A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition
Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zer...
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 53; S. 176 - 189 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.08.2016
|
| Schlagworte: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features.
•A sparse ELM framework is proposed based on with zero-norm regularization.•Four sparse ELM formulations with zero-norm are built based on LSE and LAD.•We develop two continuous approaches to solve the problems.•The first is DC (difference of convex functions) approximation approach.•The second is an exact penalty technique for zero-norm.•All the resulting problems are posed as DC programming. |
|---|---|
| AbstractList | Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features.
•A sparse ELM framework is proposed based on with zero-norm regularization.•Four sparse ELM formulations with zero-norm are built based on LSE and LAD.•We develop two continuous approaches to solve the problems.•The first is DC (difference of convex functions) approximation approach.•The second is an exact penalty technique for zero-norm.•All the resulting problems are posed as DC programming. Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features. |
| Author | Yang, Liming Zhang, Siyun |
| Author_xml | – sequence: 1 givenname: Liming surname: Yang fullname: Yang, Liming email: cauyanglm@163.com – sequence: 2 givenname: Siyun surname: Zhang fullname: Zhang, Siyun email: 944890706@qq.com |
| BookMark | eNqFkE9v1DAQxS1UJLYLXwH5yCXBThxvInGgqvhTqRIXOFsTZ7KdJbGN7QWK-PB42XLh0sNoNDPvPWl-l-zCeYeMvZSilkLq14ca3R5CAKqbMtdC1UK0T9hG9ru20js9XLCNGLqmksNOP2OXKR1EUfRKb9jvK54CxIQcf-aIK_IFITpye76CvSOHfI6w4g8fv_LxnlvvMrmjPybuQ6aVfkEm7zgsex8p362Jg5s45dJDWMiez-R4gJwxOh7R-r2j0_o5ezrDkvDFQ9-yL-_ffb7-WN1--nBzfXVb2VZ1uZpHNUwa2lGqBpQeQUmtYUQ796rpQIDtWm1lM_Ug7Tz0TSuxs70VctdOXQPtlr0654bovx0xZbNSsrgs4LB8YmTfdKpvRakt02epjT6liLMJkVaI90YKc8JtDuYfbnPCbYQyBWYxvvnPaCn_fT5HoOVx-9uzHQuH74TRJEvoLE5UgGUzeXos4g-B1qaA |
| CitedBy_id | crossref_primary_10_1007_s10489_018_1273_4 crossref_primary_10_1109_ACCESS_2024_3485214 crossref_primary_10_1007_s10489_020_01865_3 crossref_primary_10_1007_s11227_024_06697_3 crossref_primary_10_1016_j_cie_2018_06_024 crossref_primary_10_1109_ACCESS_2019_2935008 crossref_primary_10_1007_s10489_020_01757_6 crossref_primary_10_1007_s11042_023_17315_4 crossref_primary_10_1007_s10115_020_01484_x crossref_primary_10_1007_s11063_023_11424_9 crossref_primary_10_1155_2020_7358692 crossref_primary_10_1007_s10462_020_09836_3 crossref_primary_10_1007_s11063_021_10452_7 crossref_primary_10_3233_JIFS_162162 crossref_primary_10_3233_JIFS_181501 crossref_primary_10_1007_s11227_018_2430_6 crossref_primary_10_3233_JIFS_191617 crossref_primary_10_1016_j_cageo_2017_02_001 crossref_primary_10_1007_s10489_021_02654_2 crossref_primary_10_1016_j_compeleceng_2024_110040 crossref_primary_10_1016_j_chemolab_2018_04_003 crossref_primary_10_1016_j_cie_2021_107739 crossref_primary_10_1155_2019_6740523 crossref_primary_10_1007_s00521_019_04627_6 crossref_primary_10_1007_s10489_024_05528_5 crossref_primary_10_1016_j_neucom_2018_05_100 crossref_primary_10_1109_ACCESS_2019_2922385 crossref_primary_10_1007_s10107_018_1235_y crossref_primary_10_3390_sym14061186 |
| Cites_doi | 10.1016/j.engappai.2013.05.012 10.1016/j.neucom.2011.12.045 10.1016/j.ejor.2014.11.031 10.1006/jmva.1997.1694 10.1016/j.neucom.2013.03.053 10.1007/s11634-008-0030-7 10.1016/j.neucom.2012.02.040 10.1198/016214506000000735 10.1016/j.neunet.2012.04.002 10.1016/j.foodchem.2014.09.049 10.1016/j.patrec.2005.10.010 10.1016/j.neucom.2011.07.002 10.1007/s10994-014-5455-y 10.1016/j.neucom.2011.12.055 10.1016/j.neucom.2013.03.051 10.1016/j.neucom.2014.10.095 10.1109/TNNLS.2012.2212721 10.1109/TNN.2009.2036259 10.1016/j.neucom.2010.12.042 10.1016/j.neunet.2014.10.001 10.1016/j.chemolab.2012.03.010 10.1016/j.procs.2015.07.319 10.1016/j.neucom.2010.02.019 10.1080/10485250902984875 10.1016/j.neucom.2005.12.126 10.1109/TSMCB.2011.2168604 10.1016/j.neucom.2013.01.064 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.engappai.2016.04.003 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 189 |
| ExternalDocumentID | 10_1016_j_engappai_2016_04_003 S0952197616300707 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c345t-fb49d6a3b142a46ba4166abecf8425a0ac536c12d8a1cf98231e5c8c0173d52a3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378180800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sun Sep 28 12:17:03 EDT 2025 Sat Nov 29 02:17:56 EST 2025 Tue Nov 18 22:14:59 EST 2025 Fri Feb 23 02:28:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DC programming Zero-norm Extreme learning machine Hardness of licorice seeds Exact penalty technique Least absolute deviation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-fb49d6a3b142a46ba4166abecf8425a0ac536c12d8a1cf98231e5c8c0173d52a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825483048 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1825483048 crossref_primary_10_1016_j_engappai_2016_04_003 crossref_citationtrail_10_1016_j_engappai_2016_04_003 elsevier_sciencedirect_doi_10_1016_j_engappai_2016_04_003 |
| PublicationCentury | 2000 |
| PublicationDate | August 2016 2016-08-00 20160801 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Zhu, Siew (bib11) 2006; 70 Huang, Zhou, Ding, Zhang (bib17) 2012; 42 Horata, Chiewchanwattana, Sunat (bib10) 2013; 102 Miche, Sorjamaa, Bas (bib18) 2010; 21 Qi, Yoan, Emil, Mark, Eric, Amaury (bib35) 2013; 102 Zou (bib36) 2006; 101 Bai, Wu (bib1) 1997; 63 Le Thi, Le, Nguyen, Tao (bib22) 2008; 2 Luo, Zhang (bib26) 2014; 27 Cao, Liu (bib5) 2009; 28 Le Thi, H.A., Le Hoai, M., Pham Dinh, T., 2014. Feature selection in machine learning:an exact penalty approach using a difference of convex function algorithm. Mach. Learn. Xiang, Nie, Meng, Pan, Zhang (bib31) 2012; 23 Tao, An (bib29) 1997; 22 Han, He, Sun, Yan, Ma, Shen, Lendasse (bib9) 2014; 27 Le Thi, Pham Dinh, Le, Vo (bib21) 2015; 244 Barreto, Barros (bib7) 2016; 176 Li, Mao, Jiang (bib25) 2014; 128 Miche, Heeswijk, Bas, Simula, Lendasse (bib19) 2011; 74 Yang, Sun (bib34) 2012; 114 Blake, C.L., Merz, C.J., 1998. UCI Repository for Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine Iosifidis, Tefas, Pitas (bib15) 2015; 53 . Vapnik (bib30) 1998 Yang, Liu, You (bib33) 2011; 74 Huang, Ding, Zhou (bib14) 2010; 74 Liu, Gao, Li (bib24) 2012; 33 Lin, Xiang, Zhang (bib23) 2009; 21 Wang, Xue, Sun (bib32) 2012; 28 Balasundaram, Kapil (bib2) 2014; 128 Fawcett (bib6) 2006; 27 Khan, Yang, Wu (bib16) 2014; 128 Benoit, Heeswijk, Miche, Verleysen, Lendasse (bib3) 2013; 102 Huang, Huang, Song, You (bib13) 2015; 61 Ranjana, Mishr (bib27) 2015; 172 Le Thi (10.1016/j.engappai.2016.04.003_bib21) 2015; 244 Miche (10.1016/j.engappai.2016.04.003_bib19) 2011; 74 Khan (10.1016/j.engappai.2016.04.003_bib16) 2014; 128 10.1016/j.engappai.2016.04.003_bib4 Bai (10.1016/j.engappai.2016.04.003_bib1) 1997; 63 Qi (10.1016/j.engappai.2016.04.003_bib35) 2013; 102 Miche (10.1016/j.engappai.2016.04.003_bib18) 2010; 21 Le Thi (10.1016/j.engappai.2016.04.003_bib22) 2008; 2 Wang (10.1016/j.engappai.2016.04.003_bib32) 2012; 28 Horata (10.1016/j.engappai.2016.04.003_bib10) 2013; 102 Ranjana (10.1016/j.engappai.2016.04.003_bib27) 2015; 172 Huang (10.1016/j.engappai.2016.04.003_bib11) 2006; 70 Vapnik (10.1016/j.engappai.2016.04.003_bib30) 1998 Xiang (10.1016/j.engappai.2016.04.003_bib31) 2012; 23 Cao (10.1016/j.engappai.2016.04.003_bib5) 2009; 28 Iosifidis (10.1016/j.engappai.2016.04.003_bib15) 2015; 53 Liu (10.1016/j.engappai.2016.04.003_bib24) 2012; 33 Zou (10.1016/j.engappai.2016.04.003_bib36) 2006; 101 Li (10.1016/j.engappai.2016.04.003_bib25) 2014; 128 Yang (10.1016/j.engappai.2016.04.003_bib33) 2011; 74 Benoit (10.1016/j.engappai.2016.04.003_bib3) 2013; 102 Lin (10.1016/j.engappai.2016.04.003_bib23) 2009; 21 Luo (10.1016/j.engappai.2016.04.003_bib26) 2014; 27 Balasundaram (10.1016/j.engappai.2016.04.003_bib2) 2014; 128 Yang (10.1016/j.engappai.2016.04.003_bib34) 2012; 114 Huang (10.1016/j.engappai.2016.04.003_bib13) 2015; 61 Huang (10.1016/j.engappai.2016.04.003_bib14) 2010; 74 10.1016/j.engappai.2016.04.003_bib20 Tao (10.1016/j.engappai.2016.04.003_bib29) 1997; 22 Fawcett (10.1016/j.engappai.2016.04.003_bib6) 2006; 27 Huang (10.1016/j.engappai.2016.04.003_bib17) 2012; 42 Han (10.1016/j.engappai.2016.04.003_bib9) 2014; 27 Barreto (10.1016/j.engappai.2016.04.003_bib7) 2016; 176 |
| References_xml | – volume: 22 start-page: 287 year: 1997 end-page: 367 ident: bib29 article-title: Convex analysis approaches to DC programming publication-title: Acta Math. – volume: 53 start-page: 420 year: 2015 end-page: 427 ident: bib15 article-title: Regularized extreme learning machine for large-scale media content analysis publication-title: Procedia Comput. Sci. – volume: 28 start-page: 8 year: 2009 end-page: 10 ident: bib5 article-title: System identification based on the least absolute criteria publication-title: Tech. Autom. Appl. – volume: 27 start-page: 228 year: 2014 end-page: 235 ident: bib26 article-title: A hybrid approach combining extreme learning machine and sparse representation for image classification publication-title: Eng. Appl. Artif. Intell. – volume: 128 start-page: 96 year: 2014 end-page: 103 ident: bib25 article-title: Fast sparse approximation of extreme learning machine publication-title: Neurocomputing – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: bib17 article-title: Extreme learning machine for regression and multi-class classification publication-title: IEEE Trans. Syst. Man Cybern.: Part B: Cybern. – volume: 23 start-page: 1738 year: 2012 end-page: 1754 ident: bib31 article-title: Discriminative least squares regression for multiclass classification and feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 21 start-page: 158 year: 2010 end-page: 162 ident: bib18 article-title: OP-ELM publication-title: IEEE Trans. Neural Netw. – volume: 74 start-page: 3638 year: 2011 end-page: 3645 ident: bib33 article-title: Estimating the fundamental matrix based on least absolute deviation publication-title: Neurocomputing – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: bib36 article-title: The adaptive Lasso and its Oracle properties publication-title: J. Am. Stat. Assoc. – volume: 128 start-page: 113 year: 2014 end-page: 118 ident: bib16 article-title: Double parallel feedforward neural network based on extreme learning machine with publication-title: Neurocomputing – volume: 172 start-page: 880 year: 2015 end-page: 884 ident: bib27 article-title: Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata) publication-title: Food Chem. – volume: 176 start-page: 3 year: 2016 end-page: 13 ident: bib7 article-title: A robust extreme learning machine for pattern classification with outliers publication-title: Neurocomputing – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib6 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. – reference: Blake, C.L., Merz, C.J., 1998. UCI Repository for Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine, 〈 – volume: 244 start-page: 26 year: 2015 end-page: 46 ident: bib21 article-title: DC approximation approaches for sparse optimization publication-title: Eur. J. Oper. Res. – reference: 〉. – volume: 74 start-page: 2413 year: 2011 end-page: 2421 ident: bib19 article-title: TROP-ELM publication-title: Neurocomputing – reference: Le Thi, H.A., Le Hoai, M., Pham Dinh, T., 2014. Feature selection in machine learning:an exact penalty approach using a difference of convex function algorithm. Mach. Learn. – volume: 33 start-page: 58 year: 2012 end-page: 66 ident: bib24 article-title: A comparative analysis of support vector machines and extreme learning machines publication-title: Neural Netw. – volume: 102 start-page: 31 year: 2013 end-page: 44 ident: bib10 article-title: Robust extreme learning machine publication-title: Neurocomputing – volume: 102 start-page: 111 year: 2013 end-page: 124 ident: bib3 article-title: Feature selection for nonlinear models with extreme learning machines publication-title: Neurocomputing – volume: 102 start-page: 45 year: 2013 end-page: 51 ident: bib35 article-title: Regularized extreme learning machine for regression with missing data publication-title: Neurocomputing – volume: 114 start-page: 109 year: 2012 end-page: 115 ident: bib34 article-title: Recognition of the hardness of licorice seeds using a semi-supervised learning method publication-title: Chemom. Intell. Lab. Syst. – volume: 74 start-page: 155 year: 2010 end-page: 163 ident: bib14 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing – reference: . – volume: 27 start-page: 1 year: 2014 end-page: 16 ident: bib9 article-title: HSR: publication-title: Neural Comput. Appl. – volume: 128 start-page: 4 year: 2014 end-page: 14 ident: bib2 article-title: 1-Norm extreme learning machine for regression and multiclass classification using Newton method publication-title: Neurocomputing – volume: 21 start-page: 683 year: 2009 end-page: 696 ident: bib23 article-title: Adaptive Lasso in high-dimensional settings publication-title: J. Nonparametr. Stat. – year: 1998 ident: bib30 article-title: Statistical Learning Theory – volume: 28 start-page: 259 year: 2012 end-page: 264 ident: bib32 article-title: Quantitative analysis of seed purity for maize using near infrared spectroscopy publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 61 start-page: 32 year: 2015 end-page: 48 ident: bib13 article-title: Trends in extreme learning machines publication-title: Neural Netw. – volume: 2 start-page: 259 year: 2008 end-page: 278 ident: bib22 article-title: A DC programming approach for feature selection in support vector machines learning publication-title: Adv. Data Anal. Classif. – volume: 63 start-page: 119 year: 1997 end-page: 135 ident: bib1 article-title: General M-estimation publication-title: J. Multivar. Anal. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib11 article-title: Extreme learning machine publication-title: Neurocomputing – volume: 27 start-page: 228 year: 2014 ident: 10.1016/j.engappai.2016.04.003_bib26 article-title: A hybrid approach combining extreme learning machine and sparse representation for image classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.05.012 – volume: 27 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.engappai.2016.04.003_bib9 article-title: HSR: l1/2 regularized sparse representation for fast face recognition using hierarchical feature selection publication-title: Neural Comput. Appl. – volume: 102 start-page: 31 year: 2013 ident: 10.1016/j.engappai.2016.04.003_bib10 article-title: Robust extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.045 – volume: 244 start-page: 26 year: 2015 ident: 10.1016/j.engappai.2016.04.003_bib21 article-title: DC approximation approaches for sparse optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.11.031 – volume: 28 start-page: 259 year: 2012 ident: 10.1016/j.engappai.2016.04.003_bib32 article-title: Quantitative analysis of seed purity for maize using near infrared spectroscopy publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 63 start-page: 119 year: 1997 ident: 10.1016/j.engappai.2016.04.003_bib1 article-title: General M-estimation publication-title: J. Multivar. Anal. doi: 10.1006/jmva.1997.1694 – volume: 22 start-page: 287 issue: 1 year: 1997 ident: 10.1016/j.engappai.2016.04.003_bib29 article-title: Convex analysis approaches to DC programming publication-title: Acta Math. – volume: 128 start-page: 113 year: 2014 ident: 10.1016/j.engappai.2016.04.003_bib16 article-title: Double parallel feedforward neural network based on extreme learning machine with l1/2 regularizer publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.053 – volume: 2 start-page: 259 year: 2008 ident: 10.1016/j.engappai.2016.04.003_bib22 article-title: A DC programming approach for feature selection in support vector machines learning publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-008-0030-7 – volume: 102 start-page: 45 year: 2013 ident: 10.1016/j.engappai.2016.04.003_bib35 article-title: Regularized extreme learning machine for regression with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.040 – volume: 101 start-page: 1418 year: 2006 ident: 10.1016/j.engappai.2016.04.003_bib36 article-title: The adaptive Lasso and its Oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 33 start-page: 58 year: 2012 ident: 10.1016/j.engappai.2016.04.003_bib24 article-title: A comparative analysis of support vector machines and extreme learning machines publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.04.002 – volume: 28 start-page: 8 issue: 7 year: 2009 ident: 10.1016/j.engappai.2016.04.003_bib5 article-title: System identification based on the least absolute criteria publication-title: Tech. Autom. Appl. – ident: 10.1016/j.engappai.2016.04.003_bib4 – volume: 172 start-page: 880 year: 2015 ident: 10.1016/j.engappai.2016.04.003_bib27 article-title: Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata) publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.09.049 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.engappai.2016.04.003_bib6 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – year: 1998 ident: 10.1016/j.engappai.2016.04.003_bib30 – volume: 74 start-page: 3638 year: 2011 ident: 10.1016/j.engappai.2016.04.003_bib33 article-title: Estimating the fundamental matrix based on least absolute deviation publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.002 – ident: 10.1016/j.engappai.2016.04.003_bib20 doi: 10.1007/s10994-014-5455-y – volume: 102 start-page: 111 year: 2013 ident: 10.1016/j.engappai.2016.04.003_bib3 article-title: Feature selection for nonlinear models with extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.055 – volume: 128 start-page: 4 year: 2014 ident: 10.1016/j.engappai.2016.04.003_bib2 article-title: 1-Norm extreme learning machine for regression and multiclass classification using Newton method publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.051 – volume: 176 start-page: 3 year: 2016 ident: 10.1016/j.engappai.2016.04.003_bib7 article-title: A robust extreme learning machine for pattern classification with outliers publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.095 – volume: 23 start-page: 1738 year: 2012 ident: 10.1016/j.engappai.2016.04.003_bib31 article-title: Discriminative least squares regression for multiclass classification and feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2212721 – volume: 21 start-page: 158 issue: 1 year: 2010 ident: 10.1016/j.engappai.2016.04.003_bib18 article-title: OP-ELM publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2036259 – volume: 74 start-page: 2413 year: 2011 ident: 10.1016/j.engappai.2016.04.003_bib19 article-title: TROP-ELM publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.042 – volume: 61 start-page: 32 year: 2015 ident: 10.1016/j.engappai.2016.04.003_bib13 article-title: Trends in extreme learning machines publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – volume: 114 start-page: 109 year: 2012 ident: 10.1016/j.engappai.2016.04.003_bib34 article-title: Recognition of the hardness of licorice seeds using a semi-supervised learning method publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.010 – volume: 53 start-page: 420 year: 2015 ident: 10.1016/j.engappai.2016.04.003_bib15 article-title: Regularized extreme learning machine for large-scale media content analysis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.319 – volume: 74 start-page: 155 year: 2010 ident: 10.1016/j.engappai.2016.04.003_bib14 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 21 start-page: 683 issue: 6 year: 2009 ident: 10.1016/j.engappai.2016.04.003_bib23 article-title: Adaptive Lasso in high-dimensional settings publication-title: J. Nonparametr. Stat. doi: 10.1080/10485250902984875 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.engappai.2016.04.003_bib11 article-title: Extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.engappai.2016.04.003_bib17 article-title: Extreme learning machine for regression and multi-class classification publication-title: IEEE Trans. Syst. Man Cybern.: Part B: Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume: 128 start-page: 96 year: 2014 ident: 10.1016/j.engappai.2016.04.003_bib25 article-title: Fast sparse approximation of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.064 |
| SSID | ssj0003846 |
| Score | 2.3057709 |
| Snippet | Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 176 |
| SubjectTerms | Algorithms Approximation DC programming Deviation Estimates Exact penalty technique Extreme learning machine Hardness of licorice seeds Least absolute deviation Neural networks Optimization Support vector machines Zero-norm |
| Title | A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition |
| URI | https://dx.doi.org/10.1016/j.engappai.2016.04.003 https://www.proquest.com/docview/1825483048 |
| Volume | 53 |
| WOSCitedRecordID | wos000378180800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCN2echI3KJAEsdJfKzQIkBohcSCeoscJylZte6qj9WuxC_h1zIT24l5aUGIS9RadeJ2vo7Hn2c-E_JMJnXCleBhnYokTEUVhQLiiBDLOAVyDkUvx_DpXX58XMxm4v1k8tXVwpwvcq2Liwtx9l9NDW1gbCyd_QtzDzeFBngNRocrmB2uf2T4aQBOYr1pAnC7SP65gyHmwbJPnGyC1iVkYeyJueqd3mEm7Arcx9LWZQZyMV-tu-3n5WbYX_A2uwMjyYpsYjDkIFkLO55_VDr0e_apIzhsK13ReZqggwuyJDZWX9mZ9Ttuu7vcaZ-uiLMhWc5yaK6OZkxaMmRkEsYit6LYxhUXOQsxAdf31Zx5zjZ2nzfvzFFEP00Jhp04fd7oOXxZ2WE6X9bL20ZsnASH1MQPOBYcSoxiZDkKFewnORfgMfenb45mb4d5nhWmDMyN3as___XTfhf6_BAE9JHNyS1ywy5J6NRA6TaZNPoOuWmXJ9Q6_w00uRNAXNtd8mVKDdioBRt1YKMWbHQAG60u6Qg26oONjmCjADYKYKMeZGinqQUb9cB2j3x8dXTy8nVoz_MIFUv5NmyrVNSZZMg7yjSrJCwGMglOpMW9YBlJxVmm4qQuZKxagRvUDVeFgkmD1TyR7D7Z0yvdPCA0bqtKFilv0rpNq0oJWMZHsndIENLL6IBw91OXyord45kri9JlNZ6WzkQlmqiMUpTJPSAvhn5nRu7lyh7CWbK0QasJRksA4JV9nzrTl-DVcatO6gZsUMZI3BQMptfDf7j_Q3J9_As-Invb9a55TK6p8223WT-xeP4GtKvUzA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+extreme+learning+machine+framework+by+continuous+optimization+algorithms+and+its+application+in+pattern+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yang%2C+Liming&rft.au=Zhang%2C+Siyun&rft.date=2016-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=53&rft.spage=176&rft.epage=189&rft_id=info:doi/10.1016%2Fj.engappai.2016.04.003&rft.externalDocID=S0952197616300707 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |