Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy

Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoderma Jg. 239-240; S. 229 - 239
Hauptverfasser: Knox, N.M., Grunwald, S., McDowell, M.L., Bruland, G.L., Myers, D.B., Harris, W.G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2015
Schlagworte:
ISSN:0016-7061, 1872-6259
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions. •We model soil carbon fractions successfully.•Mid-infrared has better predictive capabilities than visible-near-infrared.•The spectral region above 2000nm contributes most to carbon fraction models.•Random forest models have potential to generalise to new sites.
AbstractList Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions. •We model soil carbon fractions successfully.•Mid-infrared has better predictive capabilities than visible-near-infrared.•The spectral region above 2000nm contributes most to carbon fraction models.•Random forest models have potential to generalise to new sites.
Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance impacts, global climate and land use change. The majority of chemometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared (VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions. Partial least squares regression (PLSR) and random forest (RF) ensemble tree regression models were used to estimate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recalcitrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to 523g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although both PLSR and RF models were successful in modelling C fractions, RF models appear to target the physical properties linked to the property being analysed, and may therefore be the better modelling method to use when generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between 2000 and 6000nm should suffice to model these soil C fractions.
Author Bruland, G.L.
Harris, W.G.
Grunwald, S.
Myers, D.B.
Knox, N.M.
McDowell, M.L.
Author_xml – sequence: 1
  givenname: N.M.
  surname: Knox
  fullname: Knox, N.M.
  organization: Earth Observation Division, South African National Space Agency (SANSA), PO Box 484, Silverton 0127, South Africa
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-9023-1720
  surname: Grunwald
  fullname: Grunwald, S.
  email: sabgru@ufl.edu
  organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA
– sequence: 3
  givenname: M.L.
  surname: McDowell
  fullname: McDowell, M.L.
  organization: Natural Resources and Environmental Management Department, University of Hawai'i Mānoa, 1910 East–West Rd, Sherman 101, Honolulu, HI 96822, USA
– sequence: 4
  givenname: G.L.
  surname: Bruland
  fullname: Bruland, G.L.
  organization: Natural Resources and Environmental Management Department, University of Hawai'i Mānoa, 1910 East–West Rd, Sherman 101, Honolulu, HI 96822, USA
– sequence: 5
  givenname: D.B.
  surname: Myers
  fullname: Myers, D.B.
  organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA
– sequence: 6
  givenname: W.G.
  surname: Harris
  fullname: Harris, W.G.
  organization: Soil and Water Science Department, University of Florida, 2181 McCarty Hall, PO Box 110290, Gainesville, FL 32611, USA
BookMark eNqFkMtKxDAUhoMoOF5eQbLURccknaYtuFDEy8CoIOo25HKqGdpkTDrKvL2poyBuZhXy5_8OJ98e2nbeAUJHlIwpofx0Pn4FbyB0cswInaRwTGi9hUa0KlnGWVFvoxFJzawknO6ivRjn6VoSRkYI7hLatta94uhti7UMyjvcBKl7613En7Z_wx82WtUCdiBDZl16DWDw8cv99PEES2dwZ82f_G6I4wJ0H3zUfrE6QDuNbCMc_pz76Pn66unyNps93EwvL2aZzidFnzVGUQ60yHWtKGW51qwxDYOiVgXPlalIWecKiCrVhNeSAJFlwaSECSheNU2-j47XcxfBvy8h9qKzUaf_SQd-GQWtcs6LgtE6Vfm6qtOOMUAjFsF2MqwEJWLwKubi16sYvA45-QbP_oHa9nKQ1Qdp2834-RqH5OHDQhBRW3AajA1JmDDebhrxBYP9m8k
CitedBy_id crossref_primary_10_1002_saj2_20028
crossref_primary_10_1016_j_geoderma_2019_113900
crossref_primary_10_1016_j_geoderma_2025_117207
crossref_primary_10_1016_j_compag_2021_106144
crossref_primary_10_1134_S1064229323601841
crossref_primary_10_3389_feart_2024_1401026
crossref_primary_10_1002_saj2_70081
crossref_primary_10_1139_cjss_2020_0009
crossref_primary_10_1016_j_geoderma_2021_115426
crossref_primary_10_1038_s41467_025_57355_y
crossref_primary_10_1111_ejss_13323
crossref_primary_10_1016_j_geodrs_2020_e00333
crossref_primary_10_1111_ejss_13208
crossref_primary_10_3390_ijerph20032367
crossref_primary_10_1016_j_trac_2020_116166
crossref_primary_10_3390_agronomy12092111
crossref_primary_10_1016_j_infrared_2022_104372
crossref_primary_10_1016_j_geoderma_2023_116584
crossref_primary_10_1364_AO_57_000D69
crossref_primary_10_1080_00032719_2024_2382270
crossref_primary_10_59717_j_xinn_geo_2023_100015
crossref_primary_10_1016_j_soilad_2025_100039
crossref_primary_10_1016_j_geoderma_2018_10_015
crossref_primary_10_2136_sssaj2019_06_0205
crossref_primary_10_3390_agriculture12050682
crossref_primary_10_1111_ejss_12741
crossref_primary_10_3390_s18040993
crossref_primary_10_1080_10106049_2021_1871667
crossref_primary_10_1111_ejss_13438
crossref_primary_10_3390_quat5020028
crossref_primary_10_1016_j_biosystemseng_2016_04_015
crossref_primary_10_1016_j_microc_2022_107544
crossref_primary_10_1016_j_saa_2022_121441
crossref_primary_10_1016_j_scitotenv_2018_12_263
crossref_primary_10_1016_j_soilbio_2021_108319
crossref_primary_10_1016_j_geoderma_2018_08_003
crossref_primary_10_1016_j_geoderma_2018_08_005
crossref_primary_10_1016_j_heliyon_2024_e30228
crossref_primary_10_1016_j_geoderma_2018_12_037
crossref_primary_10_1016_j_geoderma_2018_10_025
crossref_primary_10_3390_s24216855
crossref_primary_10_2136_sssaj2015_10_0364
crossref_primary_10_1016_j_geoderma_2015_12_030
crossref_primary_10_1080_03650340_2019_1674446
crossref_primary_10_1016_j_ecolind_2025_113515
crossref_primary_10_1111_ejss_13263
crossref_primary_10_1016_j_geoderma_2024_117037
crossref_primary_10_1016_j_scitotenv_2019_05_240
crossref_primary_10_1080_02571862_2023_2180098
crossref_primary_10_1016_j_geodrs_2017_04_003
crossref_primary_10_1111_ejss_13267
crossref_primary_10_1002_jsfa_7859
crossref_primary_10_1016_j_proenv_2015_07_113
crossref_primary_10_1002_agj2_20700
crossref_primary_10_3390_land10020215
crossref_primary_10_3390_s24030849
crossref_primary_10_1016_j_catena_2018_10_051
crossref_primary_10_1016_j_geodrs_2022_e00486
crossref_primary_10_3390_rs14030740
crossref_primary_10_1007_s12665_017_6793_4
crossref_primary_10_1016_j_catena_2022_106015
crossref_primary_10_1080_00103624_2025_2485416
crossref_primary_10_1038_s41378_023_00494_3
crossref_primary_10_1111_ejss_70202
crossref_primary_10_1080_05704928_2019_1683569
crossref_primary_10_1016_j_geoderma_2024_116954
crossref_primary_10_5194_soil_10_231_2024
crossref_primary_10_1016_j_geodrs_2024_e00805
crossref_primary_10_1016_j_jag_2020_102111
crossref_primary_10_1079_soilsciencecases_2024_0002
crossref_primary_10_3390_agronomy12030638
crossref_primary_10_3390_s20174822
crossref_primary_10_1177_09670335241269168
crossref_primary_10_1007_s10457_023_00833_3
crossref_primary_10_1016_j_saa_2021_119823
crossref_primary_10_1016_j_compag_2024_108760
crossref_primary_10_1016_j_scitotenv_2019_134566
crossref_primary_10_3390_s21041423
crossref_primary_10_1080_10408347_2024_2351820
crossref_primary_10_1016_j_geoderma_2020_114815
crossref_primary_10_1111_ejss_12712
crossref_primary_10_1007_s10973_022_11709_6
crossref_primary_10_1016_j_catena_2020_104844
crossref_primary_10_1016_j_geodrs_2023_e00638
crossref_primary_10_3390_land13020154
crossref_primary_10_3390_rs13183760
crossref_primary_10_2136_sssaj2018_05_0175
crossref_primary_10_1016_j_chemolab_2016_02_013
crossref_primary_10_1016_j_geoderma_2018_02_031
crossref_primary_10_1016_j_still_2024_106297
crossref_primary_10_1016_j_infrared_2015_01_027
crossref_primary_10_1016_j_catena_2021_105280
crossref_primary_10_1371_journal_pone_0286825
crossref_primary_10_3389_fenvs_2021_634472
crossref_primary_10_3390_app7070708
crossref_primary_10_1002_saj2_20194
crossref_primary_10_3390_ai3040049
crossref_primary_10_1007_s11270_023_06726_6
crossref_primary_10_1002_hyp_14870
crossref_primary_10_1002_advs_202504152
crossref_primary_10_3390_s22155638
crossref_primary_10_1016_j_geodrs_2020_e00349
crossref_primary_10_3390_su14148455
crossref_primary_10_1080_15324982_2020_1867935
crossref_primary_10_1016_j_scitotenv_2015_08_088
crossref_primary_10_1016_j_still_2017_05_008
crossref_primary_10_3390_rs12091512
crossref_primary_10_3390_rs17040706
crossref_primary_10_1016_j_catena_2023_107152
crossref_primary_10_1016_j_geoderma_2020_114758
crossref_primary_10_1016_j_agrformet_2023_109563
crossref_primary_10_1007_s10980_018_0729_6
crossref_primary_10_1080_10106049_2020_1765887
crossref_primary_10_1016_j_chemolab_2024_105253
crossref_primary_10_1016_j_compag_2022_107246
crossref_primary_10_18393_ejss_1275149
crossref_primary_10_1016_j_scitotenv_2017_10_323
crossref_primary_10_3390_rs17091524
crossref_primary_10_1016_j_still_2021_105284
crossref_primary_10_1016_j_geoderma_2022_116103
crossref_primary_10_1111_ejss_13180
crossref_primary_10_1016_j_scitotenv_2025_178791
crossref_primary_10_1016_j_geoderma_2020_114401
crossref_primary_10_3390_land12010044
crossref_primary_10_1016_j_compag_2023_108350
crossref_primary_10_1016_j_geoderma_2017_11_006
crossref_primary_10_3390_app142411687
Cites_doi 10.1155/2012/294121
10.2136/sssaj2002.9880
10.1016/j.soilbio.2008.10.003
10.1023/A:1023008322682
10.2136/sssaj2008.0015
10.1029/2003GB002119
10.1002/cem.887
10.1080/00103620600819461
10.2134/jeq2009.0314
10.1016/0003-2670(86)80028-9
10.1071/EA97144
10.1016/j.geoderma.2010.12.020
10.1007/978-3-031-01899-2
10.1016/0038-0717(94)90317-4
10.2136/sssaj2002.6400
10.1016/j.soilbio.2010.10.011
10.1023/A:1010933404324
10.1890/04-1254
10.1016/j.geoderma.2011.05.006
10.1016/j.geoderma.2009.12.025
10.18637/jss.v018.i02
10.1038/nature04514
10.1126/science.272.5260.393
10.1016/j.geoderma.2008.04.007
10.1016/j.geoderma.2007.04.021
10.1016/j.geoderma.2011.08.001
10.1016/j.geoderma.2005.04.025
10.1016/S0269-7491(01)00259-7
10.2136/sssaj2011.0025
10.1016/j.geoderma.2012.06.009
10.1016/j.geoderma.2012.03.011
10.1006/anbo.2001.1372
10.2136/sssaj2001.652480x
10.1007/s10980-011-9702-3
10.1038/nature04038
10.1016/j.geoderma.2009.04.005
10.1016/j.soilbio.2011.02.019
10.1111/j.1365-2435.2008.01404.x
10.1016/j.geoderma.2005.03.007
10.1016/S0167-8809(97)00049-2
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2014.10.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 239
ExternalDocumentID 10_1016_j_geoderma_2014_10_019
S0016706114003863
GeographicLocations Florida
GeographicLocations_xml – name: Florida
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-fdb16e153c9b1123cc2fdf2e59b563bd80793be0b7b469a0e0a752aae4eb68ff3
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347768000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-7061
IngestDate Sat Sep 27 19:21:02 EDT 2025
Tue Nov 18 20:07:36 EST 2025
Sat Nov 29 06:12:25 EST 2025
Fri Feb 23 02:27:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrolysable carbon
Total carbon
DRS
SOC
RPD
Random forest regression
VNIR
Chemometric modelling
SWIR
RMSE
Partial least squares regression
Recalcitrant carbon
TC
RC
RF
MIR
HC
Soil organic carbon
PLSR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-fdb16e153c9b1123cc2fdf2e59b563bd80793be0b7b469a0e0a752aae4eb68ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9023-1720
PQID 1836655219
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_1836655219
crossref_primary_10_1016_j_geoderma_2014_10_019
crossref_citationtrail_10_1016_j_geoderma_2014_10_019
elsevier_sciencedirect_doi_10_1016_j_geoderma_2014_10_019
PublicationCentury 2000
PublicationDate February 2015
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stuart (bb0165) 2004
Bellamy, Loveland, Bradley, Lark, Kirk (bb0005) 2005; 437
R Development Core Team (bb0170) 2010
Viscarra Rossel, Behrens (bb0220) 2010; 158
Bradford, Fierer, Reynolds (bb0030) 2007; 22
Gu, Post, King (bb0085) 2004; 18
Trumbore, Chadwick, Amundson (bb0180) 1996; 272
Ge, Morgan, Grunwald, Brown, Sarkhot (bb0070) 2011; 161
Brown (bb0045) 2007; 140
Seni, Elder (bb0155) 2010
Udelhoven, Emmerling, Jarmer (bb0185) 2003; 251
Vasques, Grunwald, Sickman (bb0200) 2009; 73
Vohland, Besold, Hill, Fründ (bb0225) 2011; 166
Manchanda, Kudrat, Tiwari (bb0105) 2002; 43
Wehrens (bb0230) 2011
Vasques, Grunwald, Sickman (bb0190) 2008; 146
Craine, Gelderman (bb0060) 2011; 43
Chang, Laird, Mausbach, Hurburgh (bb0055) 2001; 65
Mevik, Cederkvist (bb0125) 2004; 18
Reeves (bb0140) 2010; 158
Bellon-Maurel, McBratney (bb0015) 2011; 43
Geladi, Kowalski (bb0075) 1986; 185
(bb8000) 2007
Belay-Tedla, Zhou, Su, Wan, Luo (bb0010) 2009; 41
McDowell, Bruland, Deenik, Grunwald (bb0120) 2012; 2012
Fierer, Craine, McLaughlan, Schimel (bb0065) 2005; 86
Ben-Dor, Irons, Epema (bb0020) 1999; volume 3
McDowell, Bruland, Deenik, Grunwald, Knox (bb0115) 2012; 189–190
Cambule, Rossiter, Stoorvogel, Smaling (bb0050) 2012; 183–184
Davidson, Janssens (bb9000) 2006; 440
Sarkhot, Grunwald, Ge, Morgan (bb0150) 2011; 164
Breiman (bb0035) 2001; 45
Vasques, Grunwald, Harris (bb0205) 2010; 39
Liaw, Wiener (bb0100) 2002; 2
McCarty, Reeves, Reeves, Follett, Kimble (bb0110) 2002; 66
Mevik, Wehrens (bb0130) 2007; 18
Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0215) 2006; 131
Brown, Shepherd, Walsh, Dewayne Mays, Reinsch (bb0040) 2006; 132
Reeves, Follett, McCarty, Kimble (bb0145) 2006; 37
Grunwald, Thompson, Boettinger (bb0080) 2011; 75
Williams (bb0235) 1987
Reeves, McCarty, Mimmo (bb0135) 2002; 116
Vasques, Grunwald, Myers (bb0210) 2012; 27
Hu, Coleman, Carroll, Hendrix, Beare (bb0090) 1997; 65
Biederbeck, Janzen, Campbell, Zentner (bb0025) 1994; 26
Thornley, Cannell (bb0175) 2001; 87
Janik, Merry, Skjemstad (bb0095) 1998; 38
Shepherd, Walsh (bb0160) 2002; 66
McDowell (10.1016/j.geoderma.2014.10.019_bb0115) 2012; 189–190
Ge (10.1016/j.geoderma.2014.10.019_bb0070) 2011; 161
McDowell (10.1016/j.geoderma.2014.10.019_bb0120) 2012; 2012
Viscarra Rossel (10.1016/j.geoderma.2014.10.019_bb0215) 2006; 131
Brown (10.1016/j.geoderma.2014.10.019_bb0040) 2006; 132
Mevik (10.1016/j.geoderma.2014.10.019_bb0125) 2004; 18
Vohland (10.1016/j.geoderma.2014.10.019_bb0225) 2011; 166
Ben-Dor (10.1016/j.geoderma.2014.10.019_bb0020) 1999; volume 3
Reeves (10.1016/j.geoderma.2014.10.019_bb0135) 2002; 116
Liaw (10.1016/j.geoderma.2014.10.019_bb0100) 2002; 2
Vasques (10.1016/j.geoderma.2014.10.019_bb0190) 2008; 146
R Development Core Team (10.1016/j.geoderma.2014.10.019_bb0170) 2010
Stuart (10.1016/j.geoderma.2014.10.019_bb0165) 2004
Vasques (10.1016/j.geoderma.2014.10.019_bb0200) 2009; 73
Bradford (10.1016/j.geoderma.2014.10.019_bb0030) 2007; 22
Mevik (10.1016/j.geoderma.2014.10.019_bb0130) 2007; 18
Hu (10.1016/j.geoderma.2014.10.019_bb0090) 1997; 65
Brown (10.1016/j.geoderma.2014.10.019_bb0045) 2007; 140
Udelhoven (10.1016/j.geoderma.2014.10.019_bb0185) 2003; 251
Bellamy (10.1016/j.geoderma.2014.10.019_bb0005) 2005; 437
Manchanda (10.1016/j.geoderma.2014.10.019_bb0105) 2002; 43
Davidson (10.1016/j.geoderma.2014.10.019_bb9000) 2006; 440
Geladi (10.1016/j.geoderma.2014.10.019_bb0075) 1986; 185
Cambule (10.1016/j.geoderma.2014.10.019_bb0050) 2012; 183–184
Gu (10.1016/j.geoderma.2014.10.019_bb0085) 2004; 18
Bellon-Maurel (10.1016/j.geoderma.2014.10.019_bb0015) 2011; 43
Chang (10.1016/j.geoderma.2014.10.019_bb0055) 2001; 65
Vasques (10.1016/j.geoderma.2014.10.019_bb0205) 2010; 39
Fierer (10.1016/j.geoderma.2014.10.019_bb0065) 2005; 86
Belay-Tedla (10.1016/j.geoderma.2014.10.019_bb0010) 2009; 41
Biederbeck (10.1016/j.geoderma.2014.10.019_bb0025) 1994; 26
Trumbore (10.1016/j.geoderma.2014.10.019_bb0180) 1996; 272
Craine (10.1016/j.geoderma.2014.10.019_bb0060) 2011; 43
Shepherd (10.1016/j.geoderma.2014.10.019_bb0160) 2002; 66
McCarty (10.1016/j.geoderma.2014.10.019_bb0110) 2002; 66
Sarkhot (10.1016/j.geoderma.2014.10.019_bb0150) 2011; 164
Janik (10.1016/j.geoderma.2014.10.019_bb0095) 1998; 38
Reeves (10.1016/j.geoderma.2014.10.019_bb0145) 2006; 37
Seni (10.1016/j.geoderma.2014.10.019_bb0155) 2010
Grunwald (10.1016/j.geoderma.2014.10.019_bb0080) 2011; 75
(10.1016/j.geoderma.2014.10.019_bb8000) 2007
Vasques (10.1016/j.geoderma.2014.10.019_bb0210) 2012; 27
Thornley (10.1016/j.geoderma.2014.10.019_bb0175) 2001; 87
Breiman (10.1016/j.geoderma.2014.10.019_bb0035) 2001; 45
Wehrens (10.1016/j.geoderma.2014.10.019_bb0230) 2011
Reeves (10.1016/j.geoderma.2014.10.019_bb0140) 2010; 158
Viscarra Rossel (10.1016/j.geoderma.2014.10.019_bb0220) 2010; 158
Williams (10.1016/j.geoderma.2014.10.019_bb0235) 1987
References_xml – volume: 66
  start-page: 640
  year: 2002
  end-page: 646
  ident: bb0110
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci. Soc. Am. J.
– year: 2004
  ident: bb0165
  article-title: Infrared Spectroscopy: Fundamentals and Applications
– year: 2010
  ident: bb0170
  article-title: R: A Language and Environment for Statistical Computing
– volume: volume 3
  start-page: 111
  year: 1999
  end-page: 188
  ident: bb0020
  article-title: Soil reflectance
  publication-title: Remote Sensing for the Earth Sciences: Manual of Remote Sensing
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0055
  article-title: Near-infrared reflectance spectroscopy — principal components regression analysis of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– year: 2010
  ident: bb0155
  article-title: Ensemble methods in data mining: improving accuracy through combining predictions, synthesis
  publication-title: Synthesis Lectures on Data Mining and Knowledge Discovery
– volume: 158
  start-page: 3
  year: 2010
  end-page: 14
  ident: bb0140
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: bb0215
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 437
  start-page: 245
  year: 2005
  end-page: 248
  ident: bb0005
  article-title: Carbon losses from all soils across England and Wales 1978–2003
  publication-title: Nature
– volume: 140
  start-page: 444
  year: 2007
  end-page: 453
  ident: bb0045
  article-title: Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed
  publication-title: Geoderma
– volume: 164
  start-page: 22
  year: 2011
  end-page: 32
  ident: bb0150
  article-title: Comparison and detection of soil carbon under
  publication-title: Geoderma
– volume: 116
  start-page: 277
  year: 2002
  end-page: 284
  ident: bb0135
  article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils
  publication-title: Environ. Pollut.
– volume: 39
  start-page: 923
  year: 2010
  end-page: 934
  ident: bb0205
  article-title: Building a spectral library to estimate soil organic carbon in Florida
  publication-title: J. Environ. Qual.
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: bb0160
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– year: 2011
  ident: bb0230
  article-title: Chemometrics with R
  publication-title: Use R!
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 87
  start-page: 591
  year: 2001
  end-page: 598
  ident: bb0175
  article-title: Soil carbon storage response to temperature: an hypothesis
  publication-title: Ann. Bot. (Lond.)
– volume: 26
  start-page: 1647
  year: 1994
  end-page: 1656
  ident: bb0025
  article-title: Labile soil organic matter as influenced by cropping practices in an arid environment
  publication-title: Soil Biol. Biochem.
– volume: 183–184
  start-page: 41
  year: 2012
  end-page: 48
  ident: bb0050
  article-title: Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique
  publication-title: Geoderma
– volume: 37
  start-page: 2307
  year: 2006
  end-page: 2325
  ident: bb0145
  article-title: Can near or mid infrared diffuse reflectance spectroscopy be used to determine soil carbon pools
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 73
  start-page: 176
  year: 2009
  end-page: 184
  ident: bb0200
  article-title: Visible/near-infrared spectroscopy modeling of dynamic soil carbon fractions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: bb0080
  article-title: Digital soil mapping and modeling at continental scales — finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: bb0220
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bb0075
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0100
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: bb9000
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 41
  start-page: 110
  year: 2009
  end-page: 116
  ident: bb0010
  article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping
  publication-title: Soil Biol. Biochem.
– volume: 18
  start-page: 422
  year: 2004
  end-page: 429
  ident: bb0125
  article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
  publication-title: J. Chemometr.
– volume: 27
  start-page: 355
  year: 2012
  end-page: 367
  ident: bb0210
  article-title: Multi-scale behavior of soil carbon at nested locations in Florida, USA
  publication-title: Landsc. Ecol.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 14
  ident: bb0120
  article-title: Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy
  publication-title: J. Appl. Environ. Soil Sci.
– volume: 43
  start-page: 455
  year: 2011
  end-page: 457
  ident: bb0060
  article-title: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland
  publication-title: Soil Biol. Biochem.
– volume: 18
  start-page: 1
  year: 2007
  end-page: 24
  ident: bb0130
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Softw.
– volume: 132
  start-page: 273
  year: 2006
  end-page: 290
  ident: bb0040
  article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 166
  start-page: 198
  year: 2011
  end-page: 255
  ident: bb0225
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
– volume: 22
  start-page: 964
  year: 2007
  end-page: 974
  ident: bb0030
  article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils
  publication-title: Funct. Ecol.
– start-page: 143
  year: 1987
  end-page: 167
  ident: bb0235
  article-title: Variables affecting near-infrared reflectance spectroscopic analysis
  publication-title: Near-infrared Technology in the Agricultural and Food Industries
– volume: 272
  start-page: 393
  year: 1996
  end-page: 396
  ident: bb0180
  article-title: Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change
  publication-title: Science
– volume: 43
  start-page: 1398
  year: 2011
  end-page: 1410
  ident: bb0015
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils — critical review and research perspectives
  publication-title: Soil Biol. Biochem.
– volume: 251
  start-page: 319
  year: 2003
  end-page: 329
  ident: bb0185
  article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study
  publication-title: Plant Soil
– volume: 86
  start-page: 320
  year: 2005
  end-page: 326
  ident: bb0065
  article-title: Litter quality and the temperature sensitivity to decomposition
  publication-title: Ecology
– volume: 43
  start-page: 61
  year: 2002
  end-page: 74
  ident: bb0105
  article-title: Soil survey and mapping using remote sensing
  publication-title: Trop. Ecol.
– year: 2007
  ident: bb8000
  publication-title: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007
– volume: 65
  start-page: 69
  year: 1997
  end-page: 78
  ident: bb0090
  article-title: Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types
  publication-title: Agric. Ecosyst. Environ.
– volume: 18
  start-page: GB1022
  year: 2004
  ident: bb0085
  article-title: Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis
  publication-title: Glob. Biogeochem. Cycles
– volume: 189–190
  start-page: 312
  year: 2012
  end-page: 320
  ident: bb0115
  article-title: Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 146
  start-page: 14
  year: 2008
  end-page: 25
  ident: bb0190
  article-title: Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra
  publication-title: Geoderma
– volume: 161
  start-page: 202
  year: 2011
  end-page: 211
  ident: bb0070
  article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers
  publication-title: Geoderma
– volume: 38
  start-page: 681
  year: 1998
  end-page: 696
  ident: bb0095
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.geoderma.2014.10.019_bb0120
  article-title: Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy
  publication-title: J. Appl. Environ. Soil Sci.
  doi: 10.1155/2012/294121
– volume: 66
  start-page: 988
  year: 2002
  ident: 10.1016/j.geoderma.2014.10.019_bb0160
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.9880
– volume: 41
  start-page: 110
  year: 2009
  ident: 10.1016/j.geoderma.2014.10.019_bb0010
  article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.003
– volume: 251
  start-page: 319
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2014.10.019_bb0185
  article-title: Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study
  publication-title: Plant Soil
  doi: 10.1023/A:1023008322682
– volume: 73
  start-page: 176
  year: 2009
  ident: 10.1016/j.geoderma.2014.10.019_bb0200
  article-title: Visible/near-infrared spectroscopy modeling of dynamic soil carbon fractions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0015
– year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0230
  article-title: Chemometrics with R
– volume: 18
  start-page: GB1022
  year: 2004
  ident: 10.1016/j.geoderma.2014.10.019_bb0085
  article-title: Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2003GB002119
– volume: 18
  start-page: 422
  year: 2004
  ident: 10.1016/j.geoderma.2014.10.019_bb0125
  article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
  publication-title: J. Chemometr.
  doi: 10.1002/cem.887
– volume: 37
  start-page: 2307
  issue: 15–20
  year: 2006
  ident: 10.1016/j.geoderma.2014.10.019_bb0145
  article-title: Can near or mid infrared diffuse reflectance spectroscopy be used to determine soil carbon pools
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620600819461
– volume: 39
  start-page: 923
  year: 2010
  ident: 10.1016/j.geoderma.2014.10.019_bb0205
  article-title: Building a spectral library to estimate soil organic carbon in Florida
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0314
– year: 2007
  ident: 10.1016/j.geoderma.2014.10.019_bb8000
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.geoderma.2014.10.019_bb0075
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/0003-2670(86)80028-9
– volume: 38
  start-page: 681
  year: 1998
  ident: 10.1016/j.geoderma.2014.10.019_bb0095
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA97144
– volume: volume 3
  start-page: 111
  year: 1999
  ident: 10.1016/j.geoderma.2014.10.019_bb0020
  article-title: Soil reflectance
– volume: 161
  start-page: 202
  issue: 3–4
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0070
  article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.020
– year: 2010
  ident: 10.1016/j.geoderma.2014.10.019_bb0155
  article-title: Ensemble methods in data mining: improving accuracy through combining predictions, synthesis
  doi: 10.1007/978-3-031-01899-2
– volume: 26
  start-page: 1647
  issue: 12
  year: 1994
  ident: 10.1016/j.geoderma.2014.10.019_bb0025
  article-title: Labile soil organic matter as influenced by cropping practices in an arid environment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)90317-4
– volume: 66
  start-page: 640
  year: 2002
  ident: 10.1016/j.geoderma.2014.10.019_bb0110
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.6400
– volume: 43
  start-page: 455
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0060
  article-title: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.10.011
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geoderma.2014.10.019_bb0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 86
  start-page: 320
  year: 2005
  ident: 10.1016/j.geoderma.2014.10.019_bb0065
  article-title: Litter quality and the temperature sensitivity to decomposition
  publication-title: Ecology
  doi: 10.1890/04-1254
– volume: 43
  start-page: 61
  year: 2002
  ident: 10.1016/j.geoderma.2014.10.019_bb0105
  article-title: Soil survey and mapping using remote sensing
  publication-title: Trop. Ecol.
– volume: 164
  start-page: 22
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0150
  article-title: Comparison and detection of soil carbon under Arundo donax and coastal bermuda grass using visible/near infrared diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.05.006
– year: 2004
  ident: 10.1016/j.geoderma.2014.10.019_bb0165
– start-page: 143
  year: 1987
  ident: 10.1016/j.geoderma.2014.10.019_bb0235
  article-title: Variables affecting near-infrared reflectance spectroscopic analysis
– year: 2010
  ident: 10.1016/j.geoderma.2014.10.019_bb0170
– volume: 158
  start-page: 46
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geoderma.2014.10.019_bb0220
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 18
  start-page: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.geoderma.2014.10.019_bb0130
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v018.i02
– volume: 440
  start-page: 165
  year: 2006
  ident: 10.1016/j.geoderma.2014.10.019_bb9000
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 272
  start-page: 393
  year: 1996
  ident: 10.1016/j.geoderma.2014.10.019_bb0180
  article-title: Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change
  publication-title: Science
  doi: 10.1126/science.272.5260.393
– volume: 146
  start-page: 14
  year: 2008
  ident: 10.1016/j.geoderma.2014.10.019_bb0190
  article-title: Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.04.007
– volume: 140
  start-page: 444
  year: 2007
  ident: 10.1016/j.geoderma.2014.10.019_bb0045
  article-title: Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.04.021
– volume: 166
  start-page: 198
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0225
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.001
– volume: 132
  start-page: 273
  year: 2006
  ident: 10.1016/j.geoderma.2014.10.019_bb0040
  article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.04.025
– volume: 116
  start-page: 277
  year: 2002
  ident: 10.1016/j.geoderma.2014.10.019_bb0135
  article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00259-7
– volume: 75
  start-page: 1201
  issue: 4
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0080
  article-title: Digital soil mapping and modeling at continental scales — finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0025
– volume: 189–190
  start-page: 312
  year: 2012
  ident: 10.1016/j.geoderma.2014.10.019_bb0115
  article-title: Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.009
– volume: 183–184
  start-page: 41
  year: 2012
  ident: 10.1016/j.geoderma.2014.10.019_bb0050
  article-title: Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.03.011
– volume: 87
  start-page: 591
  issue: 5
  year: 2001
  ident: 10.1016/j.geoderma.2014.10.019_bb0175
  article-title: Soil carbon storage response to temperature: an hypothesis
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1006/anbo.2001.1372
– volume: 65
  start-page: 480
  year: 2001
  ident: 10.1016/j.geoderma.2014.10.019_bb0055
  article-title: Near-infrared reflectance spectroscopy — principal components regression analysis of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 27
  start-page: 355
  year: 2012
  ident: 10.1016/j.geoderma.2014.10.019_bb0210
  article-title: Multi-scale behavior of soil carbon at nested locations in Florida, USA
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-011-9702-3
– volume: 437
  start-page: 245
  year: 2005
  ident: 10.1016/j.geoderma.2014.10.019_bb0005
  article-title: Carbon losses from all soils across England and Wales 1978–2003
  publication-title: Nature
  doi: 10.1038/nature04038
– volume: 158
  start-page: 3
  year: 2010
  ident: 10.1016/j.geoderma.2014.10.019_bb0140
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.005
– volume: 43
  start-page: 1398
  year: 2011
  ident: 10.1016/j.geoderma.2014.10.019_bb0015
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils — critical review and research perspectives
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.019
– volume: 22
  start-page: 964
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2014.10.019_bb0030
  article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01404.x
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geoderma.2014.10.019_bb0215
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 65
  start-page: 69
  issue: 1
  year: 1997
  ident: 10.1016/j.geoderma.2014.10.019_bb0090
  article-title: Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(97)00049-2
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.geoderma.2014.10.019_bb0100
  article-title: Classification and regression by randomForest
  publication-title: R News
SSID ssj0017020
Score 2.494469
Snippet Accurate assessment of soil carbon fractions would provide valuable contributions towards monitoring in ecological observatories, assessment of disturbance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms carbon
carbon sinks
Chemometric modelling
chemometrics
climate
ecosystems
Florida
Hydrolysable carbon
land use change
least squares
monitoring
nondestructive methods
Partial least squares regression
physical properties
Random forest regression
Recalcitrant carbon
reflectance spectroscopy
soil
Soil organic carbon
soil sampling
Total carbon
Title Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2014.10.019
https://www.proquest.com/docview/1836655219
Volume 239-240
WOSCitedRecordID wos000347768000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID7FNkBG4mE8JCRxEsePFRpjQCsEA_Utih0HdSpplbZjfwd_MXexnaYMNBDiJaouchL7fr0735cJecZ4WBaRCDwM8nmxkplXcKa8kpVgj1RSqVS1h03w8TibTMT7weC7q4U5n_G6zi4uxOK_shpowGwsnf0LdncPBQL8BqbDFdgO1z9iPJ5uZhptL-fTGbaelphN2JgKBlvNhiXlWDNVw-w9eGvT5qGDtfl5fPIBPQXoT_86LbfujcyttjgTm2DOF1sx4WON56pt5Pzb2mi2sT_yN2k-6_qbc0Z3VHRRu-zskf-uowPwXOLlsSNbD0WYuKRm5za7VDpjRHGYejwwndh9baRvBnjBDVlfPEesDQH1haz1kRh9HZlmSJdUgfFKnAE7zOQxjS_2MZPPyujtNtsf24IM-B7YcQYsS9k1shvxRICk3B2eHE3edLEpHthmn3YCvbrzX7_tdybPT8q_tWhOb5NbditChwZCd8hA13fJzeGXxrZj0feI7sBEEUzUgIl2YKIIJmrBRLfARA8RSs8p8I_2gUQPR0jug-g--fTq6PTla88ezOEpFicrryplmGrQlUpIsNeZUlFVVpFOhExSJssMuy5KHUgu41QUgQ4KnkRFoWMt06yq2AOyU89r_ZBQVcHgOKwCWapYMlmEimmwQdNECV1JvkcSt3a5sl3r8fCUWe7SE89yt-Y5rjnSYc33yItu3ML0bblyhHCsya31aazKHBB15dinjpc5iGeMuRW1nq-XOWjMNE3ARhb7__D8A3Jj88d6RHZWzVo_JtfV-Wq6bJ5YgP4AJV22jw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+soil+carbon+fractions+with+visible+near-infrared+%28VNIR%29+and+mid-infrared+%28MIR%29+spectroscopy&rft.jtitle=Geoderma&rft.au=Knox%2C+N.M.&rft.au=Grunwald%2C+S.&rft.au=McDowell%2C+M.L.&rft.au=Bruland%2C+G.L.&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=239-240&rft.spage=229&rft.epage=239&rft_id=info:doi/10.1016%2Fj.geoderma.2014.10.019&rft.externalDocID=S0016706114003863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon