Multi-objective optimization of methanol reforming reactor performance based on response surface methodology and multi-objective particle swarm optimization coupling algorithm for on-line hydrogen production

•An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management Jg. 307; S. 118377
Hauptverfasser: Tang, Yuanyou, Long, Wuqiang, Wang, Yang, Xiao, Ge, Wang, Yongjian, Lu, Mingfei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2024
Schlagworte:
ISSN:0196-8904, 1879-2227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating parameters is elucidated.•Under optimal operating parameters, 21.92% of exhaust energy recovery is achieved. The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s−1, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h−1, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery.
AbstractList •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating parameters is elucidated.•Under optimal operating parameters, 21.92% of exhaust energy recovery is achieved. The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s−1, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h−1, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery.
The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s⁻¹, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h⁻¹, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery.
ArticleNumber 118377
Author Wang, Yang
Tang, Yuanyou
Long, Wuqiang
Lu, Mingfei
Wang, Yongjian
Xiao, Ge
Author_xml – sequence: 1
  givenname: Yuanyou
  surname: Tang
  fullname: Tang, Yuanyou
– sequence: 2
  givenname: Wuqiang
  surname: Long
  fullname: Long, Wuqiang
– sequence: 3
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
– sequence: 4
  givenname: Ge
  surname: Xiao
  fullname: Xiao, Ge
  email: xiaoge@dlut.edu.cn
– sequence: 5
  givenname: Yongjian
  orcidid: 0009-0007-1792-5252
  surname: Wang
  fullname: Wang, Yongjian
– sequence: 6
  givenname: Mingfei
  surname: Lu
  fullname: Lu, Mingfei
BookMark eNqFkc1uFDEQhC2USGxCXiHykcts7PHs_EgcQBEQpCAuuVteu73rlcc92J6gzUvySniycCCXnGx119clVV2Qs4ABCLnmbM0Zb28Oawgaw6jCumZ1s-a8F133hqx43w1VXdfdGVkxPrRVP7DmLblI6cAYExvWrsjv77PPrsLtAXR2j0Bxym50Tyo7DBQtHSHvVUBPI1iMowu78lM6Y6QTxGWkgga6VQkMLUiENGFIQNMcrSqb5QAa9Lg7UhUMHV8YTipmp30Bfqk4_u-vcZ78Yqn8DqPL-5EWx2JTlSnQ_dFE3EGgU0Qz6wV5R86t8gmu_r6X5OHL54fbu-r-x9dvt5_uKy2aTa6s6EoWZtB8MI3tWS-GoWUaoGztRrd8q3lt237YGKGVbVgDvGF629nODsDEJXl_Olucf86Qshxd0uC9CoBzkqJmbc36phFF2p6kOmJKJUU5RTeqeJScyaVAeZD_CpRLgfJUYAE_vAC1y8-55Kicfx3_eMKhxPDoIMqkXVGCcbFELw261078AVttxjk
CitedBy_id crossref_primary_10_1016_j_fuel_2024_134114
crossref_primary_10_1039_D4SE01718H
crossref_primary_10_1016_j_cep_2024_110149
crossref_primary_10_1016_j_ces_2024_120595
crossref_primary_10_1016_j_applthermaleng_2025_125785
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127045
crossref_primary_10_3390_separations12060161
crossref_primary_10_1016_j_solener_2025_113747
crossref_primary_10_1016_j_energy_2025_137397
crossref_primary_10_1016_j_applthermaleng_2025_126272
crossref_primary_10_1016_j_ijhydene_2024_10_002
crossref_primary_10_1016_j_seta_2024_104034
crossref_primary_10_1016_j_ijhydene_2024_10_051
crossref_primary_10_1016_j_fuel_2024_132767
crossref_primary_10_1016_j_enconman_2024_118844
crossref_primary_10_1016_j_apenergy_2025_125488
crossref_primary_10_1016_j_ijhydene_2024_09_342
crossref_primary_10_3390_jmse13050959
crossref_primary_10_1016_j_cej_2024_157188
crossref_primary_10_1016_j_est_2024_113477
crossref_primary_10_1080_00102202_2024_2446917
crossref_primary_10_3390_app15010140
crossref_primary_10_1016_j_ijhydene_2025_150432
crossref_primary_10_1016_j_applthermaleng_2024_124643
crossref_primary_10_1016_j_ijhydene_2025_04_261
crossref_primary_10_1016_j_energy_2025_137042
Cites_doi 10.1016/j.scitotenv.2022.161225
10.1016/j.ijhydene.2016.07.083
10.1016/j.apcata.2003.09.013
10.1016/S0020-0190(02)00447-7
10.1016/j.fuel.2018.09.073
10.1016/j.ijhydene.2021.09.033
10.1016/j.ijhydene.2018.04.190
10.1016/j.ijhydene.2022.06.245
10.1016/j.fuproc.2011.12.024
10.1016/j.energy.2022.124330
10.1016/j.enconman.2023.117423
10.1109/TEVC.2004.826067
10.1016/j.scitotenv.2023.169708
10.1016/j.fuel.2023.128603
10.1016/j.enconman.2024.118089
10.1016/j.enconman.2023.118027
10.1016/j.enconman.2023.117023
10.1016/j.fuel.2021.123012
10.1016/j.jcat.2004.12.020
10.1016/j.cherd.2023.06.051
10.1016/S0926-860X(98)00298-1
10.1016/j.fuel.2022.123414
10.1016/j.enconman.2023.117861
10.1016/j.ijheatmasstransfer.2012.12.047
10.1016/j.fuel.2022.123832
10.1016/j.ijhydene.2022.08.134
10.1016/j.enconman.2021.114126
10.1016/j.enconman.2023.116874
10.1016/j.ijhydene.2021.05.039
10.1016/j.enconman.2023.117484
10.1016/j.energy.2023.130156
10.1016/j.enconman.2019.111983
10.1016/j.apenergy.2020.115622
10.1016/j.fuel.2022.125939
10.1016/S0926-860X(98)00299-3
10.1016/j.energy.2023.128647
10.1021/ie50474a011
10.1016/j.energy.2022.123756
10.1016/j.rser.2023.114242
10.1016/j.ijhydene.2021.04.062
10.1016/j.fuel.2022.126525
10.1016/j.cattod.2005.09.010
10.1016/j.ijhydene.2016.01.100
10.4028/www.scientific.net/AMR.62-64.694
10.1016/j.ijhydene.2021.11.041
10.1016/j.enconman.2018.07.050
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2024.118377
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2024_118377
S0196890424003182
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-f37904d9c19d4f80839960cee345f5c61bc12f6895d3caf404e140cb7f7f9e03
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225034600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Thu Oct 02 22:50:12 EDT 2025
Sat Nov 29 04:26:10 EST 2025
Tue Nov 18 22:12:18 EST 2025
Sat May 11 15:32:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective particle swarm optimization
Pareto optimal solution
Methanol steam reforming
On-line hydrogen production
Response surface methodology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-f37904d9c19d4f80839960cee345f5c61bc12f6895d3caf404e140cb7f7f9e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-1792-5252
PQID 3206208443
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206208443
crossref_primary_10_1016_j_enconman_2024_118377
crossref_citationtrail_10_1016_j_enconman_2024_118377
elsevier_sciencedirect_doi_10_1016_j_enconman_2024_118377
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liao, Horng (b0105) 2016; 41
Purnama, Ressler, Jentoft, Soerijanto, Schlögl, Schomäcker (b0200) 2004; 259
Tang, Wang, Long, Xiao, Wang, Li (b0175) 2023
Poran, Thawko, Eyal, Tartakovsky (b0095) 2018; 43
Wang, Zhang, Sun, Zhang, Lai, Ma (b0070) 2024; 299
Mei, Qiu, Liu, Wu, Yu, Xu (b0085) 2022; 47
Fettaka, Thibault, Gupta (b0160) 2013; 60
Xiao, Xu, Wang, Wang, Xu (b0130) 2022; 47
Zhou, Yu, Wu, Fu, Liu, Duan (b0045) 2024; 913
Suparmaniam, Lam, Rawindran, Lim, Pa'ee, Yong (b0215) 2023; 286
Srivastava, Kumar, Dhar (b0125) 2021; 46
Nuthan Prasad, Pandey, Kumar (b0075) 2021; 46
Mukherjee (b0165) 1998; 94
P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A: Gen 1999;179:21-29. Doi: 10.1016/S0926-860X(98)00298-1.
Wang, Wang (b0135) 2016; 41
Wu, Hsu, Fan, He (b0100) 2018; 172
Tian, Wang, Zhen, Liu (b0060) 2022; 313
Eyal, Thawko, Baibikov, Tartakovsky (b0120) 2021
Li, Ma, Zou, Li, Huang, Zhu (b0030) 2021; 46
Sarafraz, Safaei, Goodarzi, Arjomandi (b0250) 2019; 199
Rasul, Hazrat, Sattar, Jahirul, Shearer (b0080) 2022;272.
Li, Li, Pang, Liu, Jia, Long (b0035) 2023; 284
Zhang, Li, Long, Zhang, Wei, Zhou (b0115) 2023; 332
Li, Ye, Gong, Deng, Wang, Liu (b0005) 2024; 192
Akpabio, Oboh, Aluyor (b0170) 2009; 62–64
Ergun, Orning (b0180) 1949; 41
Ali, Hassan Ali (b0025) 2024; 301
Kang, Song, Kim, Kim (b0155) 2022; 47
Zhang, Wu, Mi, Zhao, He, Qian (b0010) 2023; 292
Goh, Zhang, Ho, Chew (b0235) 2023; 293
Paykani, Chehrmonavari, Tsolakis, Alger, Northrop, Reitz (b0090) 2022;90.
P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A: Gen 1999;179:31-49. Doi: 10.1016/S0926-860X(98)00299-3.
Shen, Gong, Xie, Lu, Guo (b0210) 2024; 290
Coello, Pulido, Lechuga (b0225) 2004; 8
Nguyen, Sileghem, Verhelst (b0110) 2019; 236
Mastalir, Frank, Szizybalski, Soerijanto, Deshpande, Niederberger (b0195) 2005; 230
Gong, Li, Sun, Liu (b0050) 2020; 277
Maricq (b0015) 2023; 866
Bose, Kumar, Hens (b0140) 2023; 196
Monyanon, Luengnaruemitchai, Pongstabodee (b0245) 2012; 96
Teoh, How, Le, Nguyen, Loo, Rashid (b0065) 2023; 333
Zhang, Xu, Yu, Wu, Jin, Xiao (b0145) 2022; 254
Meng, Zhang, Zhao, Tian, Tian, Long (b0020) 2022; 319
Chen, Hu, Xu, Xu, Wang, Lund (b0240) 2022; 250
Karim, Bravo, Gorm, Conant, Datye (b0205) 2005; 110
Trelea (b0220) 2003; 85
Wang, Xiao, Li, Tian, Leng, Wang (b0150) 2022; 317
C. Gong, Z. Li, F. Liu. Numerical study of the firing, radicals and intermediates in the combustion process of a H2-assisted combustion DISI methanol engine. Fuel 2023;348. Doi: 10.1016/j.fuel.2023.128603.
Mehregan, Sheykhi, Alizadeh Kharkeshi, Emamian, Aliakbari, Rafiee (b0230) 2023; 283
Suijs, De Graeve, Verhelst (b0040) 2024; 302
Mastalir (10.1016/j.enconman.2024.118377_b0195) 2005; 230
Zhang (10.1016/j.enconman.2024.118377_b0115) 2023; 332
Purnama (10.1016/j.enconman.2024.118377_b0200) 2004; 259
Rasul (10.1016/j.enconman.2024.118377_b0080) 2022272
Monyanon (10.1016/j.enconman.2024.118377_b0245) 2012; 96
Nuthan Prasad (10.1016/j.enconman.2024.118377_b0075) 2021; 46
Akpabio (10.1016/j.enconman.2024.118377_b0170) 2009; 62–64
Coello (10.1016/j.enconman.2024.118377_b0225) 2004; 8
Goh (10.1016/j.enconman.2024.118377_b0235) 2023; 293
Li (10.1016/j.enconman.2024.118377_b0005) 2024; 192
Wang (10.1016/j.enconman.2024.118377_b0150) 2022; 317
Karim (10.1016/j.enconman.2024.118377_b0205) 2005; 110
Li (10.1016/j.enconman.2024.118377_b0030) 2021; 46
Liao (10.1016/j.enconman.2024.118377_b0105) 2016; 41
Li (10.1016/j.enconman.2024.118377_b0035) 2023; 284
Wang (10.1016/j.enconman.2024.118377_b0070) 2024; 299
Sarafraz (10.1016/j.enconman.2024.118377_b0250) 2019; 199
10.1016/j.enconman.2024.118377_b0190
Bose (10.1016/j.enconman.2024.118377_b0140) 2023; 196
Ergun (10.1016/j.enconman.2024.118377_b0180) 1949; 41
Chen (10.1016/j.enconman.2024.118377_b0240) 2022; 250
Eyal (10.1016/j.enconman.2024.118377_b0120) 2021
Mukherjee (10.1016/j.enconman.2024.118377_b0165) 1998; 94
Suparmaniam (10.1016/j.enconman.2024.118377_b0215) 2023; 286
Suijs (10.1016/j.enconman.2024.118377_b0040) 2024; 302
Teoh (10.1016/j.enconman.2024.118377_b0065) 2023; 333
Shen (10.1016/j.enconman.2024.118377_b0210) 2024; 290
Ali (10.1016/j.enconman.2024.118377_b0025) 2024; 301
Wu (10.1016/j.enconman.2024.118377_b0100) 2018; 172
Trelea (10.1016/j.enconman.2024.118377_b0220) 2003; 85
Zhang (10.1016/j.enconman.2024.118377_b0010) 2023; 292
Meng (10.1016/j.enconman.2024.118377_b0020) 2022; 319
Paykani (10.1016/j.enconman.2024.118377_b0090) 202290
Mehregan (10.1016/j.enconman.2024.118377_b0230) 2023; 283
Wang (10.1016/j.enconman.2024.118377_b0135) 2016; 41
Tang (10.1016/j.enconman.2024.118377_b0175) 2023
10.1016/j.enconman.2024.118377_b0185
Zhou (10.1016/j.enconman.2024.118377_b0045) 2024; 913
Poran (10.1016/j.enconman.2024.118377_b0095) 2018; 43
Tian (10.1016/j.enconman.2024.118377_b0060) 2022; 313
Gong (10.1016/j.enconman.2024.118377_b0050) 2020; 277
Fettaka (10.1016/j.enconman.2024.118377_b0160) 2013; 60
Maricq (10.1016/j.enconman.2024.118377_b0015) 2023; 866
Zhang (10.1016/j.enconman.2024.118377_b0145) 2022; 254
Mei (10.1016/j.enconman.2024.118377_b0085) 2022; 47
Xiao (10.1016/j.enconman.2024.118377_b0130) 2022; 47
Srivastava (10.1016/j.enconman.2024.118377_b0125) 2021; 46
Nguyen (10.1016/j.enconman.2024.118377_b0110) 2019; 236
Kang (10.1016/j.enconman.2024.118377_b0155) 2022; 47
10.1016/j.enconman.2024.118377_b0055
References_xml – volume: 283
  year: 2023
  ident: b0230
  article-title: Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine
  publication-title: Energ Convers Manage
– volume: 41
  start-page: 16835
  year: 2016
  end-page: 16841
  ident: b0135
  article-title: Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor
  publication-title: Int J Hydrogen Energy
– volume: 292
  year: 2023
  ident: b0010
  article-title: Comparative study of hybrid architectures integrated with dual-fuel intelligent charge compression ignition engine: a commercial powertrain solution towards carbon neutrality
  publication-title: Energ Convers Manage
– year: 2022;272.
  ident: b0080
  article-title: The future of hydrogen: challenges on production, storage and applications
  publication-title: Energ Convers Manage
– reference: P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A: Gen 1999;179:31-49. Doi: 10.1016/S0926-860X(98)00299-3.
– volume: 199
  year: 2019
  ident: b0250
  article-title: Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology
  publication-title: Energ Convers Manage
– volume: 43
  start-page: 11969
  year: 2018
  end-page: 11980
  ident: b0095
  article-title: Direct injection internal combustion engine with high-pressure thermochemical recuperation – Experimental study of the first prototype
  publication-title: Int J Hydrogen Energy
– volume: 94
  start-page: 21
  year: 1998
  end-page: 37
  ident: b0165
  article-title: Effectively design shell-and-tube heat exchangers
  publication-title: Chem Eng Prog
– reference: P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A: Gen 1999;179:21-29. Doi: 10.1016/S0926-860X(98)00298-1.
– volume: 319
  year: 2022
  ident: b0020
  article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME
  publication-title: Fuel
– volume: 301
  start-page: 118027
  year: 2024
  ident: b0025
  article-title: Syngas-diesel dual-fuel engine performance using H2/CO top gases from the steel industry furnaces
  publication-title: Energ Convers Manage
– volume: 332
  year: 2023
  ident: b0115
  article-title: Numerical study on combustion and emission characteristics of a spark-ignition ammonia engine added with hydrogen-rich gas from exhaust-fuel reforming
  publication-title: Fuel
– volume: 47
  start-page: 3587
  year: 2022
  end-page: 3610
  ident: b0155
  article-title: Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming
  publication-title: Int J Hydrogen Energy
– reference: C. Gong, Z. Li, F. Liu. Numerical study of the firing, radicals and intermediates in the combustion process of a H2-assisted combustion DISI methanol engine. Fuel 2023;348. Doi: 10.1016/j.fuel.2023.128603.
– volume: 46
  start-page: 22303
  year: 2021
  end-page: 22327
  ident: b0030
  article-title: On-board methanol catalytic reforming for hydrogen production-a review
  publication-title: Int J Hydrogen Energy
– volume: 913
  year: 2024
  ident: b0045
  article-title: The application prospect and challenge of the alternative methanol fuel in the internal combustion engine
  publication-title: Sci Total Environ
– volume: 47
  start-page: 29242
  year: 2022
  end-page: 29254
  ident: b0130
  article-title: Investigation of a methanol processing system comprising of a steam reformer and two preferential oxidation reactors for fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 866
  year: 2023
  ident: b0015
  article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: literature review and future prospects
  publication-title: Sci Total Environ
– volume: 60
  start-page: 343
  year: 2013
  end-page: 354
  ident: b0160
  article-title: Design of shell-and-tube heat exchangers using multiobjective optimization
  publication-title: Int J Heat Mass Transfer
– volume: 172
  start-page: 567
  year: 2018
  end-page: 578
  ident: b0100
  article-title: Reduction of smoke, PM2.5, and NOX of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR
  publication-title: Energ Convers Manage
– volume: 313
  year: 2022
  ident: b0060
  article-title: Numerical comparative analysis on performance and emission characteristics of methanol/hydrogen, ethanol/hydrogen and butanol/hydrogen blends fuels under lean burn conditions in SI engine
  publication-title: Fuel
– volume: 236
  start-page: 778
  year: 2019
  end-page: 791
  ident: b0110
  article-title: Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines
  publication-title: Fuel
– year: 2022;90.
  ident: b0090
  article-title: Synthesis gas as a fuel for internal combustion engines in transportation
  publication-title: Prog Energy Combust Sci
– volume: 230
  start-page: 464
  year: 2005
  end-page: 475
  ident: b0195
  article-title: Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study
  publication-title: J Catal
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: b0220
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inform Process Lett
– volume: 46
  start-page: 38073
  year: 2021
  end-page: 38088
  ident: b0125
  article-title: A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation
  publication-title: Int J Hydrogen Energy
– volume: 284
  year: 2023
  ident: b0035
  article-title: Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine
  publication-title: Energy
– volume: 302
  year: 2024
  ident: b0040
  article-title: An exploratory study of knock intensity in a large-bore heavy-duty methanol engine
  publication-title: Energ Convers Manage
– volume: 41
  start-page: 1179
  year: 1949
  end-page: 1184
  ident: b0180
  article-title: Fluid flow through randomly packed columns and fluidized beds
  publication-title: Ind Eng Chem
– volume: 250
  year: 2022
  ident: b0240
  article-title: Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax
  publication-title: Energy
– volume: 333
  year: 2023
  ident: b0065
  article-title: A review on production and implementation of hydrogen as a green fuel in internal combustion engines
  publication-title: Fuel
– volume: 46
  start-page: 25294
  year: 2021
  end-page: 25307
  ident: b0075
  article-title: Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine
  publication-title: Int J Hydrogen Energy
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0225
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE T Evolut Comput
– volume: 110
  start-page: 86
  year: 2005
  end-page: 91
  ident: b0205
  article-title: Comparison of wall-coated and packed-bed reactors for steam reforming of methanol
  publication-title: Catal Today
– volume: 293
  year: 2023
  ident: b0235
  article-title: Modelling and multi-objective optimisation of sustainable solar-biomass-based hydrogen and electricity co-supply hub using metaheuristic-TOPSIS approach
  publication-title: Energ Convers Manage
– volume: 47
  start-page: 35757
  year: 2022
  end-page: 35777
  ident: b0085
  article-title: Progress on methanol reforming technologies for highly efficient hydrogen production and applications
  publication-title: Int J Hydrogen Energy
– volume: 192
  year: 2024
  ident: b0005
  article-title: Review on the combustion progress and engine application of tailor-made fuels from biomass
  publication-title: Renew Sustain Energy Rev
– volume: 277
  year: 2020
  ident: b0050
  article-title: Evaluation on combustion and lean-burn limit of a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection
  publication-title: Appl Energy
– volume: 286
  year: 2023
  ident: b0215
  article-title: Optimizing extraction of antioxidative biostimulant from waste onion peels for microalgae cultivation via response surface model
  publication-title: Energ Convers Manage
– start-page: 283
  year: 2023
  ident: b0175
  article-title: Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine
  publication-title: Energy
– volume: 41
  start-page: 4957
  year: 2016
  end-page: 4968
  ident: b0105
  article-title: Investigation on the hydrogen production by methanol steam reforming with engine exhaust heat recovery strategy
  publication-title: Int J Hydrogen Energy
– volume: 62–64
  start-page: 694
  year: 2009
  end-page: 699
  ident: b0170
  article-title: The effect of baffles in Shell and tube heat exchangers
  publication-title: Adv Mater Res
– volume: 96
  start-page: 160
  year: 2012
  end-page: 168
  ident: b0245
  article-title: Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments
  publication-title: Fuel Process Technol
– year: 2021
  ident: b0120
  article-title: Performance and pollutant emission of the reforming-controlled compression ignition engine – Experimental study
  publication-title: Energ Convers Manage
– volume: 290
  year: 2024
  ident: b0210
  article-title: Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine
  publication-title: Energy
– volume: 259
  start-page: 83
  year: 2004
  end-page: 94
  ident: b0200
  article-title: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst
  publication-title: Appl Catal A: Gen
– volume: 196
  start-page: 297
  year: 2023
  end-page: 308
  ident: b0140
  article-title: Performance analysis of methanol steam micro-reformers for enhanced hydrogen production using CFD
  publication-title: Chem Eng Res Des
– volume: 299
  year: 2024
  ident: b0070
  article-title: Experimental investigation of the working boundary limited by abnormal combustion and the combustion characteristics of a turbocharged direct injection hydrogen engine
  publication-title: Energ Convers Manage
– volume: 317
  year: 2022
  ident: b0150
  article-title: Study on the performance of diesel-methanol diffusion combustion with dual-direct injection system on a high-speed light-duty engine
  publication-title: Fuel
– volume: 254
  year: 2022
  ident: b0145
  article-title: Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside
  publication-title: Energy
– volume: 866
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0015
  article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: literature review and future prospects
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.161225
– volume: 41
  start-page: 16835
  year: 2016
  ident: 10.1016/j.enconman.2024.118377_b0135
  article-title: Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.083
– volume: 259
  start-page: 83
  year: 2004
  ident: 10.1016/j.enconman.2024.118377_b0200
  article-title: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst
  publication-title: Appl Catal A: Gen
  doi: 10.1016/j.apcata.2003.09.013
– volume: 85
  start-page: 317
  year: 2003
  ident: 10.1016/j.enconman.2024.118377_b0220
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inform Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 236
  start-page: 778
  year: 2019
  ident: 10.1016/j.enconman.2024.118377_b0110
  article-title: Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.073
– volume: 46
  start-page: 38073
  year: 2021
  ident: 10.1016/j.enconman.2024.118377_b0125
  article-title: A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.033
– volume: 43
  start-page: 11969
  year: 2018
  ident: 10.1016/j.enconman.2024.118377_b0095
  article-title: Direct injection internal combustion engine with high-pressure thermochemical recuperation – Experimental study of the first prototype
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.190
– start-page: 283
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0175
  article-title: Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine
  publication-title: Energy
– volume: 47
  start-page: 29242
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0130
  article-title: Investigation of a methanol processing system comprising of a steam reformer and two preferential oxidation reactors for fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.245
– volume: 96
  start-page: 160
  year: 2012
  ident: 10.1016/j.enconman.2024.118377_b0245
  article-title: Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2011.12.024
– year: 202290
  ident: 10.1016/j.enconman.2024.118377_b0090
  article-title: Synthesis gas as a fuel for internal combustion engines in transportation
  publication-title: Prog Energy Combust Sci
– volume: 254
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0145
  article-title: Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124330
– volume: 292
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0010
  article-title: Comparative study of hybrid architectures integrated with dual-fuel intelligent charge compression ignition engine: a commercial powertrain solution towards carbon neutrality
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.117423
– volume: 8
  start-page: 256
  year: 2004
  ident: 10.1016/j.enconman.2024.118377_b0225
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE T Evolut Comput
  doi: 10.1109/TEVC.2004.826067
– volume: 94
  start-page: 21
  year: 1998
  ident: 10.1016/j.enconman.2024.118377_b0165
  article-title: Effectively design shell-and-tube heat exchangers
  publication-title: Chem Eng Prog
– volume: 913
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0045
  article-title: The application prospect and challenge of the alternative methanol fuel in the internal combustion engine
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.169708
– ident: 10.1016/j.enconman.2024.118377_b0055
  doi: 10.1016/j.fuel.2023.128603
– volume: 302
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0040
  article-title: An exploratory study of knock intensity in a large-bore heavy-duty methanol engine
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2024.118089
– volume: 301
  start-page: 118027
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0025
  article-title: Syngas-diesel dual-fuel engine performance using H2/CO top gases from the steel industry furnaces
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.118027
– volume: 286
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0215
  article-title: Optimizing extraction of antioxidative biostimulant from waste onion peels for microalgae cultivation via response surface model
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.117023
– volume: 313
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0060
  article-title: Numerical comparative analysis on performance and emission characteristics of methanol/hydrogen, ethanol/hydrogen and butanol/hydrogen blends fuels under lean burn conditions in SI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.123012
– volume: 230
  start-page: 464
  year: 2005
  ident: 10.1016/j.enconman.2024.118377_b0195
  article-title: Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study
  publication-title: J Catal
  doi: 10.1016/j.jcat.2004.12.020
– volume: 196
  start-page: 297
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0140
  article-title: Performance analysis of methanol steam micro-reformers for enhanced hydrogen production using CFD
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2023.06.051
– ident: 10.1016/j.enconman.2024.118377_b0190
  doi: 10.1016/S0926-860X(98)00298-1
– volume: 317
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0150
  article-title: Study on the performance of diesel-methanol diffusion combustion with dual-direct injection system on a high-speed light-duty engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123414
– volume: 299
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0070
  article-title: Experimental investigation of the working boundary limited by abnormal combustion and the combustion characteristics of a turbocharged direct injection hydrogen engine
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.117861
– volume: 60
  start-page: 343
  year: 2013
  ident: 10.1016/j.enconman.2024.118377_b0160
  article-title: Design of shell-and-tube heat exchangers using multiobjective optimization
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.12.047
– volume: 319
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0020
  article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123832
– volume: 47
  start-page: 35757
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0085
  article-title: Progress on methanol reforming technologies for highly efficient hydrogen production and applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.134
– year: 2021
  ident: 10.1016/j.enconman.2024.118377_b0120
  article-title: Performance and pollutant emission of the reforming-controlled compression ignition engine – Experimental study
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2021.114126
– volume: 283
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0230
  article-title: Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.116874
– volume: 46
  start-page: 25294
  year: 2021
  ident: 10.1016/j.enconman.2024.118377_b0075
  article-title: Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.039
– volume: 293
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0235
  article-title: Modelling and multi-objective optimisation of sustainable solar-biomass-based hydrogen and electricity co-supply hub using metaheuristic-TOPSIS approach
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2023.117484
– volume: 290
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0210
  article-title: Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130156
– volume: 199
  year: 2019
  ident: 10.1016/j.enconman.2024.118377_b0250
  article-title: Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2019.111983
– volume: 277
  year: 2020
  ident: 10.1016/j.enconman.2024.118377_b0050
  article-title: Evaluation on combustion and lean-burn limit of a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115622
– year: 2022272
  ident: 10.1016/j.enconman.2024.118377_b0080
  article-title: The future of hydrogen: challenges on production, storage and applications
  publication-title: Energ Convers Manage
– volume: 332
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0115
  article-title: Numerical study on combustion and emission characteristics of a spark-ignition ammonia engine added with hydrogen-rich gas from exhaust-fuel reforming
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125939
– ident: 10.1016/j.enconman.2024.118377_b0185
  doi: 10.1016/S0926-860X(98)00299-3
– volume: 284
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0035
  article-title: Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128647
– volume: 41
  start-page: 1179
  year: 1949
  ident: 10.1016/j.enconman.2024.118377_b0180
  article-title: Fluid flow through randomly packed columns and fluidized beds
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50474a011
– volume: 250
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0240
  article-title: Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123756
– volume: 192
  year: 2024
  ident: 10.1016/j.enconman.2024.118377_b0005
  article-title: Review on the combustion progress and engine application of tailor-made fuels from biomass
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.114242
– volume: 46
  start-page: 22303
  year: 2021
  ident: 10.1016/j.enconman.2024.118377_b0030
  article-title: On-board methanol catalytic reforming for hydrogen production-a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.062
– volume: 333
  year: 2023
  ident: 10.1016/j.enconman.2024.118377_b0065
  article-title: A review on production and implementation of hydrogen as a green fuel in internal combustion engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126525
– volume: 110
  start-page: 86
  year: 2005
  ident: 10.1016/j.enconman.2024.118377_b0205
  article-title: Comparison of wall-coated and packed-bed reactors for steam reforming of methanol
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2005.09.010
– volume: 41
  start-page: 4957
  year: 2016
  ident: 10.1016/j.enconman.2024.118377_b0105
  article-title: Investigation on the hydrogen production by methanol steam reforming with engine exhaust heat recovery strategy
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.100
– volume: 62–64
  start-page: 694
  year: 2009
  ident: 10.1016/j.enconman.2024.118377_b0170
  article-title: The effect of baffles in Shell and tube heat exchangers
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.62-64.694
– volume: 47
  start-page: 3587
  year: 2022
  ident: 10.1016/j.enconman.2024.118377_b0155
  article-title: Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.041
– volume: 172
  start-page: 567
  year: 2018
  ident: 10.1016/j.enconman.2024.118377_b0100
  article-title: Reduction of smoke, PM2.5, and NOX of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2018.07.050
SSID ssj0003506
Score 2.552607
Snippet •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is...
The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118377
SubjectTerms administrative management
algorithms
analysis of variance
carbon monoxide
energy conversion
energy recovery
hydrogen
hydrogen production
methanol
Methanol steam reforming
Multi-objective particle swarm optimization
On-line hydrogen production
Pareto optimal solution
Response surface methodology
steam
temperature
transportation
Title Multi-objective optimization of methanol reforming reactor performance based on response surface methodology and multi-objective particle swarm optimization coupling algorithm for on-line hydrogen production
URI https://dx.doi.org/10.1016/j.enconman.2024.118377
https://www.proquest.com/docview/3206208443
Volume 307
WOSCitedRecordID wos001225034600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dj5NAEN80dz7og_Eznl9ZE98aKrBLYR8v5owaczGx0fpEgGV7bVq20nKef6V_hv-Gs19Ae5rTGF8IgS4DnR87w-xvZhB6HuQk9kNBvTIKhEezgnuqqTvsjVnMQsGIJmN-fBefnibTKXs_GPxwuTDny7iqkosLtv6vqoZjoGyVOvsX6m4vCgdgH5QOW1A7bP9I8Tql1pP5wkxlQwmTwspmW5rVdBUtl6qev3JYVagAHEcVu1c1jNssAmXeuFpKqA2LthxumlpkcMY0ne5qN632BK7tTQ03X7N6tSu_kM1aJ8Bny5ms59uzleY5ysrT7u7ZN17LmaGNcVPXdmfpwCQqaqa8DvMZ-ZcYPBMbBP_cwFQnm5Z0ZOnHn5ov8FLMurUE--vesek8k2bJoB8WCWlHQjSxOpev05GjdPiUjQGLpuHxqDRTfhIzT2UE920CMa14L9kXE-pYjFSR0Qoeb6REg9mBz_y4s6gtz_GDEqjkKaYuzJ7gKxyGccTAghwevzmZvm2dBhLpNrDtDfaS2X8t7Xd-1J5Hod2kyS10037f4GMDgdtoUFZ30I1e1cu76PseQnEfIVgK7BCKW4Rii1DcQyjWCMUwxCEUW4TiHkIxIATvIRQ7hGKN0F35DqG4RSgGidgiFDuE4g6h99Dk1cnk5WvP9hXxCkKjrSdIDP8wZ0XAOBUJfISoEkXgLcJZERXjIC-CUIDeIk6KTFCflgH1izwWsWClT-6jg0pW5QOEwb_2c1UgqiQJJWGecZ_ziPJcUCpCPz5CkVNSWtia-6r1yzJ15MpF6pSbKuWmRrlH6EU7bm2qzlw5gjkMpNZ3Nj5xCtC9cuwzB5oUjItaMcyqUjablIT-OPQTSsnDf7j-I3S9e0Mfo4Nt3ZRP0LXifDvf1E_tm_ATAb0J3w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+methanol+reforming+reactor+performance+based+on+response+surface+methodology+and+multi-objective+particle+swarm+optimization+coupling+algorithm+for+on-line+hydrogen+production&rft.jtitle=Energy+conversion+and+management&rft.au=Tang%2C+Yuanyou&rft.au=Long%2C+Wuqiang&rft.au=Wang%2C+Yang&rft.au=Xiao%2C+Ge&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=307&rft_id=info:doi/10.1016%2Fj.enconman.2024.118377&rft.externalDocID=S0196890424003182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon