Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy
Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C),...
Gespeichert in:
| Veröffentlicht in: | Geoderma Jg. 239-240; S. 229 - 239 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2015
|
| Schlagworte: | |
| ISSN: | 0016-7061, 1872-6259 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions.
•We model soil carbon fractions successfully.•Mid-infrared has better predictive capabilities than visible-near-infrared.•The spectral region above 2000nm contributes most to carbon fraction models.•Random forest models have potential to generalise to new sites. |
|---|---|
| AbstractList | Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions.
•We model soil carbon fractions successfully.•Mid-infrared has better predictive capabilities than visible-near-infrared.•The spectral region above 2000nm contributes most to carbon fraction models.•Random forest models have potential to generalise to new sites. Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions. |
| Author | Bruland, G.L. Harris, W.G. Grunwald, S. Myers, D.B. Knox, N.M. McDowell, M.L. |
| Author_xml | – sequence: 1 givenname: N.M. surname: Knox fullname: Knox, N.M. organization: Earth Observation Division, South African National Space Agency (SANSA), PO Box 484, Silverton 0127, South Africa – sequence: 2 givenname: S. orcidid: 0000-0002-9023-1720 surname: Grunwald fullname: Grunwald, S. email: sabgru@ufl.edu organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA – sequence: 3 givenname: M.L. surname: McDowell fullname: McDowell, M.L. organization: Natural Resources and Environmental Management Department, University of Hawai'i Mānoa, 1910 East–West Rd, Sherman 101, Honolulu, HI 96822, USA – sequence: 4 givenname: G.L. surname: Bruland fullname: Bruland, G.L. organization: Natural Resources and Environmental Management Department, University of Hawai'i Mānoa, 1910 East–West Rd, Sherman 101, Honolulu, HI 96822, USA – sequence: 5 givenname: D.B. surname: Myers fullname: Myers, D.B. organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA – sequence: 6 givenname: W.G. surname: Harris fullname: Harris, W.G. organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA |
| BookMark | eNqFkMtKxDAUhoMoOF5eQbLURccknaYtuFDEy8CoIOo25HKqGdpkTDrKvL2poyBuZhXy5_8OJ98e2nbeAUJHlIwpofx0Pn4FbyB0cswInaRwTGi9hUa0KlnGWVFvoxFJzawknO6ivRjn6VoSRkYI7hLatta94uhti7UMyjvcBKl7613En7Z_wx82WtUCdiBDZl16DWDw8cv99PEES2dwZ82f_G6I4wJ0H3zUfrE6QDuNbCMc_pz76Pn66unyNps93EwvL2aZzidFnzVGUQ60yHWtKGW51qwxDYOiVgXPlalIWecKiCrVhNeSAJFlwaSECSheNU2-j47XcxfBvy8h9qKzUaf_SQd-GQWtcs6LgtE6Vfm6qtOOMUAjFsF2MqwEJWLwKubi16sYvA45-QbP_oHa9nKQ1Qdp2834-RqH5OHDQhBRW3AajA1JmDDebhrxBYP9m8k |
| CitedBy_id | crossref_primary_10_1002_saj2_20028 crossref_primary_10_1016_j_geoderma_2019_113900 crossref_primary_10_1016_j_geoderma_2025_117207 crossref_primary_10_1016_j_compag_2021_106144 crossref_primary_10_1134_S1064229323601841 crossref_primary_10_3389_feart_2024_1401026 crossref_primary_10_1002_saj2_70081 crossref_primary_10_1139_cjss_2020_0009 crossref_primary_10_1016_j_geoderma_2021_115426 crossref_primary_10_1038_s41467_025_57355_y crossref_primary_10_1111_ejss_13323 crossref_primary_10_1016_j_geodrs_2020_e00333 crossref_primary_10_1111_ejss_13208 crossref_primary_10_3390_ijerph20032367 crossref_primary_10_1016_j_trac_2020_116166 crossref_primary_10_3390_agronomy12092111 crossref_primary_10_1016_j_infrared_2022_104372 crossref_primary_10_1016_j_geoderma_2023_116584 crossref_primary_10_1364_AO_57_000D69 crossref_primary_10_1080_00032719_2024_2382270 crossref_primary_10_59717_j_xinn_geo_2023_100015 crossref_primary_10_1016_j_soilad_2025_100039 crossref_primary_10_1016_j_geoderma_2018_10_015 crossref_primary_10_2136_sssaj2019_06_0205 crossref_primary_10_3390_agriculture12050682 crossref_primary_10_1111_ejss_12741 crossref_primary_10_3390_s18040993 crossref_primary_10_1080_10106049_2021_1871667 crossref_primary_10_1111_ejss_13438 crossref_primary_10_3390_quat5020028 crossref_primary_10_1016_j_biosystemseng_2016_04_015 crossref_primary_10_1016_j_microc_2022_107544 crossref_primary_10_1016_j_saa_2022_121441 crossref_primary_10_1016_j_scitotenv_2018_12_263 crossref_primary_10_1016_j_soilbio_2021_108319 crossref_primary_10_1016_j_geoderma_2018_08_003 crossref_primary_10_1016_j_geoderma_2018_08_005 crossref_primary_10_1016_j_heliyon_2024_e30228 crossref_primary_10_1016_j_geoderma_2018_12_037 crossref_primary_10_1016_j_geoderma_2018_10_025 crossref_primary_10_3390_s24216855 crossref_primary_10_2136_sssaj2015_10_0364 crossref_primary_10_1016_j_geoderma_2015_12_030 crossref_primary_10_1080_03650340_2019_1674446 crossref_primary_10_1016_j_ecolind_2025_113515 crossref_primary_10_1111_ejss_13263 crossref_primary_10_1016_j_geoderma_2024_117037 crossref_primary_10_1016_j_scitotenv_2019_05_240 crossref_primary_10_1080_02571862_2023_2180098 crossref_primary_10_1016_j_geodrs_2017_04_003 crossref_primary_10_1111_ejss_13267 crossref_primary_10_1002_jsfa_7859 crossref_primary_10_1016_j_proenv_2015_07_113 crossref_primary_10_1002_agj2_20700 crossref_primary_10_3390_land10020215 crossref_primary_10_3390_s24030849 crossref_primary_10_1016_j_catena_2018_10_051 crossref_primary_10_1016_j_geodrs_2022_e00486 crossref_primary_10_3390_rs14030740 crossref_primary_10_1007_s12665_017_6793_4 crossref_primary_10_1016_j_catena_2022_106015 crossref_primary_10_1080_00103624_2025_2485416 crossref_primary_10_1038_s41378_023_00494_3 crossref_primary_10_1111_ejss_70202 crossref_primary_10_1080_05704928_2019_1683569 crossref_primary_10_1016_j_geoderma_2024_116954 crossref_primary_10_5194_soil_10_231_2024 crossref_primary_10_1016_j_geodrs_2024_e00805 crossref_primary_10_1016_j_jag_2020_102111 crossref_primary_10_1079_soilsciencecases_2024_0002 crossref_primary_10_3390_agronomy12030638 crossref_primary_10_3390_s20174822 crossref_primary_10_1177_09670335241269168 crossref_primary_10_1007_s10457_023_00833_3 crossref_primary_10_1016_j_saa_2021_119823 crossref_primary_10_1016_j_compag_2024_108760 crossref_primary_10_1016_j_scitotenv_2019_134566 crossref_primary_10_3390_s21041423 crossref_primary_10_1080_10408347_2024_2351820 crossref_primary_10_1016_j_geoderma_2020_114815 crossref_primary_10_1111_ejss_12712 crossref_primary_10_1007_s10973_022_11709_6 crossref_primary_10_1016_j_catena_2020_104844 crossref_primary_10_1016_j_geodrs_2023_e00638 crossref_primary_10_3390_land13020154 crossref_primary_10_3390_rs13183760 crossref_primary_10_2136_sssaj2018_05_0175 crossref_primary_10_1016_j_chemolab_2016_02_013 crossref_primary_10_1016_j_geoderma_2018_02_031 crossref_primary_10_1016_j_still_2024_106297 crossref_primary_10_1016_j_infrared_2015_01_027 crossref_primary_10_1016_j_catena_2021_105280 crossref_primary_10_1371_journal_pone_0286825 crossref_primary_10_3389_fenvs_2021_634472 crossref_primary_10_3390_app7070708 crossref_primary_10_1002_saj2_20194 crossref_primary_10_3390_ai3040049 crossref_primary_10_1007_s11270_023_06726_6 crossref_primary_10_1002_hyp_14870 crossref_primary_10_1002_advs_202504152 crossref_primary_10_3390_s22155638 crossref_primary_10_1016_j_geodrs_2020_e00349 crossref_primary_10_3390_su14148455 crossref_primary_10_1080_15324982_2020_1867935 crossref_primary_10_1016_j_scitotenv_2015_08_088 crossref_primary_10_1016_j_still_2017_05_008 crossref_primary_10_3390_rs12091512 crossref_primary_10_3390_rs17040706 crossref_primary_10_1016_j_catena_2023_107152 crossref_primary_10_1016_j_geoderma_2020_114758 crossref_primary_10_1016_j_agrformet_2023_109563 crossref_primary_10_1007_s10980_018_0729_6 crossref_primary_10_1080_10106049_2020_1765887 crossref_primary_10_1016_j_chemolab_2024_105253 crossref_primary_10_1016_j_compag_2022_107246 crossref_primary_10_18393_ejss_1275149 crossref_primary_10_1016_j_scitotenv_2017_10_323 crossref_primary_10_3390_rs17091524 crossref_primary_10_1016_j_still_2021_105284 crossref_primary_10_1016_j_geoderma_2022_116103 crossref_primary_10_1111_ejss_13180 crossref_primary_10_1016_j_scitotenv_2025_178791 crossref_primary_10_1016_j_geoderma_2020_114401 crossref_primary_10_3390_land12010044 crossref_primary_10_1016_j_compag_2023_108350 crossref_primary_10_1016_j_geoderma_2017_11_006 crossref_primary_10_3390_app142411687 |
| Cites_doi | 10.1155/2012/294121 10.2136/sssaj2002.9880 10.1016/j.soilbio.2008.10.003 10.1023/A:1023008322682 10.2136/sssaj2008.0015 10.1029/2003GB002119 10.1002/cem.887 10.1080/00103620600819461 10.2134/jeq2009.0314 10.1016/0003-2670(86)80028-9 10.1071/EA97144 10.1016/j.geoderma.2010.12.020 10.1007/978-3-031-01899-2 10.1016/0038-0717(94)90317-4 10.2136/sssaj2002.6400 10.1016/j.soilbio.2010.10.011 10.1023/A:1010933404324 10.1890/04-1254 10.1016/j.geoderma.2011.05.006 10.1016/j.geoderma.2009.12.025 10.18637/jss.v018.i02 10.1038/nature04514 10.1126/science.272.5260.393 10.1016/j.geoderma.2008.04.007 10.1016/j.geoderma.2007.04.021 10.1016/j.geoderma.2011.08.001 10.1016/j.geoderma.2005.04.025 10.1016/S0269-7491(01)00259-7 10.2136/sssaj2011.0025 10.1016/j.geoderma.2012.06.009 10.1016/j.geoderma.2012.03.011 10.1006/anbo.2001.1372 10.2136/sssaj2001.652480x 10.1007/s10980-011-9702-3 10.1038/nature04038 10.1016/j.geoderma.2009.04.005 10.1016/j.soilbio.2011.02.019 10.1111/j.1365-2435.2008.01404.x 10.1016/j.geoderma.2005.03.007 10.1016/S0167-8809(97)00049-2 |
| ContentType | Journal Article |
| Copyright | 2014 |
| Copyright_xml | – notice: 2014 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.geoderma.2014.10.019 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-6259 |
| EndPage | 239 |
| ExternalDocumentID | 10_1016_j_geoderma_2014_10_019 S0016706114003863 |
| GeographicLocations | Florida |
| GeographicLocations_xml | – name: Florida |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-fdb16e153c9b1123cc2fdf2e59b563bd80793be0b7b469a0e0a752aae4eb68ff3 |
| ISICitedReferencesCount | 136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347768000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-7061 |
| IngestDate | Sat Sep 27 19:21:02 EDT 2025 Tue Nov 18 20:07:36 EST 2025 Sat Nov 29 06:12:25 EST 2025 Fri Feb 23 02:27:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrolysable carbon Total carbon DRS SOC RPD Random forest regression VNIR Chemometric modelling SWIR RMSE Partial least squares regression Recalcitrant carbon TC RC RF MIR HC Soil organic carbon PLSR |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-fdb16e153c9b1123cc2fdf2e59b563bd80793be0b7b469a0e0a752aae4eb68ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9023-1720 |
| PQID | 1836655219 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1836655219 crossref_primary_10_1016_j_geoderma_2014_10_019 crossref_citationtrail_10_1016_j_geoderma_2014_10_019 elsevier_sciencedirect_doi_10_1016_j_geoderma_2014_10_019 |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 2015-02-00 20150201 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | Geoderma |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Stuart (bb0165) 2004 Bellamy, Loveland, Bradley, Lark, Kirk (bb0005) 2005; 437 R Development Core Team (bb0170) 2010 Viscarra Rossel, Behrens (bb0220) 2010; 158 Bradford, Fierer, Reynolds (bb0030) 2007; 22 Gu, Post, King (bb0085) 2004; 18 Trumbore, Chadwick, Amundson (bb0180) 1996; 272 Ge, Morgan, Grunwald, Brown, Sarkhot (bb0070) 2011; 161 Brown (bb0045) 2007; 140 Seni, Elder (bb0155) 2010 Udelhoven, Emmerling, Jarmer (bb0185) 2003; 251 Vasques, Grunwald, Sickman (bb0200) 2009; 73 Vohland, Besold, Hill, Fründ (bb0225) 2011; 166 Manchanda, Kudrat, Tiwari (bb0105) 2002; 43 Wehrens (bb0230) 2011 Vasques, Grunwald, Sickman (bb0190) 2008; 146 Craine, Gelderman (bb0060) 2011; 43 Chang, Laird, Mausbach, Hurburgh (bb0055) 2001; 65 Mevik, Cederkvist (bb0125) 2004; 18 Reeves (bb0140) 2010; 158 Bellon-Maurel, McBratney (bb0015) 2011; 43 Geladi, Kowalski (bb0075) 1986; 185 (bb8000) 2007 Belay-Tedla, Zhou, Su, Wan, Luo (bb0010) 2009; 41 McDowell, Bruland, Deenik, Grunwald (bb0120) 2012; 2012 Fierer, Craine, McLaughlan, Schimel (bb0065) 2005; 86 Ben-Dor, Irons, Epema (bb0020) 1999; volume 3 McDowell, Bruland, Deenik, Grunwald, Knox (bb0115) 2012; 189–190 Cambule, Rossiter, Stoorvogel, Smaling (bb0050) 2012; 183–184 Davidson, Janssens (bb9000) 2006; 440 Sarkhot, Grunwald, Ge, Morgan (bb0150) 2011; 164 Breiman (bb0035) 2001; 45 Vasques, Grunwald, Harris (bb0205) 2010; 39 Liaw, Wiener (bb0100) 2002; 2 McCarty, Reeves, Reeves, Follett, Kimble (bb0110) 2002; 66 Mevik, Wehrens (bb0130) 2007; 18 Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0215) 2006; 131 Brown, Shepherd, Walsh, Dewayne Mays, Reinsch (bb0040) 2006; 132 Reeves, Follett, McCarty, Kimble (bb0145) 2006; 37 Grunwald, Thompson, Boettinger (bb0080) 2011; 75 Williams (bb0235) 1987 Reeves, McCarty, Mimmo (bb0135) 2002; 116 Vasques, Grunwald, Myers (bb0210) 2012; 27 Hu, Coleman, Carroll, Hendrix, Beare (bb0090) 1997; 65 Biederbeck, Janzen, Campbell, Zentner (bb0025) 1994; 26 Thornley, Cannell (bb0175) 2001; 87 Janik, Merry, Skjemstad (bb0095) 1998; 38 Shepherd, Walsh (bb0160) 2002; 66 McDowell (10.1016/j.geoderma.2014.10.019_bb0115) 2012; 189–190 Ge (10.1016/j.geoderma.2014.10.019_bb0070) 2011; 161 McDowell (10.1016/j.geoderma.2014.10.019_bb0120) 2012; 2012 Viscarra Rossel (10.1016/j.geoderma.2014.10.019_bb0215) 2006; 131 Brown (10.1016/j.geoderma.2014.10.019_bb0040) 2006; 132 Mevik (10.1016/j.geoderma.2014.10.019_bb0125) 2004; 18 Vohland (10.1016/j.geoderma.2014.10.019_bb0225) 2011; 166 Ben-Dor (10.1016/j.geoderma.2014.10.019_bb0020) 1999; volume 3 Reeves (10.1016/j.geoderma.2014.10.019_bb0135) 2002; 116 Liaw (10.1016/j.geoderma.2014.10.019_bb0100) 2002; 2 Vasques (10.1016/j.geoderma.2014.10.019_bb0190) 2008; 146 R Development Core Team (10.1016/j.geoderma.2014.10.019_bb0170) 2010 Stuart (10.1016/j.geoderma.2014.10.019_bb0165) 2004 Vasques (10.1016/j.geoderma.2014.10.019_bb0200) 2009; 73 Bradford (10.1016/j.geoderma.2014.10.019_bb0030) 2007; 22 Mevik (10.1016/j.geoderma.2014.10.019_bb0130) 2007; 18 Hu (10.1016/j.geoderma.2014.10.019_bb0090) 1997; 65 Brown (10.1016/j.geoderma.2014.10.019_bb0045) 2007; 140 Udelhoven (10.1016/j.geoderma.2014.10.019_bb0185) 2003; 251 Bellamy (10.1016/j.geoderma.2014.10.019_bb0005) 2005; 437 Manchanda (10.1016/j.geoderma.2014.10.019_bb0105) 2002; 43 Davidson (10.1016/j.geoderma.2014.10.019_bb9000) 2006; 440 Geladi (10.1016/j.geoderma.2014.10.019_bb0075) 1986; 185 Cambule (10.1016/j.geoderma.2014.10.019_bb0050) 2012; 183–184 Gu (10.1016/j.geoderma.2014.10.019_bb0085) 2004; 18 Bellon-Maurel (10.1016/j.geoderma.2014.10.019_bb0015) 2011; 43 Chang (10.1016/j.geoderma.2014.10.019_bb0055) 2001; 65 Vasques (10.1016/j.geoderma.2014.10.019_bb0205) 2010; 39 Fierer (10.1016/j.geoderma.2014.10.019_bb0065) 2005; 86 Belay-Tedla (10.1016/j.geoderma.2014.10.019_bb0010) 2009; 41 Biederbeck (10.1016/j.geoderma.2014.10.019_bb0025) 1994; 26 Trumbore (10.1016/j.geoderma.2014.10.019_bb0180) 1996; 272 Craine (10.1016/j.geoderma.2014.10.019_bb0060) 2011; 43 Shepherd (10.1016/j.geoderma.2014.10.019_bb0160) 2002; 66 McCarty (10.1016/j.geoderma.2014.10.019_bb0110) 2002; 66 Sarkhot (10.1016/j.geoderma.2014.10.019_bb0150) 2011; 164 Janik (10.1016/j.geoderma.2014.10.019_bb0095) 1998; 38 Reeves (10.1016/j.geoderma.2014.10.019_bb0145) 2006; 37 Seni (10.1016/j.geoderma.2014.10.019_bb0155) 2010 Grunwald (10.1016/j.geoderma.2014.10.019_bb0080) 2011; 75 (10.1016/j.geoderma.2014.10.019_bb8000) 2007 Vasques (10.1016/j.geoderma.2014.10.019_bb0210) 2012; 27 Thornley (10.1016/j.geoderma.2014.10.019_bb0175) 2001; 87 Breiman (10.1016/j.geoderma.2014.10.019_bb0035) 2001; 45 Wehrens (10.1016/j.geoderma.2014.10.019_bb0230) 2011 Reeves (10.1016/j.geoderma.2014.10.019_bb0140) 2010; 158 Viscarra Rossel (10.1016/j.geoderma.2014.10.019_bb0220) 2010; 158 Williams (10.1016/j.geoderma.2014.10.019_bb0235) 1987 |
| References_xml | – volume: 66 start-page: 640 year: 2002 end-page: 646 ident: bb0110 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci. Soc. Am. J. – year: 2004 ident: bb0165 article-title: Infrared Spectroscopy: Fundamentals and Applications – year: 2010 ident: bb0170 article-title: R: A Language and Environment for Statistical Computing – volume: volume 3 start-page: 111 year: 1999 end-page: 188 ident: bb0020 article-title: Soil reflectance publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: bb0055 article-title: Near-infrared reflectance spectroscopy — principal components regression analysis of soil properties publication-title: Soil Sci. Soc. Am. J. – year: 2010 ident: bb0155 article-title: Ensemble methods in data mining: improving accuracy through combining predictions, synthesis publication-title: Synthesis Lectures on Data Mining and Knowledge Discovery – volume: 158 start-page: 3 year: 2010 end-page: 14 ident: bb0140 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: bb0215 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 437 start-page: 245 year: 2005 end-page: 248 ident: bb0005 article-title: Carbon losses from all soils across England and Wales 1978–2003 publication-title: Nature – volume: 140 start-page: 444 year: 2007 end-page: 453 ident: bb0045 article-title: Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed publication-title: Geoderma – volume: 164 start-page: 22 year: 2011 end-page: 32 ident: bb0150 article-title: Comparison and detection of soil carbon under publication-title: Geoderma – volume: 116 start-page: 277 year: 2002 end-page: 284 ident: bb0135 article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils publication-title: Environ. Pollut. – volume: 39 start-page: 923 year: 2010 end-page: 934 ident: bb0205 article-title: Building a spectral library to estimate soil organic carbon in Florida publication-title: J. Environ. Qual. – volume: 66 start-page: 988 year: 2002 end-page: 998 ident: bb0160 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. – year: 2011 ident: bb0230 article-title: Chemometrics with R publication-title: Use R! – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0035 article-title: Random forests publication-title: Mach. Learn. – volume: 87 start-page: 591 year: 2001 end-page: 598 ident: bb0175 article-title: Soil carbon storage response to temperature: an hypothesis publication-title: Ann. Bot. (Lond.) – volume: 26 start-page: 1647 year: 1994 end-page: 1656 ident: bb0025 article-title: Labile soil organic matter as influenced by cropping practices in an arid environment publication-title: Soil Biol. Biochem. – volume: 183–184 start-page: 41 year: 2012 end-page: 48 ident: bb0050 article-title: Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique publication-title: Geoderma – volume: 37 start-page: 2307 year: 2006 end-page: 2325 ident: bb0145 article-title: Can near or mid infrared diffuse reflectance spectroscopy be used to determine soil carbon pools publication-title: Commun. Soil Sci. Plant Anal. – volume: 73 start-page: 176 year: 2009 end-page: 184 ident: bb0200 article-title: Visible/near-infrared spectroscopy modeling of dynamic soil carbon fractions publication-title: Soil Sci. Soc. Am. J. – volume: 75 start-page: 1201 year: 2011 end-page: 1213 ident: bb0080 article-title: Digital soil mapping and modeling at continental scales — finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: bb0220 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: bb0075 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0100 article-title: Classification and regression by randomForest publication-title: R News – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: bb9000 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 41 start-page: 110 year: 2009 end-page: 116 ident: bb0010 article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping publication-title: Soil Biol. Biochem. – volume: 18 start-page: 422 year: 2004 end-page: 429 ident: bb0125 article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) publication-title: J. Chemometr. – volume: 27 start-page: 355 year: 2012 end-page: 367 ident: bb0210 article-title: Multi-scale behavior of soil carbon at nested locations in Florida, USA publication-title: Landsc. Ecol. – volume: 2012 start-page: 1 year: 2012 end-page: 14 ident: bb0120 article-title: Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy publication-title: J. Appl. Environ. Soil Sci. – volume: 43 start-page: 455 year: 2011 end-page: 457 ident: bb0060 article-title: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland publication-title: Soil Biol. Biochem. – volume: 18 start-page: 1 year: 2007 end-page: 24 ident: bb0130 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Softw. – volume: 132 start-page: 273 year: 2006 end-page: 290 ident: bb0040 article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy publication-title: Geoderma – volume: 166 start-page: 198 year: 2011 end-page: 255 ident: bb0225 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma – volume: 22 start-page: 964 year: 2007 end-page: 974 ident: bb0030 article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils publication-title: Funct. Ecol. – start-page: 143 year: 1987 end-page: 167 ident: bb0235 article-title: Variables affecting near-infrared reflectance spectroscopic analysis publication-title: Near-infrared Technology in the Agricultural and Food Industries – volume: 272 start-page: 393 year: 1996 end-page: 396 ident: bb0180 article-title: Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change publication-title: Science – volume: 43 start-page: 1398 year: 2011 end-page: 1410 ident: bb0015 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils — critical review and research perspectives publication-title: Soil Biol. Biochem. – volume: 251 start-page: 319 year: 2003 end-page: 329 ident: bb0185 article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study publication-title: Plant Soil – volume: 86 start-page: 320 year: 2005 end-page: 326 ident: bb0065 article-title: Litter quality and the temperature sensitivity to decomposition publication-title: Ecology – volume: 43 start-page: 61 year: 2002 end-page: 74 ident: bb0105 article-title: Soil survey and mapping using remote sensing publication-title: Trop. Ecol. – year: 2007 ident: bb8000 publication-title: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 – volume: 65 start-page: 69 year: 1997 end-page: 78 ident: bb0090 article-title: Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types publication-title: Agric. Ecosyst. Environ. – volume: 18 start-page: GB1022 year: 2004 ident: bb0085 article-title: Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis publication-title: Glob. Biogeochem. Cycles – volume: 189–190 start-page: 312 year: 2012 end-page: 320 ident: bb0115 article-title: Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy publication-title: Geoderma – volume: 146 start-page: 14 year: 2008 end-page: 25 ident: bb0190 article-title: Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra publication-title: Geoderma – volume: 161 start-page: 202 year: 2011 end-page: 211 ident: bb0070 article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers publication-title: Geoderma – volume: 38 start-page: 681 year: 1998 end-page: 696 ident: bb0095 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2014.10.019_bb0120 article-title: Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy publication-title: J. Appl. Environ. Soil Sci. doi: 10.1155/2012/294121 – volume: 66 start-page: 988 year: 2002 ident: 10.1016/j.geoderma.2014.10.019_bb0160 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.9880 – volume: 41 start-page: 110 year: 2009 ident: 10.1016/j.geoderma.2014.10.019_bb0010 article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.003 – volume: 251 start-page: 319 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2014.10.019_bb0185 article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study publication-title: Plant Soil doi: 10.1023/A:1023008322682 – volume: 73 start-page: 176 year: 2009 ident: 10.1016/j.geoderma.2014.10.019_bb0200 article-title: Visible/near-infrared spectroscopy modeling of dynamic soil carbon fractions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0015 – year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0230 article-title: Chemometrics with R – volume: 18 start-page: GB1022 year: 2004 ident: 10.1016/j.geoderma.2014.10.019_bb0085 article-title: Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2003GB002119 – volume: 18 start-page: 422 year: 2004 ident: 10.1016/j.geoderma.2014.10.019_bb0125 article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) publication-title: J. Chemometr. doi: 10.1002/cem.887 – volume: 37 start-page: 2307 issue: 15–20 year: 2006 ident: 10.1016/j.geoderma.2014.10.019_bb0145 article-title: Can near or mid infrared diffuse reflectance spectroscopy be used to determine soil carbon pools publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620600819461 – volume: 39 start-page: 923 year: 2010 ident: 10.1016/j.geoderma.2014.10.019_bb0205 article-title: Building a spectral library to estimate soil organic carbon in Florida publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0314 – year: 2007 ident: 10.1016/j.geoderma.2014.10.019_bb8000 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.geoderma.2014.10.019_bb0075 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta. doi: 10.1016/0003-2670(86)80028-9 – volume: 38 start-page: 681 year: 1998 ident: 10.1016/j.geoderma.2014.10.019_bb0095 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA97144 – volume: volume 3 start-page: 111 year: 1999 ident: 10.1016/j.geoderma.2014.10.019_bb0020 article-title: Soil reflectance – volume: 161 start-page: 202 issue: 3–4 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0070 article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.020 – year: 2010 ident: 10.1016/j.geoderma.2014.10.019_bb0155 article-title: Ensemble methods in data mining: improving accuracy through combining predictions, synthesis doi: 10.1007/978-3-031-01899-2 – volume: 26 start-page: 1647 issue: 12 year: 1994 ident: 10.1016/j.geoderma.2014.10.019_bb0025 article-title: Labile soil organic matter as influenced by cropping practices in an arid environment publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)90317-4 – volume: 66 start-page: 640 year: 2002 ident: 10.1016/j.geoderma.2014.10.019_bb0110 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.6400 – volume: 43 start-page: 455 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0060 article-title: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.10.011 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geoderma.2014.10.019_bb0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 86 start-page: 320 year: 2005 ident: 10.1016/j.geoderma.2014.10.019_bb0065 article-title: Litter quality and the temperature sensitivity to decomposition publication-title: Ecology doi: 10.1890/04-1254 – volume: 43 start-page: 61 year: 2002 ident: 10.1016/j.geoderma.2014.10.019_bb0105 article-title: Soil survey and mapping using remote sensing publication-title: Trop. Ecol. – volume: 164 start-page: 22 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0150 article-title: Comparison and detection of soil carbon under Arundo donax and coastal bermuda grass using visible/near infrared diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.006 – year: 2004 ident: 10.1016/j.geoderma.2014.10.019_bb0165 – start-page: 143 year: 1987 ident: 10.1016/j.geoderma.2014.10.019_bb0235 article-title: Variables affecting near-infrared reflectance spectroscopic analysis – year: 2010 ident: 10.1016/j.geoderma.2014.10.019_bb0170 – volume: 158 start-page: 46 issue: 1–2 year: 2010 ident: 10.1016/j.geoderma.2014.10.019_bb0220 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 18 start-page: 1 issue: 2 year: 2007 ident: 10.1016/j.geoderma.2014.10.019_bb0130 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v018.i02 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.geoderma.2014.10.019_bb9000 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 272 start-page: 393 year: 1996 ident: 10.1016/j.geoderma.2014.10.019_bb0180 article-title: Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change publication-title: Science doi: 10.1126/science.272.5260.393 – volume: 146 start-page: 14 year: 2008 ident: 10.1016/j.geoderma.2014.10.019_bb0190 article-title: Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2008.04.007 – volume: 140 start-page: 444 year: 2007 ident: 10.1016/j.geoderma.2014.10.019_bb0045 article-title: Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2007.04.021 – volume: 166 start-page: 198 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0225 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.001 – volume: 132 start-page: 273 year: 2006 ident: 10.1016/j.geoderma.2014.10.019_bb0040 article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.025 – volume: 116 start-page: 277 year: 2002 ident: 10.1016/j.geoderma.2014.10.019_bb0135 article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00259-7 – volume: 75 start-page: 1201 issue: 4 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0080 article-title: Digital soil mapping and modeling at continental scales — finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0025 – volume: 189–190 start-page: 312 year: 2012 ident: 10.1016/j.geoderma.2014.10.019_bb0115 article-title: Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.009 – volume: 183–184 start-page: 41 year: 2012 ident: 10.1016/j.geoderma.2014.10.019_bb0050 article-title: Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique publication-title: Geoderma doi: 10.1016/j.geoderma.2012.03.011 – volume: 87 start-page: 591 issue: 5 year: 2001 ident: 10.1016/j.geoderma.2014.10.019_bb0175 article-title: Soil carbon storage response to temperature: an hypothesis publication-title: Ann. Bot. (Lond.) doi: 10.1006/anbo.2001.1372 – volume: 65 start-page: 480 year: 2001 ident: 10.1016/j.geoderma.2014.10.019_bb0055 article-title: Near-infrared reflectance spectroscopy — principal components regression analysis of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – volume: 27 start-page: 355 year: 2012 ident: 10.1016/j.geoderma.2014.10.019_bb0210 article-title: Multi-scale behavior of soil carbon at nested locations in Florida, USA publication-title: Landsc. Ecol. doi: 10.1007/s10980-011-9702-3 – volume: 437 start-page: 245 year: 2005 ident: 10.1016/j.geoderma.2014.10.019_bb0005 article-title: Carbon losses from all soils across England and Wales 1978–2003 publication-title: Nature doi: 10.1038/nature04038 – volume: 158 start-page: 3 year: 2010 ident: 10.1016/j.geoderma.2014.10.019_bb0140 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.005 – volume: 43 start-page: 1398 year: 2011 ident: 10.1016/j.geoderma.2014.10.019_bb0015 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils — critical review and research perspectives publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.019 – volume: 22 start-page: 964 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2014.10.019_bb0030 article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01404.x – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geoderma.2014.10.019_bb0215 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 65 start-page: 69 issue: 1 year: 1997 ident: 10.1016/j.geoderma.2014.10.019_bb0090 article-title: Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(97)00049-2 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.geoderma.2014.10.019_bb0100 article-title: Classification and regression by randomForest publication-title: R News |
| SSID | ssj0017020 |
| Score | 2.494469 |
| Snippet | Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 229 |
| SubjectTerms | carbon carbon sinks Chemometric modelling chemometrics climate ecosystems Florida Hydrolysable carbon land use change least squares monitoring nondestructive methods Partial least squares regression physical properties Random forest regression Recalcitrant carbon reflectance spectroscopy soil Soil organic carbon soil sampling Total carbon |
| Title | Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy |
| URI | https://dx.doi.org/10.1016/j.geoderma.2014.10.019 https://www.proquest.com/docview/1836655219 |
| Volume | 239-240 |
| WOSCitedRecordID | wos000347768000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID7FNkBG4mE8JCRxEsePFRpjQCsEA_Utih0HdSpplbZjfwd_MXexnaYMNBDiJaouchL7fr0735cJecZ4WBaRCDwM8nmxkplXcKa8kpVgj1RSqVS1h03w8TibTMT7weC7q4U5n_G6zi4uxOK_shpowGwsnf0LdncPBQL8BqbDFdgO1z9iPJ5uZhptL-fTGbaelphN2JgKBlvNhiXlWDNVw-w9eGvT5qGDtfl5fPIBPQXoT_86LbfujcyttjgTm2DOF1sx4WON56pt5Pzb2mi2sT_yN2k-6_qbc0Z3VHRRu-zskf-uowPwXOLlsSNbD0WYuKRm5za7VDpjRHGYejwwndh9baRvBnjBDVlfPEesDQH1haz1kRh9HZlmSJdUgfFKnAE7zOQxjS_2MZPPyujtNtsf24IM-B7YcQYsS9k1shvxRICk3B2eHE3edLEpHthmn3YCvbrzX7_tdybPT8q_tWhOb5NbditChwZCd8hA13fJzeGXxrZj0feI7sBEEUzUgIl2YKIIJmrBRLfARA8RSs8p8I_2gUQPR0jug-g--fTq6PTla88ezOEpFicrryplmGrQlUpIsNeZUlFVVpFOhExSJssMuy5KHUgu41QUgQ4KnkRFoWMt06yq2AOyU89r_ZBQVcHgOKwCWapYMlmEimmwQdNECV1JvkcSt3a5sl3r8fCUWe7SE89yt-Y5rjnSYc33yItu3ML0bblyhHCsya31aazKHBB15dinjpc5iGeMuRW1nq-XOWjMNE3ARhb7__D8A3Jj88d6RHZWzVo_JtfV-Wq6bJ5YgP4AJV22jw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+soil+carbon+fractions+with+visible+near-infrared+%28VNIR%29+and+mid-infrared+%28MIR%29+spectroscopy&rft.jtitle=Geoderma&rft.au=Knox%2C+N.M.&rft.au=Grunwald%2C+S.&rft.au=McDowell%2C+M.L.&rft.au=Bruland%2C+G.L.&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=239-240&rft.spage=229&rft.epage=239&rft_id=info:doi/10.1016%2Fj.geoderma.2014.10.019&rft.externalDocID=S0016706114003863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |