An energy‐efficient task‐scheduling algorithm based on a multi‐criteria decision‐making method in cloud computing

Summary The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication systems Jg. 33; H. 9
Hauptverfasser: Khorsand, Reihaneh, Ramezanpour, Mohammadreza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Wiley Subscription Services, Inc 01.06.2020
Schlagworte:
ISSN:1074-5351, 1099-1131
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization. An energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. The ranking process using BWM‐TOPSIS methodology allows this objective to be more comprehensive and principled. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative.
AbstractList Summary The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization. An energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. The ranking process using BWM‐TOPSIS methodology allows this objective to be more comprehensive and principled. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative.
The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization.
Author Khorsand, Reihaneh
Ramezanpour, Mohammadreza
Author_xml – sequence: 1
  givenname: Reihaneh
  orcidid: 0000-0003-1613-4938
  surname: Khorsand
  fullname: Khorsand, Reihaneh
  email: r.khorsand@iauda.ac.ir, Reihaneh_khm@yahoo.com
  organization: Islamic Azad University
– sequence: 2
  givenname: Mohammadreza
  orcidid: 0000-0002-1588-0982
  surname: Ramezanpour
  fullname: Ramezanpour, Mohammadreza
  organization: Islamic Azad University
BookMark eNp1kEtOwzAQhi1UJEpB4giW2LBJ8SNO4mVVnlIlNrCOHNtp3SZ2sR2h7jgCZ-QkuJQVgtWMZr5_Hv8pGFlnNQAXGE0xQuRaCTnNacmPwBgjzjOMKR7t8zLPGGX4BJyGsEYIVaRgY7CbWait9svd5_uHblsjjbYRRhE2qRDkSquhM3YJRbd03sRVDxsRtILOQgH7oYsmcTJ1tDcCKi1NMM6mWi82e12v48opaCyUnRsUlK7fDjF1zsBxK7qgz3_iBLzc3T7PH7LF0_3jfLbIJM2LdH8py6YsGowJKxBSHOOylRVvWUO4oILmClesYFxLxjhhiFOSl0wRrBpSCUon4PIwd-vd66BDrNdu8DatrAnluMIEkTxRVwdKeheC12299aYXfldjVO-NrZOx9d7YhE5_odJEEdPX0QvT_SXIDoI30-ndv4Prm9n8m_8Ct_-PPg
CitedBy_id crossref_primary_10_3233_MGS_210350
crossref_primary_10_1002_cpe_7762
crossref_primary_10_1016_j_asoc_2020_106895
crossref_primary_10_1109_ACCESS_2020_2988207
crossref_primary_10_1007_s12530_024_09586_5
crossref_primary_10_1007_s10586_023_04018_6
crossref_primary_10_1007_s10462_025_11208_8
crossref_primary_10_1109_ACCESS_2024_3450294
crossref_primary_10_1371_journal_pone_0279649
crossref_primary_10_1007_s12008_024_01745_x
crossref_primary_10_1016_j_future_2020_11_002
crossref_primary_10_3390_sym17030434
crossref_primary_10_1007_s11277_022_10099_0
crossref_primary_10_1007_s12652_021_03030_1
crossref_primary_10_1016_j_cie_2020_106649
crossref_primary_10_1007_s11042_023_17405_3
crossref_primary_10_1007_s00453_024_01253_0
crossref_primary_10_1016_j_ins_2021_10_072
crossref_primary_10_1002_spe_2939
crossref_primary_10_1007_s10462_021_10071_7
crossref_primary_10_1016_j_eswa_2023_121038
crossref_primary_10_1016_j_energy_2025_135594
crossref_primary_10_1002_spe_3203
crossref_primary_10_3390_en14217036
crossref_primary_10_1002_ett_4851
crossref_primary_10_3390_s22134727
crossref_primary_10_2298_TSCI2502583K
crossref_primary_10_1016_j_eswa_2025_129008
crossref_primary_10_3390_app11199005
crossref_primary_10_1080_09720529_2021_2016191
crossref_primary_10_1016_j_procs_2025_01_020
crossref_primary_10_1007_s10586_022_03786_x
crossref_primary_10_1109_ACCESS_2020_3024113
crossref_primary_10_1007_s10586_023_04098_4
crossref_primary_10_1007_s11227_020_03476_8
crossref_primary_10_1016_j_procs_2020_11_039
crossref_primary_10_3390_s23136155
crossref_primary_10_1007_s11227_021_04042_6
crossref_primary_10_1109_ACCESS_2020_3003825
crossref_primary_10_33317_ssurj_561
crossref_primary_10_1109_TNET_2022_3190730
crossref_primary_10_1108_IJICC_06_2025_0335
crossref_primary_10_4018_IJBDAH_287104
crossref_primary_10_1007_s00607_023_01182_w
crossref_primary_10_3233_KES_230487
crossref_primary_10_1007_s11277_021_09018_6
crossref_primary_10_3390_math13152355
Cites_doi 10.1016/j.simpat.2018.07.006
10.1002/spe.2737
10.1109/CLOUD.2015.72
10.1007/s11227-016-1928-z
10.1002/spe.2627
10.1016/j.jpdc.2018.04.015
10.1016/j.jss.2017.05.017
10.1108/K-12-2014-0293
10.7763/IJMO.2015.V5.434
10.1016/j.jnca.2016.06.003
10.1109/CBD.2016.030
10.1142/S021812661650119X
10.1002/spe.2644
10.1007/s13369-017-2798-2
10.1016/j.jss.2016.07.006
10.1016/j.simpat.2018.01.004
10.1016/j.jnca.2019.06.002
10.1016/j.omega.2015.12.001
10.3390/computers8020046
10.1007/s11227-018-2498-z
10.1016/j.simpat.2018.09.001
10.1002/spe.995
10.1007/978-3-642-02538-9_10
10.1108/K-02-2013-0018
10.1515/cait-2015-0060
10.1007/s13369-017-2779-5
10.4018/IJCAC.2017100102
10.1016/j.cie.2020.106272
10.1007/s13369-014-1256-7
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.4379
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_4379
DAC4379
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c3469-17c7b76b1125600d9117fc89f5b29a3a34d185659ec559250932475d21db28a33
IEDL.DBID DRFUL
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528834500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1074-5351
IngestDate Fri Jul 25 12:17:38 EDT 2025
Sat Nov 29 03:54:53 EST 2025
Tue Nov 18 20:46:02 EST 2025
Wed Jan 22 16:35:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3469-17c7b76b1125600d9117fc89f5b29a3a34d185659ec559250932475d21db28a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1588-0982
0000-0003-1613-4938
PQID 2391812024
PQPubID 996367
PageCount 17
ParticipantIDs proquest_journals_2391812024
crossref_primary_10_1002_dac_4379
crossref_citationtrail_10_1002_dac_4379
wiley_primary_10_1002_dac_4379_DAC4379
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2017; 7
2015; 15
2017; 8
2019; 93
2015; 5
2010
2016; 71
2017; 132
2018; 82
2018; 87
2018; 43
2018; 48
2019; 142
2014; 43
2017; 73
December, 2018; 8
2020; 8
2018; 119
2015; 44
2019
2016; 64
2011; 41
2017
2018; 74
2015
2014
2014; 39
2017; 124
2016; 25
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Mallikarjuna B (e_1_2_7_22_1) 2018; 8
Mallikarjuna B (e_1_2_7_13_1) 2014
Hemasian‐Etefagh F (e_1_2_7_34_1) 2019
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
Hwang CL (e_1_2_7_28_1)
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
Hoseinnejhad M (e_1_2_7_8_1) 2017; 8
Dordaie N (e_1_2_7_7_1) 2017
References_xml – volume: 48
  start-page: 2278
  issue: 12
  year: 2018
  end-page: 2301
  article-title: Cloud application architecture appraiser (CA3): a multicriteria approach and tool for assessing cloud deployment options based on nonfunctional requirements
  publication-title: Software: Practice and Experience
– volume: 8
  start-page: 106272
  year: 2020
  end-page: 106293
  article-title: An adaptive scheduling approach based on integrated best‐worst and VIKOR for cloud computing
  publication-title: Computers & Industrial Engineering.
– start-page: 2278
  year: 2014
  end-page: 3079
  article-title: A nature inspired approach for load balancing of tasks in cloud computing using equal time allocation
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN
– volume: 64
  start-page: 126
  year: 2016
  end-page: 130
  article-title: Best‐worst multi‐criteria decision‐making method: some properties and a linear model
  publication-title: Omega.
– start-page: 1
  year: 2019
  end-page: 65
  article-title: Dynamic scheduling applying new population grouping of whales meta‐heuristic in cloud computing
  publication-title: The Journal of Supercomputing.
– volume: 8
  start-page: 51
  issue: 2S2
  year: December, 2018
  end-page: 54
  article-title: A nature inspired bee colony optimization model for improving load balancing in cloud computing
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– start-page: 38
  year: 2015
  end-page: 44
– volume: 43
  start-page: 913
  issue: 2
  year: 2018
  end-page: 933
  article-title: Task partitioning scheduling algorithms for heterogeneous multi‐cloud environment
  publication-title: Arabian Journal for Science and Engineering.
– volume: 8
  start-page: 46
  issue: 2
  year: 2019
  end-page: 58
  article-title: An efficient energy‐aware tasks scheduling with deadline‐constrained in cloud computing
  publication-title: Computers
– volume: 41
  start-page: 23
  issue: 1
  year: 2011
  end-page: 50
  article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms
  publication-title: Software: Practice and experience.
– volume: 25
  start-page: 119
  issue: 10
  year: 2016
  end-page: 131
  article-title: Priority‐based task scheduling in the cloud systems using a memetic algorithm
  publication-title: Journal of Circuits, Systems and Computers
– start-page: 493
  end-page: 500
– volume: 132
  start-page: 253
  issue: 2
  year: 2017
  end-page: 271
  article-title: Taxonomy of workflow partitioning problems and methods in distributed environments
  publication-title: Journal of Systems and Software
– volume: 43
  start-page: 829
  issue: 2
  year: 2018
  end-page: 841
  article-title: Task deadline‐aware energy‐efficient scheduling model for a virtualized cloud
  publication-title: Arabian Journal for Science and Engineering.
– start-page: 1981 58
– year: 2010
– volume: 71
  start-page: 86
  issue: 10
  year: 2016
  end-page: 98
  article-title: Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends
  publication-title: Journal of Network and Computer Applications
– volume: 43
  start-page: 1262
  issue: 8
  year: 2014
  end-page: 1275
  article-title: Job scheduling in the Expert Cloud based on genetic algorithms
  publication-title: Kybernetes.
– volume: 82
  start-page: 160
  year: 2018
  end-page: 173
  article-title: SCORE: simulator for cloud optimization of resources and energy consumption
  publication-title: Simulation Modelling Practice and Theory.
– volume: 93
  start-page: 3
  year: 2019
  end-page: 20
  article-title: GAME‐SCORE: game‐based energy‐aware cloud scheduler and simulator for computational clouds
  publication-title: Simulation Modelling Practice and Theory.
– volume: 7
  start-page: 20
  issue: 4
  year: 2017
  end-page: 40
  article-title: An energy‐aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm
  publication-title: International Journal of Cloud Applications and Computing (IJCAC).
– volume: 44
  start-page: 1455
  issue: 10
  year: 2015
  end-page: 1471
  article-title: Priority‐based task scheduling on heterogeneous resources in the Expert Cloud
  publication-title: Kybernetes.
– volume: 119
  start-page: 191
  year: 2018
  end-page: 202
  article-title: Security supportive energy‐aware scheduling and energy policies for cloud environments
  publication-title: Journal of Parallel and Distributed Computing.
– volume: 5
  start-page: 44
  issue: 1
  year: 2015
  end-page: 55
  article-title: Task scheduling in the cloud computing based on the cuckoo search algorithm
  publication-title: International Journal of Modeling and Optimization.
– volume: 87
  start-page: 311
  issue: 7
  year: 2018
  end-page: 326
  article-title: Energy‐aware scheduling algorithm for time‐constrained workflow tasks in DVFS‐enabled cloud environment
  publication-title: Simulation Modelling Practice and Theory
– start-page: 1618
  year: 2019
  end-page: 1642
  article-title: A self‐learning fuzzy approach for proactive resource provisioning in cloud environment
  publication-title: Software: Practice and Experience
– volume: 8
  start-page: 198
  issue: 3
  year: 2017
  end-page: 209
  article-title: Deadline constrained task scheduling in the cloud computing using a discrete firey algorithm
  publication-title: International Journal of Next‐Generation Computing.
– volume: 74
  start-page: 5578
  issue: 10
  year: 2018
  end-page: 5600
  article-title: PL‐DVFS: combining power‐aware list‐based scheduling algorithm with DVFS technique for real‐time tasks in cloud computing
  publication-title: The Journal of Supercomputing.
– volume: 142
  start-page: 76
  year: 2019
  end-page: 97
  article-title: An autonomous resource provisioning framework for massively multiplayer online games in cloud environment
  publication-title: Journal of Network and Computer Applications
– volume: 39
  start-page: 6175
  issue: 8
  year: 2014
  end-page: 6188
  article-title: Expert grid: new type of grid to manage the human resources and study the effectiveness of its task scheduler
  publication-title: Arabian Journal for Science and Engineering.
– volume: 124
  start-page: 1
  year: 2017
  end-page: 21
  article-title: An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing
  publication-title: Journal of Systems and Software.
– volume: 48
  start-page: 2147
  issue: 12
  year: 2018
  end-page: 2173
  article-title: FAHP approach for autonomic resource provisioning of multitier applications in cloud computing environments
  publication-title: Software: Practice and Experience
– year: 2017
– volume: 15
  start-page: 138
  issue: 4
  year: 2015
  end-page: 148
  article-title: OLB: a nature inspired approach for load balancing in cloud computing
  publication-title: Cybernetics and Information Technologies.
– start-page: 116
  end-page: 121
– volume: 73
  start-page: 2430
  issue: 6
  year: 2017
  end-page: 2455
  article-title: ATSDS: adaptive two‐stage deadline‐constrained workflow scheduling considering run‐time circumstances in cloud computing environments
  publication-title: The Journal of Supercomputing.
– ident: e_1_2_7_17_1
  doi: 10.1016/j.simpat.2018.07.006
– start-page: 2278
  year: 2014
  ident: e_1_2_7_13_1
  article-title: A nature inspired approach for load balancing of tasks in cloud computing using equal time allocation
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN
– ident: e_1_2_7_15_1
  doi: 10.1002/spe.2737
– ident: e_1_2_7_25_1
  doi: 10.1109/CLOUD.2015.72
– ident: e_1_2_7_20_1
  doi: 10.1007/s11227-016-1928-z
– ident: e_1_2_7_6_1
  doi: 10.1002/spe.2627
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jpdc.2018.04.015
– volume-title: A Hybrid Particle Swarm Optimization and Hill Climbing Algorithm for Task Scheduling in the Cloud Environments
  year: 2017
  ident: e_1_2_7_7_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jss.2017.05.017
– volume: 8
  start-page: 51
  issue: 2
  year: 2018
  ident: e_1_2_7_22_1
  article-title: A nature inspired bee colony optimization model for improving load balancing in cloud computing
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– ident: e_1_2_7_2_1
  doi: 10.1108/K-12-2014-0293
– ident: e_1_2_7_31_1
  doi: 10.7763/IJMO.2015.V5.434
– start-page: 1981
  volume-title: Multiple attribute decision making
  ident: e_1_2_7_28_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jnca.2016.06.003
– ident: e_1_2_7_29_1
  doi: 10.1109/CBD.2016.030
– ident: e_1_2_7_21_1
  doi: 10.1142/S021812661650119X
– ident: e_1_2_7_16_1
  doi: 10.1002/spe.2644
– ident: e_1_2_7_19_1
  doi: 10.1007/s13369-017-2798-2
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jss.2016.07.006
– ident: e_1_2_7_36_1
  doi: 10.1016/j.simpat.2018.01.004
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jnca.2019.06.002
– ident: e_1_2_7_18_1
  doi: 10.1016/j.omega.2015.12.001
– ident: e_1_2_7_35_1
  doi: 10.3390/computers8020046
– ident: e_1_2_7_14_1
  doi: 10.1007/s11227-018-2498-z
– ident: e_1_2_7_37_1
  doi: 10.1016/j.simpat.2018.09.001
– start-page: 1
  year: 2019
  ident: e_1_2_7_34_1
  article-title: Dynamic scheduling applying new population grouping of whales meta‐heuristic in cloud computing
  publication-title: The Journal of Supercomputing.
– ident: e_1_2_7_30_1
  doi: 10.1002/spe.995
– ident: e_1_2_7_33_1
  doi: 10.1007/978-3-642-02538-9_10
– volume: 8
  start-page: 198
  issue: 3
  year: 2017
  ident: e_1_2_7_8_1
  article-title: Deadline constrained task scheduling in the cloud computing using a discrete firey algorithm
  publication-title: International Journal of Next‐Generation Computing.
– ident: e_1_2_7_9_1
  doi: 10.1108/K-02-2013-0018
– ident: e_1_2_7_12_1
  doi: 10.1515/cait-2015-0060
– ident: e_1_2_7_27_1
  doi: 10.1007/s13369-017-2779-5
– ident: e_1_2_7_3_1
  doi: 10.4018/IJCAC.2017100102
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cie.2020.106272
– ident: e_1_2_7_32_1
  doi: 10.1007/s13369-014-1256-7
SSID ssj0008265
Score 2.437386
Snippet Summary The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major...
The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
best‐worst method (BWM)
Cloud computing
Criteria
Data centers
Energy consumption
Mapping
multi‐criteria decision making
Performance evaluation
Resource utilization
Scheduling
Task scheduling
TOPSIS method
User requirements
Title An energy‐efficient task‐scheduling algorithm based on a multi‐criteria decision‐making method in cloud computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4379
https://www.proquest.com/docview/2391812024
Volume 33
WOSCitedRecordID wos000528834500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9EEfvIvTKRFEn8rWpFnax-EcPoiIqOytpEmqw62TbQq--RP8jf4ST9J2TlAQfCqkJ7Tkcr7v5PIdgCOf-kZpzb0UuayHeBygH-TME0iRWEqboXE63XcX4vIy7Hajq-JUpb0Lk-tDTBfc7Mxw_tpOcJmM61-ioRq_Z8X05mGB4rANKrDQvu7cXkz9MBJnXp445Iz7pfRsg9bLut_B6IthzvJUBzSd1f_84hqsFPSStPLxsA5zJtuA5RnRwU14bWXEuBt_H2_vxilIIPCQiRw_YgEGuwg-9o46kf374ag3eRgQC3WaDDMiiTuAiHbobKzKsyS6SNKDZQOX2YrkSalJLyOqP3zWRLnEEfhmC247Zzen516RgMFTDMNmzxdKJKKZICezxEijYxSpCqOUJzSSTLJAI9w3eWQUBiZIppAMBoJr6uuEhpKxbahkw8zsAFGhDnSQ2l3UKEiEiDTyBCM5N9zX0m9U4aTsiVgV6uQ2SUY_znWVaYyNGdvGrMLh1PIpV-T4waZWdmZczMlxTFlk6QySkiocu277tX7cbp3a5-5fDfdgidpA3C3P1KAyGT2bfVhUL5PeeHRQjMxPo6Lqdg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD50W2H1wcvuitXqzoKsT0Ezk-kk-FRai7K1LKKLb2EyM1mLNZVeBN_8Cf5Gf4lnJkl1QUHYp8DkDAlzOd935vIdgF2f-kZpzb0UuayHeBygH-TME0iRWEqboXE63X96ot8PLy-j3xU4LO_C5PoQ8wU3OzOcv7YT3C5I77-ohmr8oFXT-wS1AEcRr0Ktc9a96M0dMTJnXh455Iz7pfbsAd0v6_6LRi8U8zVRdUjTXfmvf1yF5YJgklY-ItagYrIvsPRKdvAr3LcyYtydv6eHR-M0JBB6yFROrrEAw12EH3tLncjh39F4ML26IRbsNBllRBJ3BBHt0N1YnWdJdJGmB8tuXG4rkqelJoOMqOFopolyqSPwzTe46B6dt4-9IgWDpxgGzp4vlEhEM0FWZqmRRtcoUhVGKU9oJJlkgUbAb_LIKAxNkE4hHQwE19TXCQ0lY-tQzUaZ2QCiQh3oILX7qFGQCBFpZApGcm64r6V_UIe9sitiVeiT2zQZwzhXVqYxNmZsG7MOP-aWt7kmxxs2jbI342JWTmLKIktokJbU4afrt3frx51W2z43P2r4HT4fn5_24t5J_9cWLFIblrvFmgZUp-OZ2YYFdTcdTMY7xTB9BqMg7mY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBuzivEUSfijZplhafhnMojiGi4ltJk1SHs5NtCr75E_yN_hJP0nYqKAg-FdJTWpKc830nTb4DsONT3yituZcil_UQjwOMg5x5AikSS2k1NE6n-7opWq3w5iY6H4HD8ixMrg8xXHCznuHitXVw86jT_U_VUI0vtGp6ozAe8KiKXjlev2hcNYeBGJkzL7cccsb9Unv2gO6Xz35Ho0-K-ZWoOqRpzP7rG-dgpiCYpJbPiHkYMdkCTH-RHVyEl1pGjDvz9_76ZpyGBEIPGcj-PTZguovwY0-pE9m57fbag7sHYsFOk25GJHFbENEOw43VeZZEF2V6sO3B1bYieVlq0s6I6nSfNFGudATeWYKrxvHl0YlXlGDwFMPE2fOFEomoJsjKLDXSGBpFqsIo5QmNJJMs0Aj4VR4ZhakJ0imkg4Hgmvo6oaFkbBnGsm5mVoCoUAc6SO1_1ChIhIg0MgUjOTfc19I_qMBeORSxKvTJbZmMTpwrK9MYOzO2nVmB7aHlY67J8YPNejmaceGV_ZiyyBIapCUV2HXj9uvzcb12ZK-rfzXcgsnzeiNunrbO1mCK2qzcrdWsw9ig92Q2YEI9D9r93mYxSz8AScPt4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+energy%E2%80%90efficient+task%E2%80%90scheduling+algorithm+based+on+a+multi%E2%80%90criteria+decision%E2%80%90making+method+in+cloud+computing&rft.jtitle=International+journal+of+communication+systems&rft.au=Khorsand%2C+Reihaneh&rft.au=Ramezanpour%2C+Mohammadreza&rft.date=2020-06-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=33&rft.issue=9&rft_id=info:doi/10.1002%2Fdac.4379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_4379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon