident: bib0010
  article-title: Forecasting enrollments with fuzzy time series – part I
  publication-title: Fuzzy Sets Syst.
– volume: 27
  start-page: 284
  year: 1997
  end-page: 292
  ident: bib0030
  article-title: The hybrid grey-based models for temperature prediction
  publication-title: IEEE Trans. Systems Man Cybern. B: Cybernetics
– volume: 14
  start-page: 468
  year: 2006
  end-page: 477
  ident: bib0245
  article-title: Handling forecasting problems based on two-factors high-order fuzzy time series
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 38
  start-page: 13625
  year: 2011
  end-page: 13631
  ident: bib0055
  article-title: A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 44
  year: 2017
  end-page: 62
  ident: bib0140
  article-title: A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction
  publication-title: Appl. Soft Comput.
– volume: 40
  start-page: 1531
  year: 2010
  end-page: 1542
  ident: bib0095
  article-title: Adaptive time-variant models for fuzzy-time-series forecasting
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybernetics
– volume: 39
  start-page: 12158
  year: 2012
  end-page: 12164
  ident: bib0225
  article-title: Partitions based computational method for high-order fuzzy time series forecasting
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 301
  year: 1972
  end-page: 312
  ident: bib0185
  article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory
  publication-title: Inf. Control
– volume: 37
  start-page: 5630
  year: 2010
  end-page: 5639
  ident: bib0065
  article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production
  publication-title: Expert Syst. Appl.
– volume: 64
  start-page: 279
  year: 1994
  end-page: 293
  ident: bib0255
  article-title: A comparison of fuzzy forecasting and Markov modeling
  publication-title: Fuzzy Sets Syst.
– volume: 23
  year: 1935
  ident: bib0205
  publication-title: Naturwissenschaften
– volume: 34
  start-page: 328
  year: 2008
  end-page: 336
  ident: bib0035
  article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 58
  year: 1988
  end-page: 66
  ident: bib0210
  article-title: Monte Carlo simulation and random number generation
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 73
  start-page: 524
  year: 2006
  end-page: 542
  ident: bib0025
  article-title: Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost
  publication-title: Technol. Forecast. Soc. Change
– volume: 33
  start-page: 1850208
  year: 2018
  end-page: 1850231
  ident: bib0145
  article-title: A quantum approach for time series data based on graph and Schr“odinger equations methods
  publication-title: Mod. Phys. Lett. A
– year: 2001
  ident: bib0215
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 46
  start-page: 12
  year: 2013
  end-page: 21
  ident: bib0260
  article-title: High-order fuzzy-neuro expert system for time series forecasting
  publication-title: Knowl. Based Syst.
– volume: 23
  start-page: 176
  year: 2012
  end-page: 190
  ident: bib0130
  article-title: Forecasting method based on high order fuzzy time series and simulated annealing technique
  publication-title: S. Afr. J. Ind. Eng.
– volume: 38
  start-page: 10446
  year: 2011
  end-page: 10453
  ident: bib0100
  article-title: A generalized method for forecasting based on fuzzy time series
  publication-title: Expert Syst. Appl.
– start-page: 16840
  year: 1983
  end-page: 21697
  ident: bib0150
  article-title: Intuitionistic fuzzy sets
  publication-title: Proc. VII ITKR's Session
– volume: 8
  start-page: 397
  year: 2017
  end-page: 420
  ident: bib0015
  article-title: A brief review of modeling approaches based on fuzzy time series
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 31
  start-page: 1750007
  year: 2017
  ident: 10.1016/j.compind.2019.06.004_bib0195
  article-title: Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984917500075
– volume: 21
  start-page: 485
  year: 2006
  ident: 10.1016/j.compind.2019.06.004_bib0125
  article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20145
– volume: 12
  start-page: 3291
  year: 2012
  ident: 10.1016/j.compind.2019.06.004_bib0085
  article-title: A new time invariant fuzzy time series forecasting method based on particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.002
– volume: 23
  year: 1935
  ident: 10.1016/j.compind.2019.06.004_bib0205
  publication-title: Naturwissenschaften
– volume: 37
  start-page: 3366
  year: 2010
  ident: 10.1016/j.compind.2019.06.004_bib0050
  article-title: A neural network-based fuzzy time series model to improve forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.013
– volume: 43
  start-page: 34
  year: 2012
  ident: 10.1016/j.compind.2019.06.004_bib0230
  article-title: Intuitionistic fuzzy sets based method for fuzzy time series forecasting
  publication-title: Cybern. Syst.
  doi: 10.1080/01969722.2012.637014
– volume: 38
  start-page: 2701
  year: 2011
  ident: 10.1016/j.compind.2019.06.004_bib0075
  article-title: A heuristic time-invariant model for fuzzy time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.059
– volume: 34
  start-page: 1235
  year: 2008
  ident: 10.1016/j.compind.2019.06.004_bib0090
  article-title: Multi-attribute fuzzy time series method based on fuzzy clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.12.013
– volume: 64
  start-page: 279
  year: 1994
  ident: 10.1016/j.compind.2019.06.004_bib0255
  article-title: A comparison of fuzzy forecasting and Markov modeling
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90152-X
– volume: 26
  start-page: 1245
  year: 2014
  ident: 10.1016/j.compind.2019.06.004_bib0190
  article-title: On similarity and entropy of neutrosophic sets
  publication-title: J. Intell. Fuzzy Syst.
– start-page: 16840
  year: 1983
  ident: 10.1016/j.compind.2019.06.004_bib0150
  article-title: Intuitionistic fuzzy sets
– volume: 40
  start-page: 1531
  year: 2010
  ident: 10.1016/j.compind.2019.06.004_bib0095
  article-title: Adaptive time-variant models for fuzzy-time-series forecasting
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybernetics
  doi: 10.1109/TSMCB.2010.2042055
– volume: 123
  start-page: 387
  year: 2001
  ident: 10.1016/j.compind.2019.06.004_bib0240
  article-title: Effective lengths of intervals to improve forecasting in fuzzy time series
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(00)00057-9
– year: 1999
  ident: 10.1016/j.compind.2019.06.004_bib0160
– year: 2005
  ident: 10.1016/j.compind.2019.06.004_bib0180
  article-title: Single valued neutrosophic sets
– volume: 38
  start-page: 10446
  year: 2011
  ident: 10.1016/j.compind.2019.06.004_bib0100
  article-title: A generalized method for forecasting based on fuzzy time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.096
– volume: 37
  start-page: 1494
  year: 2010
  ident: 10.1016/j.compind.2019.06.004_bib0080
  article-title: Forecasting TAIFEX based on fuzzy time series and particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.102
– volume: 37
  start-page: 836
  year: 2007
  ident: 10.1016/j.compind.2019.06.004_bib0250
  article-title: A multivariate heuristic model for fuzzy time-series forecasting
  publication-title: IEEE Trans. Syst. Man Cybern. B (Cybernetics)
  doi: 10.1109/TSMCB.2006.890303
– volume: 37
  start-page: 5630
  year: 2010
  ident: 10.1016/j.compind.2019.06.004_bib0065
  article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.049
– volume: 39
  start-page: 12158
  year: 2012
  ident: 10.1016/j.compind.2019.06.004_bib0225
  article-title: Partitions based computational method for high-order fuzzy time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.039
– volume: 38
  start-page: 669
  year: 2014
  ident: 10.1016/j.compind.2019.06.004_bib0040
  article-title: An effective neural network and fuzzy time series-based hybridized model to handle forecasting problems of two factors
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0603-9
– volume: 64
  start-page: 47
  year: 2015
  ident: 10.1016/j.compind.2019.06.004_bib0200
  article-title: Nonlinearity of quantum mechanics and solution of the problem of wave function collapse
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/64/1/47
– volume: 20
  start-page: 1986
  year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0155
  article-title: Neutrosophic goal geometric programming problem and its application to multi-objective reliability optimization model
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-018-0479-2
– volume: 26
  start-page: 2443
  year: 2013
  ident: 10.1016/j.compind.2019.06.004_bib0110
  article-title: An efficient time series forecasting model based on fuzzy time series
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.07.012
– volume: 81
  start-page: 781
  year: 2004
  ident: 10.1016/j.compind.2019.06.004_bib0020
  article-title: Fuzzy forecasting based on fuzzy time series
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160410001712288
– volume: 23
  start-page: 176
  year: 2012
  ident: 10.1016/j.compind.2019.06.004_bib0130
  article-title: Forecasting method based on high order fuzzy time series and simulated annealing technique
  publication-title: S. Afr. J. Ind. Eng.
– volume: 30
  start-page: 442
  year: 2013
  ident: 10.1016/j.compind.2019.06.004_bib0070
  article-title: OWA-based ANFIS model for TAIEX forecasting
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2012.09.047
– volume: 6
  start-page: 63
  year: 2007
  ident: 10.1016/j.compind.2019.06.004_bib0105
  article-title: An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-006-0025-9
– volume: 278
  start-page: H2039
  year: 2000
  ident: 10.1016/j.compind.2019.06.004_bib0170
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circul. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 27
  start-page: 284
  year: 1997
  ident: 10.1016/j.compind.2019.06.004_bib0030
  article-title: The hybrid grey-based models for temperature prediction
  publication-title: IEEE Trans. Systems Man Cybern. B: Cybernetics
  doi: 10.1109/3477.558818
– volume: 33
  start-page: 1850208
  year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0145
  article-title: A quantum approach for time series data based on graph and Schr"odinger equations methods
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732318502085
– volume: 36
  start-page: 6108
  year: 2009
  ident: 10.1016/j.compind.2019.06.004_bib0235
  article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.043
– volume: 27
  start-page: 370
  year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0135
  article-title: A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.05.008
– volume: 28
  start-page: 3851
  year: 2017
  ident: 10.1016/j.compind.2019.06.004_bib0175
  article-title: High-order fuzzy-neuro-entropy integration-based expert system for time series forecasting
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2261-4
– year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0165
  article-title: Information classification, visualization and decision-making: a neutrosophic set theory based approach
– volume: 46
  start-page: 12
  year: 2013
  ident: 10.1016/j.compind.2019.06.004_bib0260
  article-title: High-order fuzzy-neuro expert system for time series forecasting
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.01.030
– volume: 54
  start-page: 1
  year: 1993
  ident: 10.1016/j.compind.2019.06.004_bib0010
  article-title: Forecasting enrollments with fuzzy time series – part I
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(93)90355-L
– volume: 73
  start-page: 524
  year: 2006
  ident: 10.1016/j.compind.2019.06.004_bib0025
  article-title: Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2005.07.004
– volume: 55
  start-page: 812
  year: 2014
  ident: 10.1016/j.compind.2019.06.004_bib0265
  article-title: Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.09.014
– year: 2001
  ident: 10.1016/j.compind.2019.06.004_bib0215
– volume: 34
  start-page: 328
  year: 2008
  ident: 10.1016/j.compind.2019.06.004_bib0035
  article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.09.007
– volume: 8
  start-page: 7415
  year: 2012
  ident: 10.1016/j.compind.2019.06.004_bib0060
  article-title: Modeling fuzzy time series with multiple observations
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 34
  start-page: 2945
  year: 2008
  ident: 10.1016/j.compind.2019.06.004_bib0045
  article-title: A bivariate fuzzy time series model to forecast the TAIEX
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.016
– volume: 20
  start-page: 301
  year: 1972
  ident: 10.1016/j.compind.2019.06.004_bib0185
  article-title: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(72)90199-4
– volume: 55
  start-page: 44
  year: 2017
  ident: 10.1016/j.compind.2019.06.004_bib0140
  article-title: A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.043
– volume: 6
  start-page: 58
  year: 1988
  ident: 10.1016/j.compind.2019.06.004_bib0210
  article-title: Monte Carlo simulation and random number generation
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.192730
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.compind.2019.06.004_bib0005
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 72
  start-page: 350
  year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0120
  article-title: High order fuzzy time series method based on pi-sigma neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.017
– volume: 38
  start-page: 13625
  year: 2011
  ident: 10.1016/j.compind.2019.06.004_bib0055
  article-title: A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: 10.1016/j.compind.2019.06.004_bib0220
– volume: 14
  start-page: 468
  year: 2006
  ident: 10.1016/j.compind.2019.06.004_bib0245
  article-title: Handling forecasting problems based on two-factors high-order fuzzy time series
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.876367
– volume: 8
  start-page: 397
  year: 2017
  ident: 10.1016/j.compind.2019.06.004_bib0015
  article-title: A brief review of modeling approaches based on fuzzy time series
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0332-y
– volume: 71
  start-page: 175
  year: 2018
  ident: 10.1016/j.compind.2019.06.004_bib0115
  article-title: ClusFuDE: forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.02.015
SSID ssj0000776
Score 2.4170873
Snippet •A new neutrosophic set based time series forecasting model is proposed.•A quantum optimization algorithm is used to improve the accuracy.•The proposed model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Entropy
Neutrosophic set
Quantum optimization algorithm (QOA)
Time series forecasting
Title A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm
URI https://dx.doi.org/10.1016/j.compind.2019.06.004
Volume 111
WOSCitedRecordID wos000488306300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6194
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000776
  issn: 0166-3615
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEeUHmJAkV74GYZ_Njseo8RKgIOFRJFCidrX6EpiZ0mDir_ntmHNwaqQg9IkRVZml1n58vO7HhmPoReapYrqXOTgj2dpaSSJJW2EWRhSkMrrpVi0pFNsJOTajrl_RvdjaMTYE1TXV7y1X9VNdwDZdvS2RuoOw4KN-A7KB2uoHa4_pPiJ5YlPDn7YUuxHHV8Yqc1ru-CUWLj8pwdAU5iTZgOrwtAatutHavBXIGIzzy_2MLKb5dJCzvLMpRsJmLxtV3Pu7Pl0LPt6SFcfu3cE4LEcP0nmNPHb0BuJRY7MIVw9Zc2_dgb0RCDyHnMZothSUrTkvrCzLivhl3U74y5L4QORjb3HYz-2L99KOHcLv8KHtWm3nHXX9VzFP_aL_s3OxazC_vEtfM6DFPbYWqXwEduo72CjXk1QnuT98fTDzuzzRwTYfwpu3Kv11c-z9WOzMA5OT1A98KpAk88Gu6jW6Z5gPYHvSYfom8TDLjAHhfY4gJ7XOABLrDDBXa4wG2DARd4iAsQ6TDgAgdc4CEucMTFI_T57fHpm3dpYNpIVUlol-YiN1JzIbkp4KO1LgkcHauSFZTNONMZA6dG8lIoSoSSKsu0yqip9ExJM9blYzRq2sY8QZgLTg2cGURWcGIInEZVZRQhY1VQI0p5iEi_bLUKbegtG8qivlZth-hVFFv5Pix_E6h6ndTBmfROYg1Yu1706U3neobu7v4Vz9GoW2_NEbqjvnfzzfpFANpPyOWe0w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+time+series+forecasting+model+based+on+the+neutrosophic+set+and+quantum+optimization+algorithm&rft.jtitle=Computers+in+industry&rft.au=Singh%2C+Pritpal&rft.au=Huang%2C+Yo-Ping&rft.date=2019-10-01&rft.issn=0166-3615&rft.volume=111&rft.spage=121&rft.epage=139&rft_id=info:doi/10.1016%2Fj.compind.2019.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2019_06_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon