A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition

Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 53; S. 176 - 189
Hauptverfasser: Yang, Liming, Zhang, Siyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2016
Schlagworte:
ISSN:0952-1976, 1873-6769
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features. •A sparse ELM framework is proposed based on with zero-norm regularization.•Four sparse ELM formulations with zero-norm are built based on LSE and LAD.•We develop two continuous approaches to solve the problems.•The first is DC (difference of convex functions) approximation approach.•The second is an exact penalty technique for zero-norm.•All the resulting problems are posed as DC programming.
AbstractList Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features. •A sparse ELM framework is proposed based on with zero-norm regularization.•Four sparse ELM formulations with zero-norm are built based on LSE and LAD.•We develop two continuous approaches to solve the problems.•The first is DC (difference of convex functions) approximation approach.•The second is an exact penalty technique for zero-norm.•All the resulting problems are posed as DC programming.
Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features.
Author Yang, Liming
Zhang, Siyun
Author_xml – sequence: 1
  givenname: Liming
  surname: Yang
  fullname: Yang, Liming
  email: cauyanglm@163.com
– sequence: 2
  givenname: Siyun
  surname: Zhang
  fullname: Zhang, Siyun
  email: 944890706@qq.com
BookMark eNqFkE9v1DAQxS1UJLYLXwH5yCXBThxvInGgqvhTqRIXOFsTZ7KdJbGN7QWK-PB42XLh0sNoNDPvPWl-l-zCeYeMvZSilkLq14ca3R5CAKqbMtdC1UK0T9hG9ru20js9XLCNGLqmksNOP2OXKR1EUfRKb9jvK54CxIQcf-aIK_IFITpye76CvSOHfI6w4g8fv_LxnlvvMrmjPybuQ6aVfkEm7zgsex8p362Jg5s45dJDWMiez-R4gJwxOh7R-r2j0_o5ezrDkvDFQ9-yL-_ffb7-WN1--nBzfXVb2VZ1uZpHNUwa2lGqBpQeQUmtYUQ796rpQIDtWm1lM_Ug7Tz0TSuxs70VctdOXQPtlr0654bovx0xZbNSsrgs4LB8YmTfdKpvRakt02epjT6liLMJkVaI90YKc8JtDuYfbnPCbYQyBWYxvvnPaCn_fT5HoOVx-9uzHQuH74TRJEvoLE5UgGUzeXos4g-B1qaA
CitedBy_id crossref_primary_10_1007_s10489_018_1273_4
crossref_primary_10_1109_ACCESS_2024_3485214
crossref_primary_10_1007_s10489_020_01865_3
crossref_primary_10_1007_s11227_024_06697_3
crossref_primary_10_1016_j_cie_2018_06_024
crossref_primary_10_1109_ACCESS_2019_2935008
crossref_primary_10_1007_s10489_020_01757_6
crossref_primary_10_1007_s11042_023_17315_4
crossref_primary_10_1007_s10115_020_01484_x
crossref_primary_10_1007_s11063_023_11424_9
crossref_primary_10_1155_2020_7358692
crossref_primary_10_1007_s10462_020_09836_3
crossref_primary_10_1007_s11063_021_10452_7
crossref_primary_10_3233_JIFS_162162
crossref_primary_10_3233_JIFS_181501
crossref_primary_10_1007_s11227_018_2430_6
crossref_primary_10_3233_JIFS_191617
crossref_primary_10_1016_j_cageo_2017_02_001
crossref_primary_10_1007_s10489_021_02654_2
crossref_primary_10_1016_j_compeleceng_2024_110040
crossref_primary_10_1016_j_chemolab_2018_04_003
crossref_primary_10_1016_j_cie_2021_107739
crossref_primary_10_1155_2019_6740523
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1007_s10489_024_05528_5
crossref_primary_10_1016_j_neucom_2018_05_100
crossref_primary_10_1109_ACCESS_2019_2922385
crossref_primary_10_1007_s10107_018_1235_y
crossref_primary_10_3390_sym14061186
Cites_doi 10.1016/j.engappai.2013.05.012
10.1016/j.neucom.2011.12.045
10.1016/j.ejor.2014.11.031
10.1006/jmva.1997.1694
10.1016/j.neucom.2013.03.053
10.1007/s11634-008-0030-7
10.1016/j.neucom.2012.02.040
10.1198/016214506000000735
10.1016/j.neunet.2012.04.002
10.1016/j.foodchem.2014.09.049
10.1016/j.patrec.2005.10.010
10.1016/j.neucom.2011.07.002
10.1007/s10994-014-5455-y
10.1016/j.neucom.2011.12.055
10.1016/j.neucom.2013.03.051
10.1016/j.neucom.2014.10.095
10.1109/TNNLS.2012.2212721
10.1109/TNN.2009.2036259
10.1016/j.neucom.2010.12.042
10.1016/j.neunet.2014.10.001
10.1016/j.chemolab.2012.03.010
10.1016/j.procs.2015.07.319
10.1016/j.neucom.2010.02.019
10.1080/10485250902984875
10.1016/j.neucom.2005.12.126
10.1109/TSMCB.2011.2168604
10.1016/j.neucom.2013.01.064
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2016.04.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 189
ExternalDocumentID 10_1016_j_engappai_2016_04_003
S0952197616300707
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c345t-fb49d6a3b142a46ba4166abecf8425a0ac536c12d8a1cf98231e5c8c0173d52a3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378180800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sun Sep 28 12:17:03 EDT 2025
Sat Nov 29 02:17:56 EST 2025
Tue Nov 18 22:14:59 EST 2025
Fri Feb 23 02:28:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DC programming
Zero-norm
Extreme learning machine
Hardness of licorice seeds
Exact penalty technique
Least absolute deviation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-fb49d6a3b142a46ba4166abecf8425a0ac536c12d8a1cf98231e5c8c0173d52a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825483048
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1825483048
crossref_primary_10_1016_j_engappai_2016_04_003
crossref_citationtrail_10_1016_j_engappai_2016_04_003
elsevier_sciencedirect_doi_10_1016_j_engappai_2016_04_003
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Zhu, Siew (bib11) 2006; 70
Huang, Zhou, Ding, Zhang (bib17) 2012; 42
Horata, Chiewchanwattana, Sunat (bib10) 2013; 102
Miche, Sorjamaa, Bas (bib18) 2010; 21
Qi, Yoan, Emil, Mark, Eric, Amaury (bib35) 2013; 102
Zou (bib36) 2006; 101
Bai, Wu (bib1) 1997; 63
Le Thi, Le, Nguyen, Tao (bib22) 2008; 2
Luo, Zhang (bib26) 2014; 27
Cao, Liu (bib5) 2009; 28
Le Thi, H.A., Le Hoai, M., Pham Dinh, T., 2014. Feature selection in machine learning:an exact penalty approach using a difference of convex function algorithm. Mach. Learn.
Xiang, Nie, Meng, Pan, Zhang (bib31) 2012; 23
Tao, An (bib29) 1997; 22
Han, He, Sun, Yan, Ma, Shen, Lendasse (bib9) 2014; 27
Le Thi, Pham Dinh, Le, Vo (bib21) 2015; 244
Barreto, Barros (bib7) 2016; 176
Li, Mao, Jiang (bib25) 2014; 128
Miche, Heeswijk, Bas, Simula, Lendasse (bib19) 2011; 74
Yang, Sun (bib34) 2012; 114
Blake, C.L., Merz, C.J., 1998. UCI Repository for Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine
Iosifidis, Tefas, Pitas (bib15) 2015; 53
.
Vapnik (bib30) 1998
Yang, Liu, You (bib33) 2011; 74
Huang, Ding, Zhou (bib14) 2010; 74
Liu, Gao, Li (bib24) 2012; 33
Lin, Xiang, Zhang (bib23) 2009; 21
Wang, Xue, Sun (bib32) 2012; 28
Balasundaram, Kapil (bib2) 2014; 128
Fawcett (bib6) 2006; 27
Khan, Yang, Wu (bib16) 2014; 128
Benoit, Heeswijk, Miche, Verleysen, Lendasse (bib3) 2013; 102
Huang, Huang, Song, You (bib13) 2015; 61
Ranjana, Mishr (bib27) 2015; 172
Le Thi (10.1016/j.engappai.2016.04.003_bib21) 2015; 244
Miche (10.1016/j.engappai.2016.04.003_bib19) 2011; 74
Khan (10.1016/j.engappai.2016.04.003_bib16) 2014; 128
10.1016/j.engappai.2016.04.003_bib4
Bai (10.1016/j.engappai.2016.04.003_bib1) 1997; 63
Qi (10.1016/j.engappai.2016.04.003_bib35) 2013; 102
Miche (10.1016/j.engappai.2016.04.003_bib18) 2010; 21
Le Thi (10.1016/j.engappai.2016.04.003_bib22) 2008; 2
Wang (10.1016/j.engappai.2016.04.003_bib32) 2012; 28
Horata (10.1016/j.engappai.2016.04.003_bib10) 2013; 102
Ranjana (10.1016/j.engappai.2016.04.003_bib27) 2015; 172
Huang (10.1016/j.engappai.2016.04.003_bib11) 2006; 70
Vapnik (10.1016/j.engappai.2016.04.003_bib30) 1998
Xiang (10.1016/j.engappai.2016.04.003_bib31) 2012; 23
Cao (10.1016/j.engappai.2016.04.003_bib5) 2009; 28
Iosifidis (10.1016/j.engappai.2016.04.003_bib15) 2015; 53
Liu (10.1016/j.engappai.2016.04.003_bib24) 2012; 33
Zou (10.1016/j.engappai.2016.04.003_bib36) 2006; 101
Li (10.1016/j.engappai.2016.04.003_bib25) 2014; 128
Yang (10.1016/j.engappai.2016.04.003_bib33) 2011; 74
Benoit (10.1016/j.engappai.2016.04.003_bib3) 2013; 102
Lin (10.1016/j.engappai.2016.04.003_bib23) 2009; 21
Luo (10.1016/j.engappai.2016.04.003_bib26) 2014; 27
Balasundaram (10.1016/j.engappai.2016.04.003_bib2) 2014; 128
Yang (10.1016/j.engappai.2016.04.003_bib34) 2012; 114
Huang (10.1016/j.engappai.2016.04.003_bib13) 2015; 61
Huang (10.1016/j.engappai.2016.04.003_bib14) 2010; 74
10.1016/j.engappai.2016.04.003_bib20
Tao (10.1016/j.engappai.2016.04.003_bib29) 1997; 22
Fawcett (10.1016/j.engappai.2016.04.003_bib6) 2006; 27
Huang (10.1016/j.engappai.2016.04.003_bib17) 2012; 42
Han (10.1016/j.engappai.2016.04.003_bib9) 2014; 27
Barreto (10.1016/j.engappai.2016.04.003_bib7) 2016; 176
References_xml – volume: 22
  start-page: 287
  year: 1997
  end-page: 367
  ident: bib29
  article-title: Convex analysis approaches to DC programming
  publication-title: Acta Math.
– volume: 53
  start-page: 420
  year: 2015
  end-page: 427
  ident: bib15
  article-title: Regularized extreme learning machine for large-scale media content analysis
  publication-title: Procedia Comput. Sci.
– volume: 28
  start-page: 8
  year: 2009
  end-page: 10
  ident: bib5
  article-title: System identification based on the least absolute criteria
  publication-title: Tech. Autom. Appl.
– volume: 27
  start-page: 228
  year: 2014
  end-page: 235
  ident: bib26
  article-title: A hybrid approach combining extreme learning machine and sparse representation for image classification
  publication-title: Eng. Appl. Artif. Intell.
– volume: 128
  start-page: 96
  year: 2014
  end-page: 103
  ident: bib25
  article-title: Fast sparse approximation of extreme learning machine
  publication-title: Neurocomputing
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib17
  article-title: Extreme learning machine for regression and multi-class classification
  publication-title: IEEE Trans. Syst. Man Cybern.: Part B: Cybern.
– volume: 23
  start-page: 1738
  year: 2012
  end-page: 1754
  ident: bib31
  article-title: Discriminative least squares regression for multiclass classification and feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 21
  start-page: 158
  year: 2010
  end-page: 162
  ident: bib18
  article-title: OP-ELM
  publication-title: IEEE Trans. Neural Netw.
– volume: 74
  start-page: 3638
  year: 2011
  end-page: 3645
  ident: bib33
  article-title: Estimating the fundamental matrix based on least absolute deviation
  publication-title: Neurocomputing
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bib36
  article-title: The adaptive Lasso and its Oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 128
  start-page: 113
  year: 2014
  end-page: 118
  ident: bib16
  article-title: Double parallel feedforward neural network based on extreme learning machine with
  publication-title: Neurocomputing
– volume: 172
  start-page: 880
  year: 2015
  end-page: 884
  ident: bib27
  article-title: Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata)
  publication-title: Food Chem.
– volume: 176
  start-page: 3
  year: 2016
  end-page: 13
  ident: bib7
  article-title: A robust extreme learning machine for pattern classification with outliers
  publication-title: Neurocomputing
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib6
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– reference: Blake, C.L., Merz, C.J., 1998. UCI Repository for Machine Learning Databases, Department of Information and Computer Sciences, University of California, Irvine, 〈
– volume: 244
  start-page: 26
  year: 2015
  end-page: 46
  ident: bib21
  article-title: DC approximation approaches for sparse optimization
  publication-title: Eur. J. Oper. Res.
– reference: 〉.
– volume: 74
  start-page: 2413
  year: 2011
  end-page: 2421
  ident: bib19
  article-title: TROP-ELM
  publication-title: Neurocomputing
– reference: Le Thi, H.A., Le Hoai, M., Pham Dinh, T., 2014. Feature selection in machine learning:an exact penalty approach using a difference of convex function algorithm. Mach. Learn.
– volume: 33
  start-page: 58
  year: 2012
  end-page: 66
  ident: bib24
  article-title: A comparative analysis of support vector machines and extreme learning machines
  publication-title: Neural Netw.
– volume: 102
  start-page: 31
  year: 2013
  end-page: 44
  ident: bib10
  article-title: Robust extreme learning machine
  publication-title: Neurocomputing
– volume: 102
  start-page: 111
  year: 2013
  end-page: 124
  ident: bib3
  article-title: Feature selection for nonlinear models with extreme learning machines
  publication-title: Neurocomputing
– volume: 102
  start-page: 45
  year: 2013
  end-page: 51
  ident: bib35
  article-title: Regularized extreme learning machine for regression with missing data
  publication-title: Neurocomputing
– volume: 114
  start-page: 109
  year: 2012
  end-page: 115
  ident: bib34
  article-title: Recognition of the hardness of licorice seeds using a semi-supervised learning method
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 74
  start-page: 155
  year: 2010
  end-page: 163
  ident: bib14
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
– reference: .
– volume: 27
  start-page: 1
  year: 2014
  end-page: 16
  ident: bib9
  article-title: HSR:
  publication-title: Neural Comput. Appl.
– volume: 128
  start-page: 4
  year: 2014
  end-page: 14
  ident: bib2
  article-title: 1-Norm extreme learning machine for regression and multiclass classification using Newton method
  publication-title: Neurocomputing
– volume: 21
  start-page: 683
  year: 2009
  end-page: 696
  ident: bib23
  article-title: Adaptive Lasso in high-dimensional settings
  publication-title: J. Nonparametr. Stat.
– year: 1998
  ident: bib30
  article-title: Statistical Learning Theory
– volume: 28
  start-page: 259
  year: 2012
  end-page: 264
  ident: bib32
  article-title: Quantitative analysis of seed purity for maize using near infrared spectroscopy
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: bib13
  article-title: Trends in extreme learning machines
  publication-title: Neural Netw.
– volume: 2
  start-page: 259
  year: 2008
  end-page: 278
  ident: bib22
  article-title: A DC programming approach for feature selection in support vector machines learning
  publication-title: Adv. Data Anal. Classif.
– volume: 63
  start-page: 119
  year: 1997
  end-page: 135
  ident: bib1
  article-title: General M-estimation
  publication-title: J. Multivar. Anal.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib11
  article-title: Extreme learning machine
  publication-title: Neurocomputing
– volume: 27
  start-page: 228
  year: 2014
  ident: 10.1016/j.engappai.2016.04.003_bib26
  article-title: A hybrid approach combining extreme learning machine and sparse representation for image classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.05.012
– volume: 27
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.engappai.2016.04.003_bib9
  article-title: HSR: l1/2 regularized sparse representation for fast face recognition using hierarchical feature selection
  publication-title: Neural Comput. Appl.
– volume: 102
  start-page: 31
  year: 2013
  ident: 10.1016/j.engappai.2016.04.003_bib10
  article-title: Robust extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.045
– volume: 244
  start-page: 26
  year: 2015
  ident: 10.1016/j.engappai.2016.04.003_bib21
  article-title: DC approximation approaches for sparse optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.031
– volume: 28
  start-page: 259
  year: 2012
  ident: 10.1016/j.engappai.2016.04.003_bib32
  article-title: Quantitative analysis of seed purity for maize using near infrared spectroscopy
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 63
  start-page: 119
  year: 1997
  ident: 10.1016/j.engappai.2016.04.003_bib1
  article-title: General M-estimation
  publication-title: J. Multivar. Anal.
  doi: 10.1006/jmva.1997.1694
– volume: 22
  start-page: 287
  issue: 1
  year: 1997
  ident: 10.1016/j.engappai.2016.04.003_bib29
  article-title: Convex analysis approaches to DC programming
  publication-title: Acta Math.
– volume: 128
  start-page: 113
  year: 2014
  ident: 10.1016/j.engappai.2016.04.003_bib16
  article-title: Double parallel feedforward neural network based on extreme learning machine with l1/2 regularizer
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.053
– volume: 2
  start-page: 259
  year: 2008
  ident: 10.1016/j.engappai.2016.04.003_bib22
  article-title: A DC programming approach for feature selection in support vector machines learning
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-008-0030-7
– volume: 102
  start-page: 45
  year: 2013
  ident: 10.1016/j.engappai.2016.04.003_bib35
  article-title: Regularized extreme learning machine for regression with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.040
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.engappai.2016.04.003_bib36
  article-title: The adaptive Lasso and its Oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 33
  start-page: 58
  year: 2012
  ident: 10.1016/j.engappai.2016.04.003_bib24
  article-title: A comparative analysis of support vector machines and extreme learning machines
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.04.002
– volume: 28
  start-page: 8
  issue: 7
  year: 2009
  ident: 10.1016/j.engappai.2016.04.003_bib5
  article-title: System identification based on the least absolute criteria
  publication-title: Tech. Autom. Appl.
– ident: 10.1016/j.engappai.2016.04.003_bib4
– volume: 172
  start-page: 880
  year: 2015
  ident: 10.1016/j.engappai.2016.04.003_bib27
  article-title: Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.09.049
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.engappai.2016.04.003_bib6
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– year: 1998
  ident: 10.1016/j.engappai.2016.04.003_bib30
– volume: 74
  start-page: 3638
  year: 2011
  ident: 10.1016/j.engappai.2016.04.003_bib33
  article-title: Estimating the fundamental matrix based on least absolute deviation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.002
– ident: 10.1016/j.engappai.2016.04.003_bib20
  doi: 10.1007/s10994-014-5455-y
– volume: 102
  start-page: 111
  year: 2013
  ident: 10.1016/j.engappai.2016.04.003_bib3
  article-title: Feature selection for nonlinear models with extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.055
– volume: 128
  start-page: 4
  year: 2014
  ident: 10.1016/j.engappai.2016.04.003_bib2
  article-title: 1-Norm extreme learning machine for regression and multiclass classification using Newton method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.051
– volume: 176
  start-page: 3
  year: 2016
  ident: 10.1016/j.engappai.2016.04.003_bib7
  article-title: A robust extreme learning machine for pattern classification with outliers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.095
– volume: 23
  start-page: 1738
  year: 2012
  ident: 10.1016/j.engappai.2016.04.003_bib31
  article-title: Discriminative least squares regression for multiclass classification and feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2212721
– volume: 21
  start-page: 158
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2016.04.003_bib18
  article-title: OP-ELM
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036259
– volume: 74
  start-page: 2413
  year: 2011
  ident: 10.1016/j.engappai.2016.04.003_bib19
  article-title: TROP-ELM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.042
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1016/j.engappai.2016.04.003_bib13
  article-title: Trends in extreme learning machines
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 114
  start-page: 109
  year: 2012
  ident: 10.1016/j.engappai.2016.04.003_bib34
  article-title: Recognition of the hardness of licorice seeds using a semi-supervised learning method
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.03.010
– volume: 53
  start-page: 420
  year: 2015
  ident: 10.1016/j.engappai.2016.04.003_bib15
  article-title: Regularized extreme learning machine for large-scale media content analysis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.319
– volume: 74
  start-page: 155
  year: 2010
  ident: 10.1016/j.engappai.2016.04.003_bib14
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.019
– volume: 21
  start-page: 683
  issue: 6
  year: 2009
  ident: 10.1016/j.engappai.2016.04.003_bib23
  article-title: Adaptive Lasso in high-dimensional settings
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485250902984875
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.engappai.2016.04.003_bib11
  article-title: Extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2016.04.003_bib17
  article-title: Extreme learning machine for regression and multi-class classification
  publication-title: IEEE Trans. Syst. Man Cybern.: Part B: Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 128
  start-page: 96
  year: 2014
  ident: 10.1016/j.engappai.2016.04.003_bib25
  article-title: Fast sparse approximation of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.064
SSID ssj0003846
Score 2.3057709
Snippet Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Algorithms
Approximation
DC programming
Deviation
Estimates
Exact penalty technique
Extreme learning machine
Hardness of licorice seeds
Least absolute deviation
Neural networks
Optimization
Support vector machines
Zero-norm
Title A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition
URI https://dx.doi.org/10.1016/j.engappai.2016.04.003
https://www.proquest.com/docview/1825483048
Volume 53
WOSCitedRecordID wos000378180800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCN2echI3KJAEsdJfKzQIkBohcSCeoscJylZte6qj9WuxC_h1zIT24l5aUGIS9RadeJ2vo7Hn2c-E_JMJnXCleBhnYokTEUVhQLiiBDLOAVyDkUvx_DpXX58XMxm4v1k8tXVwpwvcq2Liwtx9l9NDW1gbCyd_QtzDzeFBngNRocrmB2uf2T4aQBOYr1pAnC7SP65gyHmwbJPnGyC1iVkYeyJueqd3mEm7Arcx9LWZQZyMV-tu-3n5WbYX_A2uwMjyYpsYjDkIFkLO55_VDr0e_apIzhsK13ReZqggwuyJDZWX9mZ9Ttuu7vcaZ-uiLMhWc5yaK6OZkxaMmRkEsYit6LYxhUXOQsxAdf31Zx5zjZ2nzfvzFFEP00Jhp04fd7oOXxZ2WE6X9bL20ZsnASH1MQPOBYcSoxiZDkKFewnORfgMfenb45mb4d5nhWmDMyN3as___XTfhf6_BAE9JHNyS1ywy5J6NRA6TaZNPoOuWmXJ9Q6_w00uRNAXNtd8mVKDdioBRt1YKMWbHQAG60u6Qg26oONjmCjADYKYKMeZGinqQUb9cB2j3x8dXTy8nVoz_MIFUv5NmyrVNSZZMg7yjSrJCwGMglOpMW9YBlJxVmm4qQuZKxagRvUDVeFgkmD1TyR7D7Z0yvdPCA0bqtKFilv0rpNq0oJWMZHsndIENLL6IBw91OXyord45kri9JlNZ6WzkQlmqiMUpTJPSAvhn5nRu7lyh7CWbK0QasJRksA4JV9nzrTl-DVcatO6gZsUMZI3BQMptfDf7j_Q3J9_As-Invb9a55TK6p8223WT-xeP4GtKvUzA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sparse+extreme+learning+machine+framework+by+continuous+optimization+algorithms+and+its+application+in+pattern+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yang%2C+Liming&rft.au=Zhang%2C+Siyun&rft.date=2016-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=53&rft.spage=176&rft.epage=189&rft_id=info:doi/10.1016%2Fj.engappai.2016.04.003&rft.externalDocID=S0952197616300707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon