Ensemble machine learning-based algorithm for electric vehicle user behavior prediction

[Display omitted] •Real electric vehicle charging data from 252 users were analyzed.•Defining the data entropy/sparsity ratio (R) as an indicator for predicting algorithm selection.•Exploiting the benefit of using diffusion-based kernel density estimator (DKDE) for prediction with high R data.•Reduc...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 254; p. 113732
Main Authors: Chung, Yu-Wei, Khaki, Behnam, Li, Tianyi, Chu, Chicheng, Gadh, Rajit
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.11.2019
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Real electric vehicle charging data from 252 users were analyzed.•Defining the data entropy/sparsity ratio (R) as an indicator for predicting algorithm selection.•Exploiting the benefit of using diffusion-based kernel density estimator (DKDE) for prediction with high R data.•Reducing at least 10% of prediction error compared to a single predicting algorithm. This research investigates electric vehicle (EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging schedule. This paper discusses several commonly used machine learning algorithms to predict charging behavior, including stay duration and energy consumption based on historical charging records. It is noted that prediction error increases along with the rise of data entropy or the decrease of data sparsity. Thus, this paper accounts for both indicators by defining the entropy/sparsity ratio (R). When R is low, support vector regression (SVR) and random forest (RF) regression show better accuracy for stay duration and energy consumption predictions, respectively. While R is high, a diffusion-based kernel density estimator (DKDE) performs better for both predictions. The three methods are assembled as the proposed Ensemble Predicting Algorithm (EPA) to improve predicting performance by decreasing 11% of the duration and 22% of the energy consumption prediction errors. The prediction results are then applied to an optimal EV charging scheduling algorithm to minimize load variance while reducing the EV charging cost. A numerical simulation using real charging data is conducted to show the effectiveness of improved predictions and EV load management. The results show that the charging scheduling combined with EPA prediction can reduce 27% of peak load, 10% of load variation, and 4% cost reduction, compared to uncoordinated charging.
AbstractList This research investigates electric vehicle (EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging schedule. This paper discusses several commonly used machine learning algorithms to predict charging behavior, including stay duration and energy consumption based on historical charging records. It is noted that prediction error increases along with the rise of data entropy or the decrease of data sparsity. Thus, this paper accounts for both indicators by defining the entropy/sparsity ratio (R). When R is low, support vector regression (SVR) and random forest (RF) regression show better accuracy for stay duration and energy consumption predictions, respectively. While R is high, a diffusion-based kernel density estimator (DKDE) performs better for both predictions. The three methods are assembled as the proposed Ensemble Predicting Algorithm (EPA) to improve predicting performance by decreasing 11% of the duration and 22% of the energy consumption prediction errors. The prediction results are then applied to an optimal EV charging scheduling algorithm to minimize load variance while reducing the EV charging cost. A numerical simulation using real charging data is conducted to show the effectiveness of improved predictions and EV load management. The results show that the charging scheduling combined with EPA prediction can reduce 27% of peak load, 10% of load variation, and 4 % cost reduction, compared to uncoordinated charging.
[Display omitted] •Real electric vehicle charging data from 252 users were analyzed.•Defining the data entropy/sparsity ratio (R) as an indicator for predicting algorithm selection.•Exploiting the benefit of using diffusion-based kernel density estimator (DKDE) for prediction with high R data.•Reducing at least 10% of prediction error compared to a single predicting algorithm. This research investigates electric vehicle (EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging schedule. This paper discusses several commonly used machine learning algorithms to predict charging behavior, including stay duration and energy consumption based on historical charging records. It is noted that prediction error increases along with the rise of data entropy or the decrease of data sparsity. Thus, this paper accounts for both indicators by defining the entropy/sparsity ratio (R). When R is low, support vector regression (SVR) and random forest (RF) regression show better accuracy for stay duration and energy consumption predictions, respectively. While R is high, a diffusion-based kernel density estimator (DKDE) performs better for both predictions. The three methods are assembled as the proposed Ensemble Predicting Algorithm (EPA) to improve predicting performance by decreasing 11% of the duration and 22% of the energy consumption prediction errors. The prediction results are then applied to an optimal EV charging scheduling algorithm to minimize load variance while reducing the EV charging cost. A numerical simulation using real charging data is conducted to show the effectiveness of improved predictions and EV load management. The results show that the charging scheduling combined with EPA prediction can reduce 27% of peak load, 10% of load variation, and 4% cost reduction, compared to uncoordinated charging.
ArticleNumber 113732
Author Gadh, Rajit
Chu, Chicheng
Chung, Yu-Wei
Li, Tianyi
Khaki, Behnam
Author_xml – sequence: 1
  givenname: Yu-Wei
  surname: Chung
  fullname: Chung, Yu-Wei
  email: ywchung@ucla.edu
– sequence: 2
  givenname: Behnam
  surname: Khaki
  fullname: Khaki, Behnam
  email: behnamkhaki@ucla.edu
– sequence: 3
  givenname: Tianyi
  surname: Li
  fullname: Li, Tianyi
  email: tianyi3gli@ucla.edu
– sequence: 4
  givenname: Chicheng
  surname: Chu
  fullname: Chu, Chicheng
  email: peterchu@ucla.edu
– sequence: 5
  givenname: Rajit
  surname: Gadh
  fullname: Gadh, Rajit
  email: gadh@ucla.edu
BookMark eNqFkD1rwzAQhkVJoUnav1A8drGrj1iWoUNLSD8g0KWlo5Clc6xgy6nkBPLvq-B26ZLp4O59jrtnhiaud4DQLcEZwYTfbzO1Awd-c8woJmVGCCsYvUBTIgqaloSICZpihnlKOSmv0CyELcaYEoqn6GvlAnRVC0mndGMdJC0o76zbpJUKYBLVbnpvh6ZL6t4n0IIevNXJARqrI7UP4JMKGnWwcbzzYKwebO-u0WWt2gA3v3WOPp9XH8vXdP3-8rZ8WqeaLfIhrRes1orUipZ5xYWpNTaA4_0qNk0papIzoQ1jOj6Vg9CVEoRjk1eGAV9UbI7uxr0733_vIQyys0FD2yoH_T5IynBOeEFFEaMPY1T7PgQPtdR2UKdjB69sKwmWJ59yK_98ypNPOfqMOP-H77ztlD-eBx9HEKKHgwUvg7bgdFTlo01pentuxQ-aQJg0
CitedBy_id crossref_primary_10_1016_j_est_2022_105468
crossref_primary_10_3390_wevj12040263
crossref_primary_10_1016_j_engappai_2024_108789
crossref_primary_10_1109_TIV_2024_3432075
crossref_primary_10_1109_TIV_2023_3328458
crossref_primary_10_1016_j_ecmx_2025_100978
crossref_primary_10_1016_j_iot_2024_101344
crossref_primary_10_1016_j_rineng_2025_105104
crossref_primary_10_1016_j_apenergy_2023_121334
crossref_primary_10_1016_j_est_2024_112151
crossref_primary_10_1051_e3sconf_202456402009
crossref_primary_10_1080_00207721_2023_2268234
crossref_primary_10_3390_en15218115
crossref_primary_10_1016_j_energy_2025_136683
crossref_primary_10_1007_s42835_025_02459_0
crossref_primary_10_1111_coin_12333
crossref_primary_10_3390_en17246457
crossref_primary_10_1080_21680566_2023_2248400
crossref_primary_10_3390_en18061528
crossref_primary_10_3390_en13164231
crossref_primary_10_1109_TSTE_2024_3497659
crossref_primary_10_3390_wevj15040150
crossref_primary_10_1016_j_apenergy_2025_125302
crossref_primary_10_1109_TITS_2023_3286012
crossref_primary_10_1007_s41939_024_00457_9
crossref_primary_10_1109_ACCESS_2023_3334620
crossref_primary_10_1155_2022_4372168
crossref_primary_10_3390_app14073092
crossref_primary_10_1016_j_apenergy_2021_118456
crossref_primary_10_3390_en17071651
crossref_primary_10_1109_JIOT_2024_3511961
crossref_primary_10_1111_grow_12587
crossref_primary_10_1016_j_renene_2025_124141
crossref_primary_10_1016_j_enconman_2025_119965
crossref_primary_10_1016_j_apenergy_2024_123059
crossref_primary_10_3390_su151813315
crossref_primary_10_1016_j_est_2022_104917
crossref_primary_10_1016_j_est_2024_113021
crossref_primary_10_3389_fenrg_2022_773440
crossref_primary_10_1007_s10489_020_02160_x
crossref_primary_10_1139_cjfr_2020_0506
crossref_primary_10_1007_s13042_025_02643_8
crossref_primary_10_3390_electronics12092047
crossref_primary_10_1016_j_chb_2024_108245
crossref_primary_10_1049_gtd2_12494
crossref_primary_10_3390_s22072752
crossref_primary_10_3390_electronics12020373
crossref_primary_10_1016_j_tbs_2022_11_006
crossref_primary_10_1109_TIA_2022_3215978
crossref_primary_10_1002_widm_1539
crossref_primary_10_1016_j_renene_2024_121243
crossref_primary_10_1016_j_apenergy_2023_121884
crossref_primary_10_1016_j_epsr_2022_107913
crossref_primary_10_1109_TIA_2024_3456753
crossref_primary_10_1016_j_apenergy_2023_120798
crossref_primary_10_3390_en16052385
crossref_primary_10_3390_wevj15020063
crossref_primary_10_1007_s10479_025_06696_4
crossref_primary_10_3390_en16010462
crossref_primary_10_3390_en17040925
crossref_primary_10_1016_j_energy_2022_126274
crossref_primary_10_1016_j_apenergy_2024_125174
crossref_primary_10_1109_ACCESS_2021_3071180
crossref_primary_10_3389_fdata_2024_1402384
crossref_primary_10_1016_j_energy_2022_124642
crossref_primary_10_3390_ma12244150
crossref_primary_10_1109_TTE_2024_3438448
crossref_primary_10_1016_j_trc_2023_104149
crossref_primary_10_1016_j_apenergy_2024_124925
crossref_primary_10_1016_j_energy_2025_134582
crossref_primary_10_1007_s40747_025_01988_5
crossref_primary_10_32628_CSEIT251112280
crossref_primary_10_3390_vehicles6040101
crossref_primary_10_1080_15472450_2021_2010053
crossref_primary_10_1109_TSG_2022_3150074
crossref_primary_10_1016_j_segan_2022_100932
crossref_primary_10_1016_j_apenergy_2025_126673
crossref_primary_10_3390_ijgi9040272
crossref_primary_10_1016_j_ijepes_2025_110690
crossref_primary_10_1016_j_epsr_2023_110077
crossref_primary_10_1016_j_apenergy_2024_123544
crossref_primary_10_1109_ACCESS_2024_3405959
crossref_primary_10_1007_s11831_024_10214_3
crossref_primary_10_1016_j_segan_2024_101463
crossref_primary_10_1016_j_scs_2024_105453
crossref_primary_10_3390_en15186575
crossref_primary_10_1016_j_ijepes_2022_108486
crossref_primary_10_3390_math8101799
crossref_primary_10_1115_1_4068619
crossref_primary_10_1109_ACCESS_2021_3103119
crossref_primary_10_1016_j_est_2022_106294
crossref_primary_10_1155_2022_6819525
crossref_primary_10_1007_s11227_024_06820_4
crossref_primary_10_1016_j_joule_2021_07_012
crossref_primary_10_3390_en18174779
crossref_primary_10_3390_en14041090
crossref_primary_10_1155_2021_4216215
crossref_primary_10_1016_j_est_2023_108672
crossref_primary_10_1016_j_apenergy_2020_115237
crossref_primary_10_1038_s41558_022_01489_0
crossref_primary_10_1002_ente_202300744
crossref_primary_10_1016_j_segan_2025_101945
crossref_primary_10_1016_j_energy_2022_124160
crossref_primary_10_1016_j_segan_2023_101224
crossref_primary_10_1109_ACCESS_2020_3023388
crossref_primary_10_1145_3609508
crossref_primary_10_1007_s11116_024_10574_6
crossref_primary_10_1016_j_est_2023_107577
crossref_primary_10_1109_ACCESS_2022_3180493
crossref_primary_10_1007_s42979_022_01233_7
Cites_doi 10.1016/j.apenergy.2014.03.078
10.1016/j.apenergy.2016.12.139
10.1109/PMAPS.2018.8440360
10.1016/j.apenergy.2010.12.015
10.1016/j.apenergy.2015.10.151
10.1109/TPWRS.2012.2210288
10.1109/TII.2014.2374993
10.1109/PESGM40551.2019.8973928
10.1016/j.apenergy.2013.10.006
10.1109/PESGM.2018.8585744
10.1214/10-AOS799
10.1016/j.apenergy.2015.10.184
10.1016/j.apenergy.2019.03.008
10.1016/j.apenergy.2015.05.057
10.1016/j.apenergy.2012.06.052
10.1016/j.apenergy.2014.09.091
10.1080/00031305.1992.10475879
10.1016/j.apenergy.2018.09.139
10.1016/j.epsr.2016.06.003
10.1016/j.apenergy.2014.03.003
10.1023/B:STCO.0000035301.49549.88
10.1016/j.apenergy.2014.08.116
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.113732
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2019_113732
S0306261919314199
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-f43fca1fa295b68dfc0de0373aa1fd98f1538cd33c1375e8cba8160d5bd3e64b3
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497974600116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 14:48:31 EDT 2025
Tue Nov 18 21:19:31 EST 2025
Sat Nov 29 07:20:40 EST 2025
Fri Feb 23 02:30:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Machcine learning
Kernel density estimator
Data sparsity
Data entropy
EV user behavior prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-f43fca1fa295b68dfc0de0373aa1fd98f1538cd33c1375e8cba8160d5bd3e64b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2305167287
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2305167287
crossref_citationtrail_10_1016_j_apenergy_2019_113732
crossref_primary_10_1016_j_apenergy_2019_113732
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_113732
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Eatechnology.com, My electric avenue data [online]; 2016 [accessed: 03.01.2018] URL
Khaki B, Chung YW, Chu C, Gadh R. Nonparametric user behavior prediction for distributed EV charging scheduling. In: 2018 IEEE power and energy society general meeting conf (PESGM 2018); 2018.
Loveday S. Plug-In electric vehicle sales report card; June 2019 [accessed: 07.25.2019]
Xiong, Wang, Cheng Chu, Gadh (b0065) 2018; 231
Cristopher (b0165) 2016
Khaki B, Chung YW, Chu C, Gadh R. Hierarchical distributed EV charging scheduling in distribution grids. In: 2019 IEEE power and energy society general meeting conf (PESGM 2019); 2019.
Mu, Wu, Jenkins, Jia, Wang (b0015) 2014; 114
Kristoffersen, Capion, Meibom (b0040) 2011; 88
Keyhani (b0180) 2016
Khaki, Chu, Gadh (b0170) 2019; 241
Amini, Kargarian, Karabasoglu (b0080) 2016; 11
Chung YW, Khaki B, Chu C, Gadh R. Electric vehicle user behavior prediction using hybrid kernel density estimator. In: 2018 IEEE international conference on probabilistic methods applied to power systems (PMAPS 2018); 2018. p. 1–6.
Gennaro, Paffumi, Scholz, Martini (b0045) 2014; 124
Majidpour, Qiu, Chu, Pota, Gadh (b0105) 2016; 163
Veloz. Sales dashboard. [accessed: 07.25.2019]
Johnson T. Americans spend an average of 17,600 minutes driving each year [accessed: 11.10.2018]
Smart Grid Energy Research Center (SMERC), UCLA, Smart grid project - smart EV charging station [accessed: 03.01.2018]
Wang, Shi, Wang, Chu, Gadh (b0115) 2017; 190
Vapnik (b0150) 1995
Wang, Zhang, Ouyang (b0055) 2015; 157
Majidpour, Qiu, Chu, Gadh, Pota (b0075) 2015; 140
Gan, Topcu, Low (b0035) 2013; 28
Silverman (b0125) 1998
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning; 2013. p. 108–22.
Wang, Hu, Qiu, Chu, Gadh (b0085) 2015
Majidpour, Qiu, Chu, Gadh, Pota (b0095) 2014
Altman (b0160) 1992; 46
Xydas, Marmaras, Cipcigan, Jenkins, Carroll, Barker (b0090) 2016; 162
.
Smola AJ, Schölkopf B. A tutorial on support vector regression. Tech rep, Statistics and Computing; 2003.
Botev, Grotowski, Kroese (b0130) 2010; 38
Foley, Tyther, Calnan, Gallachóir (b0025) 2013; 101
Harris, Webber (b0050) 2014; 126
Xu, Hu, Song, Zhao, Zhang (b0100) 2014; 136
Wang, Wang, Nazaripouya, Qiu, Chu, Gadh (b0110) 2017; 4
Wang, Huang, Wang, Nazaripouya, Qiu, Chu (b0120) 2016
Salah, Ilg, Flath, Basse, van Dinther (b0020) 2015; 137
California Independent System Operator (CAISO). Locational marginal price [Online]; 2018 [accessed: 01.05.2018]
Open Charge Alliance, Global Platform for Open Protocols. [accessed: 07.25.2019]
Xiong (10.1016/j.apenergy.2019.113732_b0065) 2018; 231
Amini (10.1016/j.apenergy.2019.113732_b0080) 2016; 11
Xu (10.1016/j.apenergy.2019.113732_b0100) 2014; 136
Wang (10.1016/j.apenergy.2019.113732_b0110) 2017; 4
Xydas (10.1016/j.apenergy.2019.113732_b0090) 2016; 162
Botev (10.1016/j.apenergy.2019.113732_b0130) 2010; 38
Vapnik (10.1016/j.apenergy.2019.113732_b0150) 1995
Silverman (10.1016/j.apenergy.2019.113732_b0125) 1998
Harris (10.1016/j.apenergy.2019.113732_b0050) 2014; 126
Foley (10.1016/j.apenergy.2019.113732_b0025) 2013; 101
Gennaro (10.1016/j.apenergy.2019.113732_b0045) 2014; 124
Keyhani (10.1016/j.apenergy.2019.113732_b0180) 2016
Salah (10.1016/j.apenergy.2019.113732_b0020) 2015; 137
Cristopher (10.1016/j.apenergy.2019.113732_b0165) 2016
10.1016/j.apenergy.2019.113732_b0145
10.1016/j.apenergy.2019.113732_b0005
10.1016/j.apenergy.2019.113732_b0140
10.1016/j.apenergy.2019.113732_b0185
10.1016/j.apenergy.2019.113732_b0060
Majidpour (10.1016/j.apenergy.2019.113732_b0075) 2015; 140
Wang (10.1016/j.apenergy.2019.113732_b0055) 2015; 157
Khaki (10.1016/j.apenergy.2019.113732_b0170) 2019; 241
10.1016/j.apenergy.2019.113732_b0190
Majidpour (10.1016/j.apenergy.2019.113732_b0095) 2014
Wang (10.1016/j.apenergy.2019.113732_b0115) 2017; 190
Majidpour (10.1016/j.apenergy.2019.113732_b0105) 2016; 163
Wang (10.1016/j.apenergy.2019.113732_b0120) 2016
Gan (10.1016/j.apenergy.2019.113732_b0035) 2013; 28
Wang (10.1016/j.apenergy.2019.113732_b0085) 2015
Mu (10.1016/j.apenergy.2019.113732_b0015) 2014; 114
10.1016/j.apenergy.2019.113732_b0155
10.1016/j.apenergy.2019.113732_b0135
Kristoffersen (10.1016/j.apenergy.2019.113732_b0040) 2011; 88
10.1016/j.apenergy.2019.113732_b0175
10.1016/j.apenergy.2019.113732_b0070
Altman (10.1016/j.apenergy.2019.113732_b0160) 1992; 46
10.1016/j.apenergy.2019.113732_b0010
10.1016/j.apenergy.2019.113732_b0030
References_xml – year: 2016
  ident: b0180
  article-title: Design of smart power grid renewable energy systems
– volume: 241
  start-page: 461
  year: 2019
  end-page: 471
  ident: b0170
  article-title: Hierarchical distributed framework for ev charging scheduling using exchange problem
  publication-title: Appl Energy
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: b0160
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am Stat
– volume: 4
  start-page: 52
  year: 2017
  end-page: 63
  ident: b0110
  article-title: Predictive scheduling framework for electric vehicles with uncertainties of user behaviors
  publication-title: IEEE Internet Things J
– volume: 88
  start-page: 1940
  year: 2011
  end-page: 1948
  ident: b0040
  article-title: Optimal charging of electric drive vehicles in a market environment
  publication-title: Appl Energy
– reference: Smola AJ, Schölkopf B. A tutorial on support vector regression. Tech rep, Statistics and Computing; 2003.
– volume: 114
  start-page: 456
  year: 2014
  end-page: 465
  ident: b0015
  article-title: A spatial–temporal model for grid impact analysis of plug-in electric vehicles
  publication-title: Appl Energy
– reference: Smart Grid Energy Research Center (SMERC), UCLA, Smart grid project - smart EV charging station [accessed: 03.01.2018]
– reference: Khaki B, Chung YW, Chu C, Gadh R. Hierarchical distributed EV charging scheduling in distribution grids. In: 2019 IEEE power and energy society general meeting conf (PESGM 2019); 2019.
– reference: Eatechnology.com, My electric avenue data [online]; 2016 [accessed: 03.01.2018] URL
– year: 1998
  ident: b0125
  article-title: Density estimation for statistics and data analysis
– reference: Khaki B, Chung YW, Chu C, Gadh R. Nonparametric user behavior prediction for distributed EV charging scheduling. In: 2018 IEEE power and energy society general meeting conf (PESGM 2018); 2018.
– reference: Johnson T. Americans spend an average of 17,600 minutes driving each year [accessed: 11.10.2018]
– volume: 137
  start-page: 88
  year: 2015
  end-page: 96
  ident: b0020
  article-title: Impact of electric vehicles on distribution substations: a Swiss case study
  publication-title: Appl Energy
– volume: 163
  start-page: 134
  year: 2016
  end-page: 141
  ident: b0105
  article-title: Forecasting the EV charging load based on customer profile or station measurement?
  publication-title: Appl Energy
– start-page: 1
  year: 2016
  end-page: 5
  ident: b0120
  article-title: Predictive scheduling for Electric Vehicles considering uncertainty of load and user behaviors
  publication-title: 2016 IEEE/PES transmission and distribution conference and exposition (T&D 2016)
– reference: Open Charge Alliance, Global Platform for Open Protocols. [accessed: 07.25.2019]
– start-page: 1
  year: 2015
  end-page: 5
  ident: b0085
  article-title: EV charging algorithm implementation with user price preference
  publication-title: IEEE power energy society innovative smart grid technologies conference (ISGT), 2015
– volume: 28
  start-page: 940
  year: 2013
  end-page: 951
  ident: b0035
  article-title: Optimal decentralized protocol for electric vehicle charging
  publication-title: IEEE Trans Power Syst
– volume: 162
  start-page: 763
  year: 2016
  end-page: 771
  ident: b0090
  article-title: A data-driven approach for characterising the charging demand of electric vehicles: a UK case study
  publication-title: Appl Energy
– start-page: 1035
  year: 2014
  end-page: 1040
  ident: b0095
  article-title: A novel forecasting algorithm for electric vehicle charging stations
  publication-title: International conference on connected vehicles and expo (ICCVE), 2014
– volume: 126
  start-page: 172
  year: 2014
  end-page: 181
  ident: b0050
  article-title: An empirically-validated methodology to simulate electricity demand for electric vehicle charging
  publication-title: Appl Energy
– reference: Veloz. Sales dashboard. [accessed: 07.25.2019]
– year: 1995
  ident: b0150
  article-title: The nature of statistical learning theory
– volume: 136
  start-page: 582
  year: 2014
  end-page: 589
  ident: b0100
  article-title: Coordination of PEVs charging across multiple aggregators
  publication-title: Appl Energy
– reference: Chung YW, Khaki B, Chu C, Gadh R. Electric vehicle user behavior prediction using hybrid kernel density estimator. In: 2018 IEEE international conference on probabilistic methods applied to power systems (PMAPS 2018); 2018. p. 1–6.
– reference: Loveday S. Plug-In electric vehicle sales report card; June 2019 [accessed: 07.25.2019]
– volume: 124
  start-page: 94
  year: 2014
  end-page: 116
  ident: b0045
  article-title: GIS-driven analysis of e-mobility in urban areas: an evaluation of the impact on the electric energy grid
  publication-title: Appl Energy
– reference: California Independent System Operator (CAISO). Locational marginal price [Online]; 2018 [accessed: 01.05.2018]
– reference: .
– volume: 11
  start-page: 378
  year: 2016
  end-page: 390
  ident: b0080
  article-title: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation
  publication-title: Electric Power Syst Res
– volume: 101
  start-page: 93
  year: 2013
  end-page: 102
  ident: b0025
  article-title: Impacts of electric vehicle charging under electricity market operations
  publication-title: Appl Energy
– year: 2016
  ident: b0165
  article-title: Pattern recognition and machine learning
– volume: 38
  start-page: 2916
  year: 2010
  end-page: 2957
  ident: b0130
  article-title: Kernel density estimation via diffusion
  publication-title: Ann Statist
– reference: Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning; 2013. p. 108–22.
– volume: 231
  start-page: 481
  year: 2018
  end-page: 493
  ident: b0065
  article-title: Vehicle grid integration for demand response with mixture user model and decentralized optimization
  publication-title: Appl Energy
– volume: 157
  start-page: 710
  year: 2015
  end-page: 719
  ident: b0055
  article-title: Energy consumption of electric vehicles based on real-world driving patterns: a case study of Beijing
  publication-title: Appl Energy
– volume: 190
  start-page: 1289
  year: 2017
  end-page: 1301
  ident: b0115
  article-title: Optimal operation of stationary and mobile batteries in distribution grids
  publication-title: Appl Energy
– volume: 140
  start-page: 242
  year: 2015
  end-page: 250
  ident: b0075
  article-title: Fast prediction for sparse time series: demand forecast of EV charging stations for cell phone applications
  publication-title: IEEE Trans Ind Inform
– volume: 126
  start-page: 172
  year: 2014
  ident: 10.1016/j.apenergy.2019.113732_b0050
  article-title: An empirically-validated methodology to simulate electricity demand for electric vehicle charging
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.078
– volume: 190
  start-page: 1289
  year: 2017
  ident: 10.1016/j.apenergy.2019.113732_b0115
  article-title: Optimal operation of stationary and mobile batteries in distribution grids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.139
– year: 1998
  ident: 10.1016/j.apenergy.2019.113732_b0125
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2019.113732_b0085
  article-title: EV charging algorithm implementation with user price preference
– volume: 4
  start-page: 52
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2019.113732_b0110
  article-title: Predictive scheduling framework for electric vehicles with uncertainties of user behaviors
  publication-title: IEEE Internet Things J
– ident: 10.1016/j.apenergy.2019.113732_b0140
  doi: 10.1109/PMAPS.2018.8440360
– volume: 88
  start-page: 1940
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2019.113732_b0040
  article-title: Optimal charging of electric drive vehicles in a market environment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.015
– volume: 162
  start-page: 763
  year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0090
  article-title: A data-driven approach for characterising the charging demand of electric vehicles: a UK case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.151
– volume: 28
  start-page: 940
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2019.113732_b0035
  article-title: Optimal decentralized protocol for electric vehicle charging
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2210288
– volume: 140
  start-page: 242
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2019.113732_b0075
  article-title: Fast prediction for sparse time series: demand forecast of EV charging stations for cell phone applications
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2014.2374993
– ident: 10.1016/j.apenergy.2019.113732_b0185
  doi: 10.1109/PESGM40551.2019.8973928
– volume: 114
  start-page: 456
  year: 2014
  ident: 10.1016/j.apenergy.2019.113732_b0015
  article-title: A spatial–temporal model for grid impact analysis of plug-in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.10.006
– year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0180
– ident: 10.1016/j.apenergy.2019.113732_b0135
  doi: 10.1109/PESGM.2018.8585744
– volume: 38
  start-page: 2916
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2019.113732_b0130
  article-title: Kernel density estimation via diffusion
  publication-title: Ann Statist
  doi: 10.1214/10-AOS799
– volume: 163
  start-page: 134
  year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0105
  article-title: Forecasting the EV charging load based on customer profile or station measurement?
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.184
– volume: 241
  start-page: 461
  year: 2019
  ident: 10.1016/j.apenergy.2019.113732_b0170
  article-title: Hierarchical distributed framework for ev charging scheduling using exchange problem
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.008
– volume: 157
  start-page: 710
  year: 2015
  ident: 10.1016/j.apenergy.2019.113732_b0055
  article-title: Energy consumption of electric vehicles based on real-world driving patterns: a case study of Beijing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.057
– ident: 10.1016/j.apenergy.2019.113732_b0030
– ident: 10.1016/j.apenergy.2019.113732_b0145
– year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0165
– ident: 10.1016/j.apenergy.2019.113732_b0070
– volume: 101
  start-page: 93
  year: 2013
  ident: 10.1016/j.apenergy.2019.113732_b0025
  article-title: Impacts of electric vehicle charging under electricity market operations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.06.052
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0120
  article-title: Predictive scheduling for Electric Vehicles considering uncertainty of load and user behaviors
– volume: 137
  start-page: 88
  year: 2015
  ident: 10.1016/j.apenergy.2019.113732_b0020
  article-title: Impact of electric vehicles on distribution substations: a Swiss case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.091
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.apenergy.2019.113732_b0160
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am Stat
  doi: 10.1080/00031305.1992.10475879
– ident: 10.1016/j.apenergy.2019.113732_b0175
– volume: 231
  start-page: 481
  year: 2018
  ident: 10.1016/j.apenergy.2019.113732_b0065
  article-title: Vehicle grid integration for demand response with mixture user model and decentralized optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.139
– volume: 11
  start-page: 378
  year: 2016
  ident: 10.1016/j.apenergy.2019.113732_b0080
  article-title: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2016.06.003
– volume: 124
  start-page: 94
  year: 2014
  ident: 10.1016/j.apenergy.2019.113732_b0045
  article-title: GIS-driven analysis of e-mobility in urban areas: an evaluation of the impact on the electric energy grid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.003
– ident: 10.1016/j.apenergy.2019.113732_b0155
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: 10.1016/j.apenergy.2019.113732_b0005
– volume: 136
  start-page: 582
  year: 2014
  ident: 10.1016/j.apenergy.2019.113732_b0100
  article-title: Coordination of PEVs charging across multiple aggregators
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.116
– start-page: 1035
  year: 2014
  ident: 10.1016/j.apenergy.2019.113732_b0095
  article-title: A novel forecasting algorithm for electric vehicle charging stations
– ident: 10.1016/j.apenergy.2019.113732_b0190
– ident: 10.1016/j.apenergy.2019.113732_b0060
– year: 1995
  ident: 10.1016/j.apenergy.2019.113732_b0150
– ident: 10.1016/j.apenergy.2019.113732_b0010
SSID ssj0002120
Score 2.6487072
SecondaryResourceType review_article
Snippet [Display omitted] •Real electric vehicle charging data from 252 users were analyzed.•Defining the data entropy/sparsity ratio (R) as an indicator for...
This research investigates electric vehicle (EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113732
SubjectTerms algorithms
artificial intelligence
cost effectiveness
Data entropy
Data sparsity
electric vehicles
energy
entropy
EV user behavior prediction
Kernel density estimator
Machcine learning
mathematical models
prediction
regression analysis
variance
Title Ensemble machine learning-based algorithm for electric vehicle user behavior prediction
URI https://dx.doi.org/10.1016/j.apenergy.2019.113732
https://www.proquest.com/docview/2305167287
Volume 254
WOSCitedRecordID wos000497974600116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEepjGYGIPJSLxVgSbOh_04UKeB0ITE0MpT5NiXNdOaVk077c_nHNtJx4cGQrxEkRXbie_nu_PlPgh5neL-j7liQViwIogB2j1XBAJSKKEUWpdtyvxP2ekpn0zEZ-eQ2bTlBLK65jc3YvFfSY1tSGwTOvsX5O4GxQa8R6LjFcmO1z8i_LhuYGbioWatnyT4whAXgZFYeiivLubLajWd2WzfbRmcSg2vYWpGGhqrRRe8b1II6Ep1xPPpap3qCm3gYO8h4BjHt3VwDlXHyqfSlsZ-B9NazjoPoMpCBZlRtTGCdQEw_qlOpDqLRChMaJ6NybRmMh8q0_slteFZozQwxzUreCy35VlkuC3fZMeRTSr9E2u3VobLN3JhP8645QlTkiZzBtLbabO_mAnNfKihhnEoxH2yFWWJ4AOydfRhPPnYyevIJe_0L7gRR_7r2X6nwvwgzFsN5WyHbLujBT2ykHhM7kG9Sx5tJJzcJXvjPq4RH3WMvXlCzj1qqEMNvY0a2qGGImqoRw11qKEGNdSjhvaoeUq-Ho_P3p8EruZGoFicrIIyZqWSYSkjkRQp16UaaRjhV0ts1IKXRkIqzZjCpUiAq0LyMB3ppNAM0rhge2RQz2t4RihLJAdUQPHBKC4jJSBEZTWGUKcyFpztk8QvY65cQnpTF-Uq956Hl7lf_twsf26Xf5-87fotbEqWO3sIT6XcKZZWYcwRXHf2feXJmiPnNb_TZA3zdZPj4T0J0yzi2fN_GP-APOz30AsyWC3X8JI8UNerqlkeOqx-B7O5sAQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+machine+learning-based+algorithm+for+electric+vehicle+user+behavior+prediction&rft.jtitle=Applied+energy&rft.au=Chung%2C+Yu-Wei&rft.au=Khaki%2C+Behnam&rft.au=Li%2C+Tianyi&rft.au=Chu%2C+Chicheng&rft.date=2019-11-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=254&rft_id=info:doi/10.1016%2Fj.apenergy.2019.113732&rft.externalDocID=S0306261919314199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon