An energy‐efficient task‐scheduling algorithm based on a multi‐criteria decision‐making method in cloud computing
Summary The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user...
Gespeichert in:
| Veröffentlicht in: | International journal of communication systems Jg. 33; H. 9 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester
Wiley Subscription Services, Inc
01.06.2020
|
| Schlagworte: | |
| ISSN: | 1074-5351, 1099-1131 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization.
An energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. The ranking process using BWM‐TOPSIS methodology allows this objective to be more comprehensive and principled. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. |
|---|---|
| AbstractList | Summary
The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization.
An energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. The ranking process using BWM‐TOPSIS methodology allows this objective to be more comprehensive and principled. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects of cloud computing is its scheduling of many task requests submitted by users. Minimizing energy consumption while ensuring the user's QoS preferences is very important to achieving profit maximization for the cloud service providers and ensuring the user's service level agreement (SLA). Therefore, in addition to implementing user's tasks, cloud data centers should meet the different criteria in applying the cloud resources by considering the multiple requirements of different users. Mapping of user requests to cloud resources for processing in a distributed environment is a well‐known NP‐hard problem. To resolve this problem, this paper proposes an energy‐efficient task‐scheduling algorithm based on best‐worst (BWM) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The main objective of this paper is to determine which cloud scheduling solution is more important to select. First, a decision‐making group identify the evaluation criteria. After that, a BWM process is applied to assign the importance weights for each criterion, because the selected criteria have varied importance. Then, TOPSIS uses these weighted criteria as inputs to evaluate and measure the performance of each alternative. The performance of the proposed and existing algorithms is evaluated using several benchmarks in the CloudSim toolkit and statistical testing through ANOVA, where the evaluation metrics include the makespan, energy consumption, and resource utilization. |
| Author | Khorsand, Reihaneh Ramezanpour, Mohammadreza |
| Author_xml | – sequence: 1 givenname: Reihaneh orcidid: 0000-0003-1613-4938 surname: Khorsand fullname: Khorsand, Reihaneh email: r.khorsand@iauda.ac.ir, Reihaneh_khm@yahoo.com organization: Islamic Azad University – sequence: 2 givenname: Mohammadreza orcidid: 0000-0002-1588-0982 surname: Ramezanpour fullname: Ramezanpour, Mohammadreza organization: Islamic Azad University |
| BookMark | eNp1kEtOwzAQhi1UJEpB4giW2LBJ8SNO4mVVnlIlNrCOHNtp3SZ2sR2h7jgCZ-QkuJQVgtWMZr5_Hv8pGFlnNQAXGE0xQuRaCTnNacmPwBgjzjOMKR7t8zLPGGX4BJyGsEYIVaRgY7CbWait9svd5_uHblsjjbYRRhE2qRDkSquhM3YJRbd03sRVDxsRtILOQgH7oYsmcTJ1tDcCKi1NMM6mWi82e12v48opaCyUnRsUlK7fDjF1zsBxK7qgz3_iBLzc3T7PH7LF0_3jfLbIJM2LdH8py6YsGowJKxBSHOOylRVvWUO4oILmClesYFxLxjhhiFOSl0wRrBpSCUon4PIwd-vd66BDrNdu8DatrAnluMIEkTxRVwdKeheC12299aYXfldjVO-NrZOx9d7YhE5_odJEEdPX0QvT_SXIDoI30-ndv4Prm9n8m_8Ct_-PPg |
| CitedBy_id | crossref_primary_10_3233_MGS_210350 crossref_primary_10_1002_cpe_7762 crossref_primary_10_1016_j_asoc_2020_106895 crossref_primary_10_1109_ACCESS_2020_2988207 crossref_primary_10_1007_s12530_024_09586_5 crossref_primary_10_1007_s10586_023_04018_6 crossref_primary_10_1007_s10462_025_11208_8 crossref_primary_10_1109_ACCESS_2024_3450294 crossref_primary_10_1371_journal_pone_0279649 crossref_primary_10_1007_s12008_024_01745_x crossref_primary_10_1016_j_future_2020_11_002 crossref_primary_10_3390_sym17030434 crossref_primary_10_1007_s11277_022_10099_0 crossref_primary_10_1007_s12652_021_03030_1 crossref_primary_10_1016_j_cie_2020_106649 crossref_primary_10_1007_s11042_023_17405_3 crossref_primary_10_1007_s00453_024_01253_0 crossref_primary_10_1016_j_ins_2021_10_072 crossref_primary_10_1002_spe_2939 crossref_primary_10_1007_s10462_021_10071_7 crossref_primary_10_1016_j_eswa_2023_121038 crossref_primary_10_1016_j_energy_2025_135594 crossref_primary_10_1002_spe_3203 crossref_primary_10_3390_en14217036 crossref_primary_10_1002_ett_4851 crossref_primary_10_3390_s22134727 crossref_primary_10_2298_TSCI2502583K crossref_primary_10_1016_j_eswa_2025_129008 crossref_primary_10_3390_app11199005 crossref_primary_10_1080_09720529_2021_2016191 crossref_primary_10_1016_j_procs_2025_01_020 crossref_primary_10_1007_s10586_022_03786_x crossref_primary_10_1109_ACCESS_2020_3024113 crossref_primary_10_1007_s10586_023_04098_4 crossref_primary_10_1007_s11227_020_03476_8 crossref_primary_10_1016_j_procs_2020_11_039 crossref_primary_10_3390_s23136155 crossref_primary_10_1007_s11227_021_04042_6 crossref_primary_10_1109_ACCESS_2020_3003825 crossref_primary_10_33317_ssurj_561 crossref_primary_10_1109_TNET_2022_3190730 crossref_primary_10_1108_IJICC_06_2025_0335 crossref_primary_10_4018_IJBDAH_287104 crossref_primary_10_1007_s00607_023_01182_w crossref_primary_10_3233_KES_230487 crossref_primary_10_1007_s11277_021_09018_6 crossref_primary_10_3390_math13152355 |
| Cites_doi | 10.1016/j.simpat.2018.07.006 10.1002/spe.2737 10.1109/CLOUD.2015.72 10.1007/s11227-016-1928-z 10.1002/spe.2627 10.1016/j.jpdc.2018.04.015 10.1016/j.jss.2017.05.017 10.1108/K-12-2014-0293 10.7763/IJMO.2015.V5.434 10.1016/j.jnca.2016.06.003 10.1109/CBD.2016.030 10.1142/S021812661650119X 10.1002/spe.2644 10.1007/s13369-017-2798-2 10.1016/j.jss.2016.07.006 10.1016/j.simpat.2018.01.004 10.1016/j.jnca.2019.06.002 10.1016/j.omega.2015.12.001 10.3390/computers8020046 10.1007/s11227-018-2498-z 10.1016/j.simpat.2018.09.001 10.1002/spe.995 10.1007/978-3-642-02538-9_10 10.1108/K-02-2013-0018 10.1515/cait-2015-0060 10.1007/s13369-017-2779-5 10.4018/IJCAC.2017100102 10.1016/j.cie.2020.106272 10.1007/s13369-014-1256-7 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/dac.4379 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_4379 DAC4379 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c3469-17c7b76b1125600d9117fc89f5b29a3a34d185659ec559250932475d21db28a33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528834500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1074-5351 |
| IngestDate | Fri Jul 25 12:17:38 EDT 2025 Sat Nov 29 03:54:53 EST 2025 Tue Nov 18 20:46:02 EST 2025 Wed Jan 22 16:35:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3469-17c7b76b1125600d9117fc89f5b29a3a34d185659ec559250932475d21db28a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1588-0982 0000-0003-1613-4938 |
| PQID | 2391812024 |
| PQPubID | 996367 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2391812024 crossref_primary_10_1002_dac_4379 crossref_citationtrail_10_1002_dac_4379 wiley_primary_10_1002_dac_4379_DAC4379 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 8 2017; 7 2015; 15 2017; 8 2019; 93 2015; 5 2010 2016; 71 2017; 132 2018; 82 2018; 87 2018; 43 2018; 48 2019; 142 2014; 43 2017; 73 December, 2018; 8 2020; 8 2018; 119 2015; 44 2019 2016; 64 2011; 41 2017 2018; 74 2015 2014 2014; 39 2017; 124 2016; 25 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Mallikarjuna B (e_1_2_7_22_1) 2018; 8 Mallikarjuna B (e_1_2_7_13_1) 2014 Hemasian‐Etefagh F (e_1_2_7_34_1) 2019 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 Hwang CL (e_1_2_7_28_1) e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 Hoseinnejhad M (e_1_2_7_8_1) 2017; 8 Dordaie N (e_1_2_7_7_1) 2017 |
| References_xml | – volume: 48 start-page: 2278 issue: 12 year: 2018 end-page: 2301 article-title: Cloud application architecture appraiser (CA3): a multicriteria approach and tool for assessing cloud deployment options based on nonfunctional requirements publication-title: Software: Practice and Experience – volume: 8 start-page: 106272 year: 2020 end-page: 106293 article-title: An adaptive scheduling approach based on integrated best‐worst and VIKOR for cloud computing publication-title: Computers & Industrial Engineering. – start-page: 2278 year: 2014 end-page: 3079 article-title: A nature inspired approach for load balancing of tasks in cloud computing using equal time allocation publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN – volume: 64 start-page: 126 year: 2016 end-page: 130 article-title: Best‐worst multi‐criteria decision‐making method: some properties and a linear model publication-title: Omega. – start-page: 1 year: 2019 end-page: 65 article-title: Dynamic scheduling applying new population grouping of whales meta‐heuristic in cloud computing publication-title: The Journal of Supercomputing. – volume: 8 start-page: 51 issue: 2S2 year: December, 2018 end-page: 54 article-title: A nature inspired bee colony optimization model for improving load balancing in cloud computing publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE) – start-page: 38 year: 2015 end-page: 44 – volume: 43 start-page: 913 issue: 2 year: 2018 end-page: 933 article-title: Task partitioning scheduling algorithms for heterogeneous multi‐cloud environment publication-title: Arabian Journal for Science and Engineering. – volume: 8 start-page: 46 issue: 2 year: 2019 end-page: 58 article-title: An efficient energy‐aware tasks scheduling with deadline‐constrained in cloud computing publication-title: Computers – volume: 41 start-page: 23 issue: 1 year: 2011 end-page: 50 article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms publication-title: Software: Practice and experience. – volume: 25 start-page: 119 issue: 10 year: 2016 end-page: 131 article-title: Priority‐based task scheduling in the cloud systems using a memetic algorithm publication-title: Journal of Circuits, Systems and Computers – start-page: 493 end-page: 500 – volume: 132 start-page: 253 issue: 2 year: 2017 end-page: 271 article-title: Taxonomy of workflow partitioning problems and methods in distributed environments publication-title: Journal of Systems and Software – volume: 43 start-page: 829 issue: 2 year: 2018 end-page: 841 article-title: Task deadline‐aware energy‐efficient scheduling model for a virtualized cloud publication-title: Arabian Journal for Science and Engineering. – start-page: 1981 58 – year: 2010 – volume: 71 start-page: 86 issue: 10 year: 2016 end-page: 98 article-title: Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends publication-title: Journal of Network and Computer Applications – volume: 43 start-page: 1262 issue: 8 year: 2014 end-page: 1275 article-title: Job scheduling in the Expert Cloud based on genetic algorithms publication-title: Kybernetes. – volume: 82 start-page: 160 year: 2018 end-page: 173 article-title: SCORE: simulator for cloud optimization of resources and energy consumption publication-title: Simulation Modelling Practice and Theory. – volume: 93 start-page: 3 year: 2019 end-page: 20 article-title: GAME‐SCORE: game‐based energy‐aware cloud scheduler and simulator for computational clouds publication-title: Simulation Modelling Practice and Theory. – volume: 7 start-page: 20 issue: 4 year: 2017 end-page: 40 article-title: An energy‐aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm publication-title: International Journal of Cloud Applications and Computing (IJCAC). – volume: 44 start-page: 1455 issue: 10 year: 2015 end-page: 1471 article-title: Priority‐based task scheduling on heterogeneous resources in the Expert Cloud publication-title: Kybernetes. – volume: 119 start-page: 191 year: 2018 end-page: 202 article-title: Security supportive energy‐aware scheduling and energy policies for cloud environments publication-title: Journal of Parallel and Distributed Computing. – volume: 5 start-page: 44 issue: 1 year: 2015 end-page: 55 article-title: Task scheduling in the cloud computing based on the cuckoo search algorithm publication-title: International Journal of Modeling and Optimization. – volume: 87 start-page: 311 issue: 7 year: 2018 end-page: 326 article-title: Energy‐aware scheduling algorithm for time‐constrained workflow tasks in DVFS‐enabled cloud environment publication-title: Simulation Modelling Practice and Theory – start-page: 1618 year: 2019 end-page: 1642 article-title: A self‐learning fuzzy approach for proactive resource provisioning in cloud environment publication-title: Software: Practice and Experience – volume: 8 start-page: 198 issue: 3 year: 2017 end-page: 209 article-title: Deadline constrained task scheduling in the cloud computing using a discrete firey algorithm publication-title: International Journal of Next‐Generation Computing. – volume: 74 start-page: 5578 issue: 10 year: 2018 end-page: 5600 article-title: PL‐DVFS: combining power‐aware list‐based scheduling algorithm with DVFS technique for real‐time tasks in cloud computing publication-title: The Journal of Supercomputing. – volume: 142 start-page: 76 year: 2019 end-page: 97 article-title: An autonomous resource provisioning framework for massively multiplayer online games in cloud environment publication-title: Journal of Network and Computer Applications – volume: 39 start-page: 6175 issue: 8 year: 2014 end-page: 6188 article-title: Expert grid: new type of grid to manage the human resources and study the effectiveness of its task scheduler publication-title: Arabian Journal for Science and Engineering. – volume: 124 start-page: 1 year: 2017 end-page: 21 article-title: An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing publication-title: Journal of Systems and Software. – volume: 48 start-page: 2147 issue: 12 year: 2018 end-page: 2173 article-title: FAHP approach for autonomic resource provisioning of multitier applications in cloud computing environments publication-title: Software: Practice and Experience – year: 2017 – volume: 15 start-page: 138 issue: 4 year: 2015 end-page: 148 article-title: OLB: a nature inspired approach for load balancing in cloud computing publication-title: Cybernetics and Information Technologies. – start-page: 116 end-page: 121 – volume: 73 start-page: 2430 issue: 6 year: 2017 end-page: 2455 article-title: ATSDS: adaptive two‐stage deadline‐constrained workflow scheduling considering run‐time circumstances in cloud computing environments publication-title: The Journal of Supercomputing. – ident: e_1_2_7_17_1 doi: 10.1016/j.simpat.2018.07.006 – start-page: 2278 year: 2014 ident: e_1_2_7_13_1 article-title: A nature inspired approach for load balancing of tasks in cloud computing using equal time allocation publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN – ident: e_1_2_7_15_1 doi: 10.1002/spe.2737 – ident: e_1_2_7_25_1 doi: 10.1109/CLOUD.2015.72 – ident: e_1_2_7_20_1 doi: 10.1007/s11227-016-1928-z – ident: e_1_2_7_6_1 doi: 10.1002/spe.2627 – ident: e_1_2_7_26_1 doi: 10.1016/j.jpdc.2018.04.015 – volume-title: A Hybrid Particle Swarm Optimization and Hill Climbing Algorithm for Task Scheduling in the Cloud Environments year: 2017 ident: e_1_2_7_7_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.jss.2017.05.017 – volume: 8 start-page: 51 issue: 2 year: 2018 ident: e_1_2_7_22_1 article-title: A nature inspired bee colony optimization model for improving load balancing in cloud computing publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE) – ident: e_1_2_7_2_1 doi: 10.1108/K-12-2014-0293 – ident: e_1_2_7_31_1 doi: 10.7763/IJMO.2015.V5.434 – start-page: 1981 volume-title: Multiple attribute decision making ident: e_1_2_7_28_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.jnca.2016.06.003 – ident: e_1_2_7_29_1 doi: 10.1109/CBD.2016.030 – ident: e_1_2_7_21_1 doi: 10.1142/S021812661650119X – ident: e_1_2_7_16_1 doi: 10.1002/spe.2644 – ident: e_1_2_7_19_1 doi: 10.1007/s13369-017-2798-2 – ident: e_1_2_7_23_1 doi: 10.1016/j.jss.2016.07.006 – ident: e_1_2_7_36_1 doi: 10.1016/j.simpat.2018.01.004 – ident: e_1_2_7_4_1 doi: 10.1016/j.jnca.2019.06.002 – ident: e_1_2_7_18_1 doi: 10.1016/j.omega.2015.12.001 – ident: e_1_2_7_35_1 doi: 10.3390/computers8020046 – ident: e_1_2_7_14_1 doi: 10.1007/s11227-018-2498-z – ident: e_1_2_7_37_1 doi: 10.1016/j.simpat.2018.09.001 – start-page: 1 year: 2019 ident: e_1_2_7_34_1 article-title: Dynamic scheduling applying new population grouping of whales meta‐heuristic in cloud computing publication-title: The Journal of Supercomputing. – ident: e_1_2_7_30_1 doi: 10.1002/spe.995 – ident: e_1_2_7_33_1 doi: 10.1007/978-3-642-02538-9_10 – volume: 8 start-page: 198 issue: 3 year: 2017 ident: e_1_2_7_8_1 article-title: Deadline constrained task scheduling in the cloud computing using a discrete firey algorithm publication-title: International Journal of Next‐Generation Computing. – ident: e_1_2_7_9_1 doi: 10.1108/K-02-2013-0018 – ident: e_1_2_7_12_1 doi: 10.1515/cait-2015-0060 – ident: e_1_2_7_27_1 doi: 10.1007/s13369-017-2779-5 – ident: e_1_2_7_3_1 doi: 10.4018/IJCAC.2017100102 – ident: e_1_2_7_24_1 doi: 10.1016/j.cie.2020.106272 – ident: e_1_2_7_32_1 doi: 10.1007/s13369-014-1256-7 |
| SSID | ssj0008265 |
| Score | 2.437386 |
| Snippet | Summary
The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major... The massive growth of cloud computing has led to huge amounts of energy consumption and carbon emissions by a large number of servers. One of the major aspects... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms best‐worst method (BWM) Cloud computing Criteria Data centers Energy consumption Mapping multi‐criteria decision making Performance evaluation Resource utilization Scheduling Task scheduling TOPSIS method User requirements |
| Title | An energy‐efficient task‐scheduling algorithm based on a multi‐criteria decision‐making method in cloud computing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4379 https://www.proquest.com/docview/2391812024 |
| Volume | 33 |
| WOSCitedRecordID | wos000528834500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 issn: 1074-5351 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9EEfvIvTKRFEn8rWpFnax-EcPoiIqOytpEmqw62TbQq--RP8jf4ST9J2TlAQfCqkJ7Tkcr7v5PIdgCOf-kZpzb0UuayHeBygH-TME0iRWEqboXE63XcX4vIy7Hajq-JUpb0Lk-tDTBfc7Mxw_tpOcJmM61-ioRq_Z8X05mGB4rANKrDQvu7cXkz9MBJnXp445Iz7pfRsg9bLut_B6IthzvJUBzSd1f_84hqsFPSStPLxsA5zJtuA5RnRwU14bWXEuBt_H2_vxilIIPCQiRw_YgEGuwg-9o46kf374ag3eRgQC3WaDDMiiTuAiHbobKzKsyS6SNKDZQOX2YrkSalJLyOqP3zWRLnEEfhmC247Zzen516RgMFTDMNmzxdKJKKZICezxEijYxSpCqOUJzSSTLJAI9w3eWQUBiZIppAMBoJr6uuEhpKxbahkw8zsAFGhDnSQ2l3UKEiEiDTyBCM5N9zX0m9U4aTsiVgV6uQ2SUY_znWVaYyNGdvGrMLh1PIpV-T4waZWdmZczMlxTFlk6QySkiocu277tX7cbp3a5-5fDfdgidpA3C3P1KAyGT2bfVhUL5PeeHRQjMxPo6Lqdg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD50W2H1wcvuitXqzoKsT0Ezk-kk-FRai7K1LKKLb2EyM1mLNZVeBN_8Cf5Gf4lnJkl1QUHYp8DkDAlzOd935vIdgF2f-kZpzb0UuayHeBygH-TME0iRWEqboXE63X96ot8PLy-j3xU4LO_C5PoQ8wU3OzOcv7YT3C5I77-ohmr8oFXT-wS1AEcRr0Ktc9a96M0dMTJnXh455Iz7pfbsAd0v6_6LRi8U8zVRdUjTXfmvf1yF5YJgklY-ItagYrIvsPRKdvAr3LcyYtydv6eHR-M0JBB6yFROrrEAw12EH3tLncjh39F4ML26IRbsNBllRBJ3BBHt0N1YnWdJdJGmB8tuXG4rkqelJoOMqOFopolyqSPwzTe46B6dt4-9IgWDpxgGzp4vlEhEM0FWZqmRRtcoUhVGKU9oJJlkgUbAb_LIKAxNkE4hHQwE19TXCQ0lY-tQzUaZ2QCiQh3oILX7qFGQCBFpZApGcm64r6V_UIe9sitiVeiT2zQZwzhXVqYxNmZsG7MOP-aWt7kmxxs2jbI342JWTmLKIktokJbU4afrt3frx51W2z43P2r4HT4fn5_24t5J_9cWLFIblrvFmgZUp-OZ2YYFdTcdTMY7xTB9BqMg7mY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBuzivEUSfijZplhafhnMojiGi4ltJk1SHs5NtCr75E_yN_hJP0nYqKAg-FdJTWpKc830nTb4DsONT3yituZcil_UQjwOMg5x5AikSS2k1NE6n-7opWq3w5iY6H4HD8ixMrg8xXHCznuHitXVw86jT_U_VUI0vtGp6ozAe8KiKXjlev2hcNYeBGJkzL7cccsb9Unv2gO6Xz35Ho0-K-ZWoOqRpzP7rG-dgpiCYpJbPiHkYMdkCTH-RHVyEl1pGjDvz9_76ZpyGBEIPGcj-PTZguovwY0-pE9m57fbag7sHYsFOk25GJHFbENEOw43VeZZEF2V6sO3B1bYieVlq0s6I6nSfNFGudATeWYKrxvHl0YlXlGDwFMPE2fOFEomoJsjKLDXSGBpFqsIo5QmNJJMs0Aj4VR4ZhakJ0imkg4Hgmvo6oaFkbBnGsm5mVoCoUAc6SO1_1ChIhIg0MgUjOTfc19I_qMBeORSxKvTJbZmMTpwrK9MYOzO2nVmB7aHlY67J8YPNejmaceGV_ZiyyBIapCUV2HXj9uvzcb12ZK-rfzXcgsnzeiNunrbO1mCK2qzcrdWsw9ig92Q2YEI9D9r93mYxSz8AScPt4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+energy%E2%80%90efficient+task%E2%80%90scheduling+algorithm+based+on+a+multi%E2%80%90criteria+decision%E2%80%90making+method+in+cloud+computing&rft.jtitle=International+journal+of+communication+systems&rft.au=Khorsand%2C+Reihaneh&rft.au=Ramezanpour%2C+Mohammadreza&rft.date=2020-06-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=33&rft.issue=9&rft_id=info:doi/10.1002%2Fdac.4379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_4379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |