Multi-objective optimization of methanol reforming reactor performance based on response surface methodology and multi-objective particle swarm optimization coupling algorithm for on-line hydrogen production
•An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating...
Gespeichert in:
| Veröffentlicht in: | Energy conversion and management Jg. 307; S. 118377 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2024
|
| Schlagworte: | |
| ISSN: | 0196-8904, 1879-2227 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating parameters is elucidated.•Under optimal operating parameters, 21.92% of exhaust energy recovery is achieved.
The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s−1, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h−1, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery. |
|---|---|
| AbstractList | •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is developed.•The regression model developed accurately predicts the optimization objectives.•Influence mechanism of the interaction between operating parameters is elucidated.•Under optimal operating parameters, 21.92% of exhaust energy recovery is achieved.
The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s−1, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h−1, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery. The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving hydrogen storage and transportation challenges. In this work, the response surface methodology (RSM) is combined with the multi-objective particle swarm optimization (MOPSO) algorithm, and is first utilized for multi-objective optimization of the performance of a methanol reforming reactor. Regression models for optimization objectives are developed based on RSM, and the reliability and significance of regression models are determined through analysis of variance. The influence mechanism of the interaction between design variables on optimization objectives is elucidated by visual analysis of the response surface. A multi-objective optimization of reactor performance is performed utilizing the MOPSO algorithm, and the Pareto optimal solution is obtained from the Pareto optimal frontier based on the technique for order preference by similarity to ideal solution method. Optimization results demonstrate that the Pareto optimal solution is obtained at an exhaust temperature of 585.21 K, an exhaust flow rate of 0.0097 kg·s⁻¹, a steam to methanol ratio of 1.48, and a weight hourly space velocity of 1.2. The hydrogen yield, methanol conversion and carbon monoxide selectivity corresponding to the Pareto optimal solution are 68.53 mol·h⁻¹, 0.83 and 0.011, respectively. Under optimal operating parameters, the methanol reforming reactor achieves 21.92 % exhaust energy recovery. |
| ArticleNumber | 118377 |
| Author | Wang, Yang Tang, Yuanyou Long, Wuqiang Lu, Mingfei Wang, Yongjian Xiao, Ge |
| Author_xml | – sequence: 1 givenname: Yuanyou surname: Tang fullname: Tang, Yuanyou – sequence: 2 givenname: Wuqiang surname: Long fullname: Long, Wuqiang – sequence: 3 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 4 givenname: Ge surname: Xiao fullname: Xiao, Ge email: xiaoge@dlut.edu.cn – sequence: 5 givenname: Yongjian orcidid: 0009-0007-1792-5252 surname: Wang fullname: Wang, Yongjian – sequence: 6 givenname: Mingfei surname: Lu fullname: Lu, Mingfei |
| BookMark | eNqFkc1uFDEQhC2USGxCXiHykcts7PHs_EgcQBEQpCAuuVteu73rlcc92J6gzUvySniycCCXnGx119clVV2Qs4ABCLnmbM0Zb28Oawgaw6jCumZ1s-a8F133hqx43w1VXdfdGVkxPrRVP7DmLblI6cAYExvWrsjv77PPrsLtAXR2j0Bxym50Tyo7DBQtHSHvVUBPI1iMowu78lM6Y6QTxGWkgga6VQkMLUiENGFIQNMcrSqb5QAa9Lg7UhUMHV8YTipmp30Bfqk4_u-vcZ78Yqn8DqPL-5EWx2JTlSnQ_dFE3EGgU0Qz6wV5R86t8gmu_r6X5OHL54fbu-r-x9dvt5_uKy2aTa6s6EoWZtB8MI3tWS-GoWUaoGztRrd8q3lt237YGKGVbVgDvGF629nODsDEJXl_Olucf86Qshxd0uC9CoBzkqJmbc36phFF2p6kOmJKJUU5RTeqeJScyaVAeZD_CpRLgfJUYAE_vAC1y8-55Kicfx3_eMKhxPDoIMqkXVGCcbFELw261078AVttxjk |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2024_134114 crossref_primary_10_1039_D4SE01718H crossref_primary_10_1016_j_cep_2024_110149 crossref_primary_10_1016_j_ces_2024_120595 crossref_primary_10_1016_j_applthermaleng_2025_125785 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127045 crossref_primary_10_3390_separations12060161 crossref_primary_10_1016_j_solener_2025_113747 crossref_primary_10_1016_j_energy_2025_137397 crossref_primary_10_1016_j_applthermaleng_2025_126272 crossref_primary_10_1016_j_ijhydene_2024_10_002 crossref_primary_10_1016_j_seta_2024_104034 crossref_primary_10_1016_j_ijhydene_2024_10_051 crossref_primary_10_1016_j_fuel_2024_132767 crossref_primary_10_1016_j_enconman_2024_118844 crossref_primary_10_1016_j_apenergy_2025_125488 crossref_primary_10_1016_j_ijhydene_2024_09_342 crossref_primary_10_3390_jmse13050959 crossref_primary_10_1016_j_cej_2024_157188 crossref_primary_10_1016_j_est_2024_113477 crossref_primary_10_1080_00102202_2024_2446917 crossref_primary_10_3390_app15010140 crossref_primary_10_1016_j_ijhydene_2025_150432 crossref_primary_10_1016_j_applthermaleng_2024_124643 crossref_primary_10_1016_j_ijhydene_2025_04_261 crossref_primary_10_1016_j_energy_2025_137042 |
| Cites_doi | 10.1016/j.scitotenv.2022.161225 10.1016/j.ijhydene.2016.07.083 10.1016/j.apcata.2003.09.013 10.1016/S0020-0190(02)00447-7 10.1016/j.fuel.2018.09.073 10.1016/j.ijhydene.2021.09.033 10.1016/j.ijhydene.2018.04.190 10.1016/j.ijhydene.2022.06.245 10.1016/j.fuproc.2011.12.024 10.1016/j.energy.2022.124330 10.1016/j.enconman.2023.117423 10.1109/TEVC.2004.826067 10.1016/j.scitotenv.2023.169708 10.1016/j.fuel.2023.128603 10.1016/j.enconman.2024.118089 10.1016/j.enconman.2023.118027 10.1016/j.enconman.2023.117023 10.1016/j.fuel.2021.123012 10.1016/j.jcat.2004.12.020 10.1016/j.cherd.2023.06.051 10.1016/S0926-860X(98)00298-1 10.1016/j.fuel.2022.123414 10.1016/j.enconman.2023.117861 10.1016/j.ijheatmasstransfer.2012.12.047 10.1016/j.fuel.2022.123832 10.1016/j.ijhydene.2022.08.134 10.1016/j.enconman.2021.114126 10.1016/j.enconman.2023.116874 10.1016/j.ijhydene.2021.05.039 10.1016/j.enconman.2023.117484 10.1016/j.energy.2023.130156 10.1016/j.enconman.2019.111983 10.1016/j.apenergy.2020.115622 10.1016/j.fuel.2022.125939 10.1016/S0926-860X(98)00299-3 10.1016/j.energy.2023.128647 10.1021/ie50474a011 10.1016/j.energy.2022.123756 10.1016/j.rser.2023.114242 10.1016/j.ijhydene.2021.04.062 10.1016/j.fuel.2022.126525 10.1016/j.cattod.2005.09.010 10.1016/j.ijhydene.2016.01.100 10.4028/www.scientific.net/AMR.62-64.694 10.1016/j.ijhydene.2021.11.041 10.1016/j.enconman.2018.07.050 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2024.118377 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2024_118377 S0196890424003182 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-f37904d9c19d4f80839960cee345f5c61bc12f6895d3caf404e140cb7f7f9e03 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225034600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Thu Oct 02 22:50:12 EDT 2025 Sat Nov 29 04:26:10 EST 2025 Tue Nov 18 22:12:18 EST 2025 Sat May 11 15:32:49 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective particle swarm optimization Pareto optimal solution Methanol steam reforming On-line hydrogen production Response surface methodology |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-f37904d9c19d4f80839960cee345f5c61bc12f6895d3caf404e140cb7f7f9e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0007-1792-5252 |
| PQID | 3206208443 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3206208443 crossref_primary_10_1016_j_enconman_2024_118377 crossref_citationtrail_10_1016_j_enconman_2024_118377 elsevier_sciencedirect_doi_10_1016_j_enconman_2024_118377 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liao, Horng (b0105) 2016; 41 Purnama, Ressler, Jentoft, Soerijanto, Schlögl, Schomäcker (b0200) 2004; 259 Tang, Wang, Long, Xiao, Wang, Li (b0175) 2023 Poran, Thawko, Eyal, Tartakovsky (b0095) 2018; 43 Wang, Zhang, Sun, Zhang, Lai, Ma (b0070) 2024; 299 Mei, Qiu, Liu, Wu, Yu, Xu (b0085) 2022; 47 Fettaka, Thibault, Gupta (b0160) 2013; 60 Xiao, Xu, Wang, Wang, Xu (b0130) 2022; 47 Zhou, Yu, Wu, Fu, Liu, Duan (b0045) 2024; 913 Suparmaniam, Lam, Rawindran, Lim, Pa'ee, Yong (b0215) 2023; 286 Srivastava, Kumar, Dhar (b0125) 2021; 46 Nuthan Prasad, Pandey, Kumar (b0075) 2021; 46 Mukherjee (b0165) 1998; 94 P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A: Gen 1999;179:21-29. Doi: 10.1016/S0926-860X(98)00298-1. Wang, Wang (b0135) 2016; 41 Wu, Hsu, Fan, He (b0100) 2018; 172 Tian, Wang, Zhen, Liu (b0060) 2022; 313 Eyal, Thawko, Baibikov, Tartakovsky (b0120) 2021 Li, Ma, Zou, Li, Huang, Zhu (b0030) 2021; 46 Sarafraz, Safaei, Goodarzi, Arjomandi (b0250) 2019; 199 Rasul, Hazrat, Sattar, Jahirul, Shearer (b0080) 2022;272. Li, Li, Pang, Liu, Jia, Long (b0035) 2023; 284 Zhang, Li, Long, Zhang, Wei, Zhou (b0115) 2023; 332 Li, Ye, Gong, Deng, Wang, Liu (b0005) 2024; 192 Akpabio, Oboh, Aluyor (b0170) 2009; 62–64 Ergun, Orning (b0180) 1949; 41 Ali, Hassan Ali (b0025) 2024; 301 Kang, Song, Kim, Kim (b0155) 2022; 47 Zhang, Wu, Mi, Zhao, He, Qian (b0010) 2023; 292 Goh, Zhang, Ho, Chew (b0235) 2023; 293 Paykani, Chehrmonavari, Tsolakis, Alger, Northrop, Reitz (b0090) 2022;90. P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A: Gen 1999;179:31-49. Doi: 10.1016/S0926-860X(98)00299-3. Shen, Gong, Xie, Lu, Guo (b0210) 2024; 290 Coello, Pulido, Lechuga (b0225) 2004; 8 Nguyen, Sileghem, Verhelst (b0110) 2019; 236 Mastalir, Frank, Szizybalski, Soerijanto, Deshpande, Niederberger (b0195) 2005; 230 Gong, Li, Sun, Liu (b0050) 2020; 277 Maricq (b0015) 2023; 866 Bose, Kumar, Hens (b0140) 2023; 196 Monyanon, Luengnaruemitchai, Pongstabodee (b0245) 2012; 96 Teoh, How, Le, Nguyen, Loo, Rashid (b0065) 2023; 333 Zhang, Xu, Yu, Wu, Jin, Xiao (b0145) 2022; 254 Meng, Zhang, Zhao, Tian, Tian, Long (b0020) 2022; 319 Chen, Hu, Xu, Xu, Wang, Lund (b0240) 2022; 250 Karim, Bravo, Gorm, Conant, Datye (b0205) 2005; 110 Trelea (b0220) 2003; 85 Wang, Xiao, Li, Tian, Leng, Wang (b0150) 2022; 317 C. Gong, Z. Li, F. Liu. Numerical study of the firing, radicals and intermediates in the combustion process of a H2-assisted combustion DISI methanol engine. Fuel 2023;348. Doi: 10.1016/j.fuel.2023.128603. Mehregan, Sheykhi, Alizadeh Kharkeshi, Emamian, Aliakbari, Rafiee (b0230) 2023; 283 Suijs, De Graeve, Verhelst (b0040) 2024; 302 Mastalir (10.1016/j.enconman.2024.118377_b0195) 2005; 230 Zhang (10.1016/j.enconman.2024.118377_b0115) 2023; 332 Purnama (10.1016/j.enconman.2024.118377_b0200) 2004; 259 Rasul (10.1016/j.enconman.2024.118377_b0080) 2022272 Monyanon (10.1016/j.enconman.2024.118377_b0245) 2012; 96 Nuthan Prasad (10.1016/j.enconman.2024.118377_b0075) 2021; 46 Akpabio (10.1016/j.enconman.2024.118377_b0170) 2009; 62–64 Coello (10.1016/j.enconman.2024.118377_b0225) 2004; 8 Goh (10.1016/j.enconman.2024.118377_b0235) 2023; 293 Li (10.1016/j.enconman.2024.118377_b0005) 2024; 192 Wang (10.1016/j.enconman.2024.118377_b0150) 2022; 317 Karim (10.1016/j.enconman.2024.118377_b0205) 2005; 110 Li (10.1016/j.enconman.2024.118377_b0030) 2021; 46 Liao (10.1016/j.enconman.2024.118377_b0105) 2016; 41 Li (10.1016/j.enconman.2024.118377_b0035) 2023; 284 Wang (10.1016/j.enconman.2024.118377_b0070) 2024; 299 Sarafraz (10.1016/j.enconman.2024.118377_b0250) 2019; 199 10.1016/j.enconman.2024.118377_b0190 Bose (10.1016/j.enconman.2024.118377_b0140) 2023; 196 Ergun (10.1016/j.enconman.2024.118377_b0180) 1949; 41 Chen (10.1016/j.enconman.2024.118377_b0240) 2022; 250 Eyal (10.1016/j.enconman.2024.118377_b0120) 2021 Mukherjee (10.1016/j.enconman.2024.118377_b0165) 1998; 94 Suparmaniam (10.1016/j.enconman.2024.118377_b0215) 2023; 286 Suijs (10.1016/j.enconman.2024.118377_b0040) 2024; 302 Teoh (10.1016/j.enconman.2024.118377_b0065) 2023; 333 Shen (10.1016/j.enconman.2024.118377_b0210) 2024; 290 Ali (10.1016/j.enconman.2024.118377_b0025) 2024; 301 Wu (10.1016/j.enconman.2024.118377_b0100) 2018; 172 Trelea (10.1016/j.enconman.2024.118377_b0220) 2003; 85 Zhang (10.1016/j.enconman.2024.118377_b0010) 2023; 292 Meng (10.1016/j.enconman.2024.118377_b0020) 2022; 319 Paykani (10.1016/j.enconman.2024.118377_b0090) 202290 Mehregan (10.1016/j.enconman.2024.118377_b0230) 2023; 283 Wang (10.1016/j.enconman.2024.118377_b0135) 2016; 41 Tang (10.1016/j.enconman.2024.118377_b0175) 2023 10.1016/j.enconman.2024.118377_b0185 Zhou (10.1016/j.enconman.2024.118377_b0045) 2024; 913 Poran (10.1016/j.enconman.2024.118377_b0095) 2018; 43 Tian (10.1016/j.enconman.2024.118377_b0060) 2022; 313 Gong (10.1016/j.enconman.2024.118377_b0050) 2020; 277 Fettaka (10.1016/j.enconman.2024.118377_b0160) 2013; 60 Maricq (10.1016/j.enconman.2024.118377_b0015) 2023; 866 Zhang (10.1016/j.enconman.2024.118377_b0145) 2022; 254 Mei (10.1016/j.enconman.2024.118377_b0085) 2022; 47 Xiao (10.1016/j.enconman.2024.118377_b0130) 2022; 47 Srivastava (10.1016/j.enconman.2024.118377_b0125) 2021; 46 Nguyen (10.1016/j.enconman.2024.118377_b0110) 2019; 236 Kang (10.1016/j.enconman.2024.118377_b0155) 2022; 47 10.1016/j.enconman.2024.118377_b0055 |
| References_xml | – volume: 283 year: 2023 ident: b0230 article-title: Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine publication-title: Energ Convers Manage – volume: 41 start-page: 16835 year: 2016 end-page: 16841 ident: b0135 article-title: Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor publication-title: Int J Hydrogen Energy – volume: 292 year: 2023 ident: b0010 article-title: Comparative study of hybrid architectures integrated with dual-fuel intelligent charge compression ignition engine: a commercial powertrain solution towards carbon neutrality publication-title: Energ Convers Manage – year: 2022;272. ident: b0080 article-title: The future of hydrogen: challenges on production, storage and applications publication-title: Energ Convers Manage – reference: P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A: Gen 1999;179:31-49. Doi: 10.1016/S0926-860X(98)00299-3. – volume: 199 year: 2019 ident: b0250 article-title: Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology publication-title: Energ Convers Manage – volume: 43 start-page: 11969 year: 2018 end-page: 11980 ident: b0095 article-title: Direct injection internal combustion engine with high-pressure thermochemical recuperation – Experimental study of the first prototype publication-title: Int J Hydrogen Energy – volume: 94 start-page: 21 year: 1998 end-page: 37 ident: b0165 article-title: Effectively design shell-and-tube heat exchangers publication-title: Chem Eng Prog – reference: P. Brant A, A. John C, K. Lyn M, M. Ronald F. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A: Gen 1999;179:21-29. Doi: 10.1016/S0926-860X(98)00298-1. – volume: 319 year: 2022 ident: b0020 article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME publication-title: Fuel – volume: 301 start-page: 118027 year: 2024 ident: b0025 article-title: Syngas-diesel dual-fuel engine performance using H2/CO top gases from the steel industry furnaces publication-title: Energ Convers Manage – volume: 332 year: 2023 ident: b0115 article-title: Numerical study on combustion and emission characteristics of a spark-ignition ammonia engine added with hydrogen-rich gas from exhaust-fuel reforming publication-title: Fuel – volume: 47 start-page: 3587 year: 2022 end-page: 3610 ident: b0155 article-title: Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming publication-title: Int J Hydrogen Energy – reference: C. Gong, Z. Li, F. Liu. Numerical study of the firing, radicals and intermediates in the combustion process of a H2-assisted combustion DISI methanol engine. Fuel 2023;348. Doi: 10.1016/j.fuel.2023.128603. – volume: 46 start-page: 22303 year: 2021 end-page: 22327 ident: b0030 article-title: On-board methanol catalytic reforming for hydrogen production-a review publication-title: Int J Hydrogen Energy – volume: 913 year: 2024 ident: b0045 article-title: The application prospect and challenge of the alternative methanol fuel in the internal combustion engine publication-title: Sci Total Environ – volume: 47 start-page: 29242 year: 2022 end-page: 29254 ident: b0130 article-title: Investigation of a methanol processing system comprising of a steam reformer and two preferential oxidation reactors for fuel cells publication-title: Int J Hydrogen Energy – volume: 866 year: 2023 ident: b0015 article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: literature review and future prospects publication-title: Sci Total Environ – volume: 60 start-page: 343 year: 2013 end-page: 354 ident: b0160 article-title: Design of shell-and-tube heat exchangers using multiobjective optimization publication-title: Int J Heat Mass Transfer – volume: 172 start-page: 567 year: 2018 end-page: 578 ident: b0100 article-title: Reduction of smoke, PM2.5, and NOX of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR publication-title: Energ Convers Manage – volume: 313 year: 2022 ident: b0060 article-title: Numerical comparative analysis on performance and emission characteristics of methanol/hydrogen, ethanol/hydrogen and butanol/hydrogen blends fuels under lean burn conditions in SI engine publication-title: Fuel – volume: 236 start-page: 778 year: 2019 end-page: 791 ident: b0110 article-title: Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines publication-title: Fuel – year: 2022;90. ident: b0090 article-title: Synthesis gas as a fuel for internal combustion engines in transportation publication-title: Prog Energy Combust Sci – volume: 230 start-page: 464 year: 2005 end-page: 475 ident: b0195 article-title: Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study publication-title: J Catal – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: b0220 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inform Process Lett – volume: 46 start-page: 38073 year: 2021 end-page: 38088 ident: b0125 article-title: A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation publication-title: Int J Hydrogen Energy – volume: 284 year: 2023 ident: b0035 article-title: Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine publication-title: Energy – volume: 302 year: 2024 ident: b0040 article-title: An exploratory study of knock intensity in a large-bore heavy-duty methanol engine publication-title: Energ Convers Manage – volume: 41 start-page: 1179 year: 1949 end-page: 1184 ident: b0180 article-title: Fluid flow through randomly packed columns and fluidized beds publication-title: Ind Eng Chem – volume: 250 year: 2022 ident: b0240 article-title: Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax publication-title: Energy – volume: 333 year: 2023 ident: b0065 article-title: A review on production and implementation of hydrogen as a green fuel in internal combustion engines publication-title: Fuel – volume: 46 start-page: 25294 year: 2021 end-page: 25307 ident: b0075 article-title: Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine publication-title: Int J Hydrogen Energy – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0225 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE T Evolut Comput – volume: 110 start-page: 86 year: 2005 end-page: 91 ident: b0205 article-title: Comparison of wall-coated and packed-bed reactors for steam reforming of methanol publication-title: Catal Today – volume: 293 year: 2023 ident: b0235 article-title: Modelling and multi-objective optimisation of sustainable solar-biomass-based hydrogen and electricity co-supply hub using metaheuristic-TOPSIS approach publication-title: Energ Convers Manage – volume: 47 start-page: 35757 year: 2022 end-page: 35777 ident: b0085 article-title: Progress on methanol reforming technologies for highly efficient hydrogen production and applications publication-title: Int J Hydrogen Energy – volume: 192 year: 2024 ident: b0005 article-title: Review on the combustion progress and engine application of tailor-made fuels from biomass publication-title: Renew Sustain Energy Rev – volume: 277 year: 2020 ident: b0050 article-title: Evaluation on combustion and lean-burn limit of a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection publication-title: Appl Energy – volume: 286 year: 2023 ident: b0215 article-title: Optimizing extraction of antioxidative biostimulant from waste onion peels for microalgae cultivation via response surface model publication-title: Energ Convers Manage – start-page: 283 year: 2023 ident: b0175 article-title: Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine publication-title: Energy – volume: 41 start-page: 4957 year: 2016 end-page: 4968 ident: b0105 article-title: Investigation on the hydrogen production by methanol steam reforming with engine exhaust heat recovery strategy publication-title: Int J Hydrogen Energy – volume: 62–64 start-page: 694 year: 2009 end-page: 699 ident: b0170 article-title: The effect of baffles in Shell and tube heat exchangers publication-title: Adv Mater Res – volume: 96 start-page: 160 year: 2012 end-page: 168 ident: b0245 article-title: Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments publication-title: Fuel Process Technol – year: 2021 ident: b0120 article-title: Performance and pollutant emission of the reforming-controlled compression ignition engine – Experimental study publication-title: Energ Convers Manage – volume: 290 year: 2024 ident: b0210 article-title: Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine publication-title: Energy – volume: 259 start-page: 83 year: 2004 end-page: 94 ident: b0200 article-title: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst publication-title: Appl Catal A: Gen – volume: 196 start-page: 297 year: 2023 end-page: 308 ident: b0140 article-title: Performance analysis of methanol steam micro-reformers for enhanced hydrogen production using CFD publication-title: Chem Eng Res Des – volume: 299 year: 2024 ident: b0070 article-title: Experimental investigation of the working boundary limited by abnormal combustion and the combustion characteristics of a turbocharged direct injection hydrogen engine publication-title: Energ Convers Manage – volume: 317 year: 2022 ident: b0150 article-title: Study on the performance of diesel-methanol diffusion combustion with dual-direct injection system on a high-speed light-duty engine publication-title: Fuel – volume: 254 year: 2022 ident: b0145 article-title: Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside publication-title: Energy – volume: 866 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0015 article-title: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: literature review and future prospects publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.161225 – volume: 41 start-page: 16835 year: 2016 ident: 10.1016/j.enconman.2024.118377_b0135 article-title: Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.083 – volume: 259 start-page: 83 year: 2004 ident: 10.1016/j.enconman.2024.118377_b0200 article-title: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2003.09.013 – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.enconman.2024.118377_b0220 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inform Process Lett doi: 10.1016/S0020-0190(02)00447-7 – volume: 236 start-page: 778 year: 2019 ident: 10.1016/j.enconman.2024.118377_b0110 article-title: Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines publication-title: Fuel doi: 10.1016/j.fuel.2018.09.073 – volume: 46 start-page: 38073 year: 2021 ident: 10.1016/j.enconman.2024.118377_b0125 article-title: A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.033 – volume: 43 start-page: 11969 year: 2018 ident: 10.1016/j.enconman.2024.118377_b0095 article-title: Direct injection internal combustion engine with high-pressure thermochemical recuperation – Experimental study of the first prototype publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.190 – start-page: 283 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0175 article-title: Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine publication-title: Energy – volume: 47 start-page: 29242 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0130 article-title: Investigation of a methanol processing system comprising of a steam reformer and two preferential oxidation reactors for fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.245 – volume: 96 start-page: 160 year: 2012 ident: 10.1016/j.enconman.2024.118377_b0245 article-title: Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2011.12.024 – year: 202290 ident: 10.1016/j.enconman.2024.118377_b0090 article-title: Synthesis gas as a fuel for internal combustion engines in transportation publication-title: Prog Energy Combust Sci – volume: 254 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0145 article-title: Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside publication-title: Energy doi: 10.1016/j.energy.2022.124330 – volume: 292 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0010 article-title: Comparative study of hybrid architectures integrated with dual-fuel intelligent charge compression ignition engine: a commercial powertrain solution towards carbon neutrality publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.117423 – volume: 8 start-page: 256 year: 2004 ident: 10.1016/j.enconman.2024.118377_b0225 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE T Evolut Comput doi: 10.1109/TEVC.2004.826067 – volume: 94 start-page: 21 year: 1998 ident: 10.1016/j.enconman.2024.118377_b0165 article-title: Effectively design shell-and-tube heat exchangers publication-title: Chem Eng Prog – volume: 913 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0045 article-title: The application prospect and challenge of the alternative methanol fuel in the internal combustion engine publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.169708 – ident: 10.1016/j.enconman.2024.118377_b0055 doi: 10.1016/j.fuel.2023.128603 – volume: 302 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0040 article-title: An exploratory study of knock intensity in a large-bore heavy-duty methanol engine publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2024.118089 – volume: 301 start-page: 118027 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0025 article-title: Syngas-diesel dual-fuel engine performance using H2/CO top gases from the steel industry furnaces publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.118027 – volume: 286 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0215 article-title: Optimizing extraction of antioxidative biostimulant from waste onion peels for microalgae cultivation via response surface model publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.117023 – volume: 313 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0060 article-title: Numerical comparative analysis on performance and emission characteristics of methanol/hydrogen, ethanol/hydrogen and butanol/hydrogen blends fuels under lean burn conditions in SI engine publication-title: Fuel doi: 10.1016/j.fuel.2021.123012 – volume: 230 start-page: 464 year: 2005 ident: 10.1016/j.enconman.2024.118377_b0195 article-title: Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study publication-title: J Catal doi: 10.1016/j.jcat.2004.12.020 – volume: 196 start-page: 297 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0140 article-title: Performance analysis of methanol steam micro-reformers for enhanced hydrogen production using CFD publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2023.06.051 – ident: 10.1016/j.enconman.2024.118377_b0190 doi: 10.1016/S0926-860X(98)00298-1 – volume: 317 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0150 article-title: Study on the performance of diesel-methanol diffusion combustion with dual-direct injection system on a high-speed light-duty engine publication-title: Fuel doi: 10.1016/j.fuel.2022.123414 – volume: 299 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0070 article-title: Experimental investigation of the working boundary limited by abnormal combustion and the combustion characteristics of a turbocharged direct injection hydrogen engine publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.117861 – volume: 60 start-page: 343 year: 2013 ident: 10.1016/j.enconman.2024.118377_b0160 article-title: Design of shell-and-tube heat exchangers using multiobjective optimization publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.12.047 – volume: 319 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0020 article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME publication-title: Fuel doi: 10.1016/j.fuel.2022.123832 – volume: 47 start-page: 35757 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0085 article-title: Progress on methanol reforming technologies for highly efficient hydrogen production and applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.134 – year: 2021 ident: 10.1016/j.enconman.2024.118377_b0120 article-title: Performance and pollutant emission of the reforming-controlled compression ignition engine – Experimental study publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2021.114126 – volume: 283 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0230 article-title: Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.116874 – volume: 46 start-page: 25294 year: 2021 ident: 10.1016/j.enconman.2024.118377_b0075 article-title: Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.039 – volume: 293 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0235 article-title: Modelling and multi-objective optimisation of sustainable solar-biomass-based hydrogen and electricity co-supply hub using metaheuristic-TOPSIS approach publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2023.117484 – volume: 290 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0210 article-title: Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2023.130156 – volume: 199 year: 2019 ident: 10.1016/j.enconman.2024.118377_b0250 article-title: Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2019.111983 – volume: 277 year: 2020 ident: 10.1016/j.enconman.2024.118377_b0050 article-title: Evaluation on combustion and lean-burn limit of a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115622 – year: 2022272 ident: 10.1016/j.enconman.2024.118377_b0080 article-title: The future of hydrogen: challenges on production, storage and applications publication-title: Energ Convers Manage – volume: 332 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0115 article-title: Numerical study on combustion and emission characteristics of a spark-ignition ammonia engine added with hydrogen-rich gas from exhaust-fuel reforming publication-title: Fuel doi: 10.1016/j.fuel.2022.125939 – ident: 10.1016/j.enconman.2024.118377_b0185 doi: 10.1016/S0926-860X(98)00299-3 – volume: 284 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0035 article-title: Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine publication-title: Energy doi: 10.1016/j.energy.2023.128647 – volume: 41 start-page: 1179 year: 1949 ident: 10.1016/j.enconman.2024.118377_b0180 article-title: Fluid flow through randomly packed columns and fluidized beds publication-title: Ind Eng Chem doi: 10.1021/ie50474a011 – volume: 250 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0240 article-title: Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax publication-title: Energy doi: 10.1016/j.energy.2022.123756 – volume: 192 year: 2024 ident: 10.1016/j.enconman.2024.118377_b0005 article-title: Review on the combustion progress and engine application of tailor-made fuels from biomass publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.114242 – volume: 46 start-page: 22303 year: 2021 ident: 10.1016/j.enconman.2024.118377_b0030 article-title: On-board methanol catalytic reforming for hydrogen production-a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.062 – volume: 333 year: 2023 ident: 10.1016/j.enconman.2024.118377_b0065 article-title: A review on production and implementation of hydrogen as a green fuel in internal combustion engines publication-title: Fuel doi: 10.1016/j.fuel.2022.126525 – volume: 110 start-page: 86 year: 2005 ident: 10.1016/j.enconman.2024.118377_b0205 article-title: Comparison of wall-coated and packed-bed reactors for steam reforming of methanol publication-title: Catal Today doi: 10.1016/j.cattod.2005.09.010 – volume: 41 start-page: 4957 year: 2016 ident: 10.1016/j.enconman.2024.118377_b0105 article-title: Investigation on the hydrogen production by methanol steam reforming with engine exhaust heat recovery strategy publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.01.100 – volume: 62–64 start-page: 694 year: 2009 ident: 10.1016/j.enconman.2024.118377_b0170 article-title: The effect of baffles in Shell and tube heat exchangers publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.62-64.694 – volume: 47 start-page: 3587 year: 2022 ident: 10.1016/j.enconman.2024.118377_b0155 article-title: Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.041 – volume: 172 start-page: 567 year: 2018 ident: 10.1016/j.enconman.2024.118377_b0100 article-title: Reduction of smoke, PM2.5, and NOX of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2018.07.050 |
| SSID | ssj0003506 |
| Score | 2.552607 |
| Snippet | •An on-line methanol reforming system integrating exhaust energy recovery is proposed.•A coupling algorithm suitable for multi-objective optimization is... The utilization of high-temperature exhaust to drive methanol steam reforming for on-line hydrogen production in engines is an effective approach to solving... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118377 |
| SubjectTerms | administrative management algorithms analysis of variance carbon monoxide energy conversion energy recovery hydrogen hydrogen production methanol Methanol steam reforming Multi-objective particle swarm optimization On-line hydrogen production Pareto optimal solution Response surface methodology steam temperature transportation |
| Title | Multi-objective optimization of methanol reforming reactor performance based on response surface methodology and multi-objective particle swarm optimization coupling algorithm for on-line hydrogen production |
| URI | https://dx.doi.org/10.1016/j.enconman.2024.118377 https://www.proquest.com/docview/3206208443 |
| Volume | 307 |
| WOSCitedRecordID | wos001225034600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dj5NAEN80dz7og_Eznl9ZE98aKrBLYR8v5owaczGx0fpEgGV7bVq20nKef6V_hv-Gs19Ae5rTGF8IgS4DnR87w-xvZhB6HuQk9kNBvTIKhEezgnuqqTvsjVnMQsGIJmN-fBefnibTKXs_GPxwuTDny7iqkosLtv6vqoZjoGyVOvsX6m4vCgdgH5QOW1A7bP9I8Tql1pP5wkxlQwmTwspmW5rVdBUtl6qev3JYVagAHEcVu1c1jNssAmXeuFpKqA2LthxumlpkcMY0ne5qN632BK7tTQ03X7N6tSu_kM1aJ8Bny5ms59uzleY5ysrT7u7ZN17LmaGNcVPXdmfpwCQqaqa8DvMZ-ZcYPBMbBP_cwFQnm5Z0ZOnHn5ov8FLMurUE--vesek8k2bJoB8WCWlHQjSxOpev05GjdPiUjQGLpuHxqDRTfhIzT2UE920CMa14L9kXE-pYjFSR0Qoeb6REg9mBz_y4s6gtz_GDEqjkKaYuzJ7gKxyGccTAghwevzmZvm2dBhLpNrDtDfaS2X8t7Xd-1J5Hod2kyS10037f4GMDgdtoUFZ30I1e1cu76PseQnEfIVgK7BCKW4Rii1DcQyjWCMUwxCEUW4TiHkIxIATvIRQ7hGKN0F35DqG4RSgGidgiFDuE4g6h99Dk1cnk5WvP9hXxCkKjrSdIDP8wZ0XAOBUJfISoEkXgLcJZERXjIC-CUIDeIk6KTFCflgH1izwWsWClT-6jg0pW5QOEwb_2c1UgqiQJJWGecZ_ziPJcUCpCPz5CkVNSWtia-6r1yzJ15MpF6pSbKuWmRrlH6EU7bm2qzlw5gjkMpNZ3Nj5xCtC9cuwzB5oUjItaMcyqUjablIT-OPQTSsnDf7j-I3S9e0Mfo4Nt3ZRP0LXifDvf1E_tm_ATAb0J3w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+methanol+reforming+reactor+performance+based+on+response+surface+methodology+and+multi-objective+particle+swarm+optimization+coupling+algorithm+for+on-line+hydrogen+production&rft.jtitle=Energy+conversion+and+management&rft.au=Tang%2C+Yuanyou&rft.au=Long%2C+Wuqiang&rft.au=Wang%2C+Yang&rft.au=Xiao%2C+Ge&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=307&rft_id=info:doi/10.1016%2Fj.enconman.2024.118377&rft.externalDocID=S0196890424003182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |