Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant i...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 36; s. 148 - 163 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2014
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions.
•We propose a hybrid ABC algorithm so called VABC for numerical function optimization.•Inspiring from the PSO, the VABC improves the ABC׳s exploitation strategy.•The VABC considers a velocity value for each particle in the onlooker search equation.•The VABC is compared with ABC, PSO and the seven state-of-the-art hybrid methods.•The results show that the VABC has higher convergence speed and better search ability. |
|---|---|
| AbstractList | Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions. Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions. •We propose a hybrid ABC algorithm so called VABC for numerical function optimization.•Inspiring from the PSO, the VABC improves the ABC׳s exploitation strategy.•The VABC considers a velocity value for each particle in the onlooker search equation.•The VABC is compared with ABC, PSO and the seven state-of-the-art hybrid methods.•The results show that the VABC has higher convergence speed and better search ability. |
| Author | Moradi, Parham Imanian, Nafiseh Shiri, Mohammad Ebrahim |
| Author_xml | – sequence: 1 givenname: Nafiseh surname: Imanian fullname: Imanian, Nafiseh email: imanian@aut.ac.ir organization: Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran – sequence: 2 givenname: Mohammad Ebrahim surname: Shiri fullname: Shiri, Mohammad Ebrahim email: shiri@aut.ac.ir organization: Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran – sequence: 3 givenname: Parham surname: Moradi fullname: Moradi, Parham email: p.moradi@uok.ac.ir organization: Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran |
| BookMark | eNqFkE-LFDEQxYOs4OzqV5AcvXSbdLo73eBBWfwHC17Ua0gnlZka0kmbZITx05tx9OJlTwVV7716_G7JTYgBCHnJWcsZH18fWwh7vW0a247xvmWyZbx7QnZ8kqIZ5TjfkB2bh67hsxyfkducj4wxMfXjjtjv4KPBcqaLzmCpTgUdGtSeLgDURB_DmWq_jwnLYaUuJnrA_YFaXCFkjKEqTQwFwymeMo1bwRV_6VIvdEtx8bDm5-Sp0z7Di7_zjnz78P7r_afm4cvHz_fvHhoj-qE0ALJztdcEXEzWMmkM6wYxS-E6fVmImQsrhDGL7udlEDDOnbNOuklPSz3ckVfX3Pr4xwlyUStmA97rALWc4uPAeyH5cJG-uUpNijkncKpC-NO6JI1ecaYucNVR_YOrLnAVk6rCrfbxP_uWcNXp_Ljx7dUIlcNPhKSyQQgGLCYwRdmIj0X8BhdRnXw |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106656 crossref_primary_10_1109_TCSS_2020_3007769 crossref_primary_10_1016_j_swevo_2019_06_006 crossref_primary_10_1016_j_engappai_2023_107579 crossref_primary_10_1007_s00500_018_3273_z crossref_primary_10_1016_j_asoc_2016_05_007 crossref_primary_10_1002_cepa_1555 crossref_primary_10_1016_j_eswa_2022_117217 crossref_primary_10_1016_j_ceramint_2014_10_158 crossref_primary_10_1155_2016_9820294 crossref_primary_10_1515_bpasts_2017_0030 crossref_primary_10_1007_s00500_019_03939_y crossref_primary_10_1109_ACCESS_2018_2880280 crossref_primary_10_1016_j_ins_2022_05_065 crossref_primary_10_1080_23302674_2020_1753127 crossref_primary_10_1080_08839514_2021_2008147 crossref_primary_10_1016_j_engappai_2017_10_024 crossref_primary_10_1016_j_asoc_2018_06_013 crossref_primary_10_1016_j_eswa_2018_08_027 crossref_primary_10_1016_j_jocs_2022_101651 crossref_primary_10_1007_s40747_016_0022_8 crossref_primary_10_1007_s11721_017_0131_z crossref_primary_10_1155_2020_3982450 crossref_primary_10_1016_j_engappai_2016_01_034 crossref_primary_10_1016_j_engappai_2019_103457 crossref_primary_10_1109_ACCESS_2019_2915343 crossref_primary_10_1016_j_eswa_2018_11_032 crossref_primary_10_1016_j_neunet_2016_04_006 crossref_primary_10_1155_2017_2314927 crossref_primary_10_1016_j_engappai_2016_11_005 crossref_primary_10_1016_j_engappai_2017_05_018 crossref_primary_10_4316_AECE_2017_03011 crossref_primary_10_1016_j_eswa_2015_07_043 crossref_primary_10_1016_j_ins_2014_12_043 crossref_primary_10_3390_computers6010005 crossref_primary_10_1016_j_asoc_2021_107134 crossref_primary_10_4316_AECE_2017_03012 crossref_primary_10_1002_dac_4670 crossref_primary_10_1016_j_engappai_2015_10_006 crossref_primary_10_1109_TNSE_2018_2856522 crossref_primary_10_1007_s00357_018_9270_1 crossref_primary_10_1016_j_engappai_2017_10_002 crossref_primary_10_1080_0305215X_2016_1141204 crossref_primary_10_1016_j_engappai_2015_06_003 crossref_primary_10_1109_TCBB_2020_2971993 crossref_primary_10_1016_j_asoc_2019_105982 crossref_primary_10_1007_s13198_016_0495_2 crossref_primary_10_1016_j_asoc_2017_01_031 crossref_primary_10_1016_j_ins_2018_06_064 crossref_primary_10_1016_j_asoc_2015_12_044 |
| Cites_doi | 10.1016/j.ins.2012.09.030 10.1016/j.dss.2010.05.006 10.1016/j.cor.2012.12.006 10.1109/MHS.1995.494215 10.1016/j.engappai.2010.10.001 10.1016/j.asoc.2012.12.007 10.1016/j.engappai.2010.01.015 10.1016/j.advengsoft.2011.12.001 10.1016/j.chemolab.2013.07.004 10.1016/j.amc.2012.06.015 10.1016/j.neucom.2012.04.025 10.1016/j.procs.2013.05.405 10.1145/29380.29864 10.1016/j.advengsoft.2011.03.018 10.1016/j.swevo.2011.03.001 10.1016/j.amc.2010.08.049 10.1016/j.asoc.2009.08.029 10.1007/BF00933504 10.1016/j.amc.2011.06.007 10.1016/j.swevo.2013.10.003 10.1016/0025-5564(70)90087-8 10.1016/j.eswa.2011.09.073 10.1126/science.267.5198.664 10.1016/j.asoc.2010.11.025 10.1016/j.advengsoft.2009.08.003 10.1016/j.ijleo.2012.09.033 10.1016/j.swevo.2011.08.001 10.1016/j.asoc.2011.08.040 10.1016/j.cam.2012.01.013 10.1016/j.cor.2011.06.007 10.1016/j.advengsoft.2013.03.004 10.1016/j.ins.2012.01.021 10.1016/j.neucom.2012.02.047 10.1016/j.eswa.2011.07.123 10.1016/j.amc.2010.04.011 10.1007/b99492 10.1016/j.asoc.2009.08.031 10.1016/j.engappai.2013.09.013 10.1016/j.neucom.2012.01.045 10.1016/j.asoc.2012.03.037 10.1126/science.220.4598.671 10.1016/j.amc.2006.09.098 10.1023/A:1008202821328 10.1016/j.amc.2009.03.090 10.1016/j.asoc.2009.12.025 10.1016/j.eswa.2011.05.027 10.1109/ICNN.1995.488968 10.1016/j.sigpro.2012.10.022 10.1016/j.amc.2013.04.001 10.1016/j.amc.2012.09.052 10.1016/j.asoc.2007.05.007 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.engappai.2014.07.012 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 163 |
| ExternalDocumentID | 10_1016_j_engappai_2014_07_012 S0952197614001808 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c345t-ee72f0388e138dd07cc0253973f2a8dd03913d33ccba49b53e692fdf7f8a8bd33 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344430700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Thu Oct 02 06:50:24 EDT 2025 Tue Nov 18 22:11:26 EST 2025 Sat Nov 29 08:01:47 EST 2025 Fri Feb 23 02:28:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid optimization algorithm Artificial bee colony Continuous optimization Particle swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-ee72f0388e138dd07cc0253973f2a8dd03913d33ccba49b53e692fdf7f8a8bd33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1651437153 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1651437153 crossref_citationtrail_10_1016_j_engappai_2014_07_012 crossref_primary_10_1016_j_engappai_2014_07_012 elsevier_sciencedirect_doi_10_1016_j_engappai_2014_07_012 |
| PublicationCentury | 2000 |
| PublicationDate | November 2014 2014-11-00 20141101 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: November 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jarvis (bib21) 1975; 75 Kirkpatrick, Gelatt, Vecchi (bib31) 1983; 220 Kuo, Lin (bib32) 2010; 49 van Laarhoven, Aarts (bib41) 1987 Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machines and Human Science, MHS, pp. 39–43. Russell C. Eberhart, Yuhui Shi, J.K., 2001. Swarm Intelligence (The Morgan Kaufmann Series in Evolutionary Computation), 1 edition, New York. Akbari, Hedayatzadeh, Ziarati, Hassanizadeh (bib1) 2012; 2 Shelokar, Siarry, Jayaraman, Kulkarni (bib46) 2007; 188 Bremermann (bib5) 1970; 9 Storn, Price (bib47) 1997; 11 Cvijovi, Klinowski (bib13) 1995; 80 Luo, Wang, Xiao (bib38) 2013; 219 Montalvo, Izquierdo, Pérez-García, Herrera (bib39) 2010; 23 Eric Bonabeau (bib17) 1999 Chuang, Hsiao, Yang (bib10) 2011; 38 Bullinaria, AlYahya (bib6) 2014 Xiang, An (bib54) 2013; 40 Zhu, Kwong (bib60) 2010; 217 Kuo, Syu, Chen, Tien (bib33) 2012; 195 Li, Niu, Xiao (bib34) 2012; 12 Yu, Duan (bib58) 2013; 124 Price (bib44) 1983; 40 Gao, Liu, Huang (bib19) 2012; 236 Liu, Cai, Wang (bib36) 2010; 10 Chen, Chi (bib9) 2010; 41 Karaboga, Akay (bib25) 2009; 214 Sun, Li (bib50) 2014; 15 Tsoulos, Stavrakoudis (bib51) 2010; 216 Corana, Marchesi, Martini, Ridella (bib11) 1987; 13 Liu, Wu, Shen (bib37) 2011; 218 Bank, Ghomi, Jolai, Behnamian (bib4) 2012; 47 Chen, Chen, Chen (bib7) 2013; 93 Goldberg (bib20) 1989 Yang, Tsai, Chuang, Yang (bib57) 2012; 219 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol.4. pp. 1942–1948 Karaboga, Basturk (bib26) 2008; 8 Wang, Shoup (bib53) 2011; 42 Kaveh, Farhoudi (bib28) 2013; 59 Elsayed, Sarker, Essam (bib16) 2014; 27 Karaboga, D., 2005. An idea based on Honey Bee Swarm for Numerical Optimization. Deng, Yang, Zou, Wang, Liu, Li (bib14) 2013; 128 Wan, Wang, Li, Yang (bib52) 2012; 12 Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib59) 2011; 1 Yan, Zhu, Zou, Wang (bib56) 2012; 97 Pedersen, Chipperfield (bib42) 2010; 10 Dorige, M., Stitzle, T., 2004. Ant Colony Optimization. Cambridge, MA: MIT Press Chen, Sarosh, Dong (bib8) 2012; 219 Banharnsakun, Achalakul, Sirinaovakul (bib2) 2011; 11 Kıran, Gündüz (bib30) 2013; 13 Karaboga, Ozturk (bib27) 2011; 11 Banharnsakun, Sirinaovakul, Achalakul (bib3) 2013; 116 Kabir, Shahjahan, Murase (bib23) 2012; 39 Xue, Zhang, Browne (bib55) 2013; 40 Li, Cheng, Tan, Niu (bib35) 2012 Jung, Zscheischler (bib22) 2013; 18 Cura (bib12) 2012; 39 Prasartvit, Banharnsakun, Kaewkamnerdpong, Achalakul (bib43) 2013; 116 Niknam, Taherian Fard, Pourjafarian, Rousta (bib40) 2011; 24 Sun, Zeng, Pan, Xue, Jin (bib49) 2013; 221 Gao, Liu (bib18) 2012; 39 Kabir (10.1016/j.engappai.2014.07.012_bib23) 2012; 39 Kuo (10.1016/j.engappai.2014.07.012_bib33) 2012; 195 Li (10.1016/j.engappai.2014.07.012_bib35) 2012 Eric Bonabeau (10.1016/j.engappai.2014.07.012_bib17) 1999 Banharnsakun (10.1016/j.engappai.2014.07.012_bib3) 2013; 116 Storn (10.1016/j.engappai.2014.07.012_bib47) 1997; 11 Deng (10.1016/j.engappai.2014.07.012_bib14) 2013; 128 Yu (10.1016/j.engappai.2014.07.012_bib58) 2013; 124 10.1016/j.engappai.2014.07.012_bib24 Wan (10.1016/j.engappai.2014.07.012_bib52) 2012; 12 Elsayed (10.1016/j.engappai.2014.07.012_bib16) 2014; 27 10.1016/j.engappai.2014.07.012_bib29 Luo (10.1016/j.engappai.2014.07.012_bib38) 2013; 219 Xue (10.1016/j.engappai.2014.07.012_bib55) 2013; 40 Xiang (10.1016/j.engappai.2014.07.012_bib54) 2013; 40 Corana (10.1016/j.engappai.2014.07.012_bib11) 1987; 13 Kirkpatrick (10.1016/j.engappai.2014.07.012_bib31) 1983; 220 Kıran (10.1016/j.engappai.2014.07.012_bib30) 2013; 13 Sun (10.1016/j.engappai.2014.07.012_bib50) 2014; 15 Sun (10.1016/j.engappai.2014.07.012_bib49) 2013; 221 Zhu (10.1016/j.engappai.2014.07.012_bib60) 2010; 217 Banharnsakun (10.1016/j.engappai.2014.07.012_bib2) 2011; 11 Bullinaria (10.1016/j.engappai.2014.07.012_bib6) 2014 Liu (10.1016/j.engappai.2014.07.012_bib37) 2011; 218 10.1016/j.engappai.2014.07.012_bib15 Karaboga (10.1016/j.engappai.2014.07.012_bib26) 2008; 8 Chen (10.1016/j.engappai.2014.07.012_bib8) 2012; 219 Gao (10.1016/j.engappai.2014.07.012_bib19) 2012; 236 Bank (10.1016/j.engappai.2014.07.012_bib4) 2012; 47 Shelokar (10.1016/j.engappai.2014.07.012_bib46) 2007; 188 Kuo (10.1016/j.engappai.2014.07.012_bib32) 2010; 49 Bremermann (10.1016/j.engappai.2014.07.012_bib5) 1970; 9 Tsoulos (10.1016/j.engappai.2014.07.012_bib51) 2010; 216 Kaveh (10.1016/j.engappai.2014.07.012_bib28) 2013; 59 Niknam (10.1016/j.engappai.2014.07.012_bib40) 2011; 24 Karaboga (10.1016/j.engappai.2014.07.012_bib25) 2009; 214 Price (10.1016/j.engappai.2014.07.012_bib44) 1983; 40 Goldberg (10.1016/j.engappai.2014.07.012_bib20) 1989 Jung (10.1016/j.engappai.2014.07.012_bib22) 2013; 18 Cura (10.1016/j.engappai.2014.07.012_bib12) 2012; 39 Pedersen (10.1016/j.engappai.2014.07.012_bib42) 2010; 10 10.1016/j.engappai.2014.07.012_bib45 Wang (10.1016/j.engappai.2014.07.012_bib53) 2011; 42 10.1016/j.engappai.2014.07.012_bib48 Li (10.1016/j.engappai.2014.07.012_bib34) 2012; 12 Chuang (10.1016/j.engappai.2014.07.012_bib10) 2011; 38 van Laarhoven (10.1016/j.engappai.2014.07.012_bib41) 1987 Akbari (10.1016/j.engappai.2014.07.012_bib1) 2012; 2 Yang (10.1016/j.engappai.2014.07.012_bib57) 2012; 219 Karaboga (10.1016/j.engappai.2014.07.012_bib27) 2011; 11 Gao (10.1016/j.engappai.2014.07.012_bib18) 2012; 39 Yan (10.1016/j.engappai.2014.07.012_bib56) 2012; 97 Jarvis (10.1016/j.engappai.2014.07.012_bib21) 1975; 75 Zhou (10.1016/j.engappai.2014.07.012_bib59) 2011; 1 Chen (10.1016/j.engappai.2014.07.012_bib7) 2013; 93 Montalvo (10.1016/j.engappai.2014.07.012_bib39) 2010; 23 Prasartvit (10.1016/j.engappai.2014.07.012_bib43) 2013; 116 Cvijovi (10.1016/j.engappai.2014.07.012_bib13) 1995; 80 Chen (10.1016/j.engappai.2014.07.012_bib9) 2010; 41 Liu (10.1016/j.engappai.2014.07.012_bib36) 2010; 10 |
| References_xml | – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol.4. pp. 1942–1948 – volume: 40 start-page: 333 year: 1983 end-page: 348 ident: bib44 article-title: Global optimization by controlled random search publication-title: J. Optim. Theory Appl. – volume: 49 start-page: 451 year: 2010 end-page: 462 ident: bib32 article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering publication-title: Decis. Support Syst. – volume: 39 start-page: 1582 year: 2012 end-page: 1588 ident: bib12 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. – volume: 93 start-page: 1566 year: 2013 end-page: 1576 ident: bib7 article-title: Efficient ant colony optimization for image feature selection publication-title: Signal Process. – year: 1987 ident: bib41 article-title: Simulated Annealing: Theory and Applications – volume: 40 start-page: 1256 year: 2013 end-page: 1265 ident: bib54 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. – volume: 12 start-page: 320 year: 2012 end-page: 332 ident: bib34 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. – volume: 27 start-page: 57 year: 2014 end-page: 69 ident: bib16 article-title: A new genetic algorithm for solving optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 219 start-page: 10253 year: 2013 end-page: 10262 ident: bib38 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. – volume: 116 start-page: 367 year: 2013 end-page: 381 ident: bib43 article-title: Reducing bioinformatics data dimension with ABC-kNN publication-title: Neurocomputing – volume: 42 start-page: 555 year: 2011 end-page: 565 ident: bib53 article-title: A poly-hybrid PSO optimization method with intelligent parameter adjustment publication-title: Adv. Eng. Softw. – reference: Karaboga, D., 2005. An idea based on Honey Bee Swarm for Numerical Optimization. – volume: 23 start-page: 727 year: 2010 end-page: 735 ident: bib39 article-title: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems publication-title: Eng. Appl. Artif. Intell. – reference: Dorige, M., Stitzle, T., 2004. Ant Colony Optimization. Cambridge, MA: MIT Press – volume: 10 start-page: 618 year: 2010 end-page: 628 ident: bib42 article-title: Simplifying Particle Swarm Optimization publication-title: Appl. Soft Comput. – volume: 13 start-page: 2188 year: 2013 end-page: 2203 ident: bib30 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl. Soft Comput. – volume: 218 start-page: 1267 year: 2011 end-page: 1279 ident: bib37 article-title: Automatic clustering using genetic algorithms publication-title: Appl. Math. Comput. – volume: 116 start-page: 355 year: 2013 end-page: 366 ident: bib3 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing – start-page: 566 year: 2012 end-page: 573 ident: bib35 article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem publication-title: Bio-Inspired Computing and Applications SE-75 – volume: 41 start-page: 229 year: 2010 end-page: 239 ident: bib9 article-title: On the improvements of the particle swarm optimization algorithm publication-title: Adv. Eng. Softw. – volume: 124 start-page: 3103 year: 2013 end-page: 3111 ident: bib58 article-title: Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion publication-title: Opt.—Int. J. Light Electron. Opt. – reference: Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machines and Human Science, MHS, pp. 39–43. – volume: 217 start-page: 3166 year: 2010 end-page: 3173 ident: bib60 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – year: 1989 ident: bib20 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 24 start-page: 306 year: 2011 end-page: 317 ident: bib40 article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering publication-title: Eng. Appl. Artif. Intell. – volume: 216 start-page: 2988 year: 2010 end-page: 3001 ident: bib51 article-title: Enhancing PSO methods for global optimization publication-title: Appl. Math. Comput. – volume: 9 start-page: 1 year: 1970 end-page: 15 ident: bib5 article-title: A method for unconstrained global optimization publication-title: Math. Biosci. – year: 1999 ident: bib17 article-title: and G.T. publication-title: Swarm Intelligence: from Natural to Artificial Systems – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: bib19 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: bib36 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib31 article-title: Optimization by Simulated Annealing publication-title: Science – volume: 39 start-page: 687 year: 2012 end-page: 697 ident: bib18 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib25 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 11 start-page: 2888 year: 2011 end-page: 2901 ident: bib2 article-title: The best-so-far selection in artificial bee colony algorithm publication-title: Appl. Soft Comput. – volume: 59 start-page: 53 year: 2013 end-page: 70 ident: bib28 article-title: A new optimization method: Dolphin echolocation publication-title: Adv. Eng. Softw. – volume: 219 start-page: 3575 year: 2012 end-page: 3589 ident: bib8 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. – volume: 221 start-page: 355 year: 2013 end-page: 370 ident: bib49 article-title: A new fitness estimation strategy for particle swarm optimization publication-title: Inf. Sci. – volume: 195 start-page: 124 year: 2012 end-page: 140 ident: bib33 article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering publication-title: Inf. Sci. (Ny). – volume: 128 start-page: 66 year: 2013 end-page: 76 ident: bib14 article-title: An improved self-adaptive differential evolution algorithm and its application publication-title: Chemom. Intell. Lab. Syst. – volume: 15 start-page: 1 year: 2014 end-page: 18 ident: bib50 article-title: A two-swarm cooperative particle swarms optimization publication-title: Swarm Evol. Comput. – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: bib27 article-title: A novel clustering approach: artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – reference: Russell C. Eberhart, Yuhui Shi, J.K., 2001. Swarm Intelligence (The Morgan Kaufmann Series in Evolutionary Computation), 1 edition, New York. – volume: 80 start-page: 664 year: 1995 end-page: 666 ident: bib13 article-title: Taboo Search: an Approach to the Multiple Minima Problem publication-title: Science – volume: 188 start-page: 129 year: 2007 end-page: 142 ident: bib46 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. – volume: 47 start-page: 1 year: 2012 end-page: 6 ident: bib4 article-title: Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration publication-title: Adv. Eng. Softw. – volume: 18 start-page: 2337 year: 2013 end-page: 2346 ident: bib22 article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions publication-title: Proced. Comput. Sci. – volume: 13 start-page: 262 year: 1987 end-page: 280 ident: bib11 article-title: Minimizing multimodal functions of continuous variables with the & Ldquo; Simulated Annealing&Rdquo; algorithm Corrigenda for this article is available here publication-title: ACM Trans. Math. Softw. – volume: 12 start-page: 2387 year: 2012 end-page: 2393 ident: bib52 article-title: Chaotic ant swarm approach for data clustering publication-title: Appl. Soft Comput. – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: bib59 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. – volume: 97 start-page: 241 year: 2012 end-page: 250 ident: bib56 article-title: A new approach for data clustering using hybrid artificial bee colony algorithm publication-title: Neurocomputing – volume: 2 start-page: 39 year: 2012 end-page: 52 ident: bib1 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. – volume: 40 start-page: 1250 year: 2013 end-page: 1265 ident: bib55 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. Oper. Res. – volume: 38 start-page: 14555 year: 2011 end-page: 14563 ident: bib10 article-title: Chaotic particle swarm optimization for data clustering publication-title: Expert Syst. Appl. – volume: 75 start-page: 275 year: 1975 end-page: 311 ident: bib21 article-title: Adaptive global search by the process of competitive evolution publication-title: IEEE Trans. Syst. Man Cybergenet. – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: bib26 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – start-page: 191 year: 2014 end-page: 201 ident: bib6 article-title: Artificial Bee Colony Training of Neural Networks publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) SE – 15 – volume: 39 start-page: 3747 year: 2012 end-page: 3763 ident: bib23 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. – volume: 219 start-page: 260 year: 2012 end-page: 279 ident: bib57 article-title: An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization publication-title: Appl. Math. Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib47 article-title: Differential Evolution—a Simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 221 start-page: 355 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib49 article-title: A new fitness estimation strategy for particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.030 – volume: 49 start-page: 451 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib32 article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.05.006 – volume: 40 start-page: 1256 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib54 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.12.006 – ident: 10.1016/j.engappai.2014.07.012_bib15 doi: 10.1109/MHS.1995.494215 – volume: 24 start-page: 306 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib40 article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.10.001 – volume: 13 start-page: 2188 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib30 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.12.007 – volume: 23 start-page: 727 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib39 article-title: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.015 – volume: 47 start-page: 1 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib4 article-title: Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.12.001 – start-page: 566 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib35 article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem – volume: 128 start-page: 66 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib14 article-title: An improved self-adaptive differential evolution algorithm and its application publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.07.004 – volume: 219 start-page: 260 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib57 article-title: An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.06.015 – volume: 97 start-page: 241 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib56 article-title: A new approach for data clustering using hybrid artificial bee colony algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.025 – volume: 18 start-page: 2337 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib22 article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2013.05.405 – volume: 40 start-page: 1250 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib55 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. Oper. Res. – volume: 13 start-page: 262 year: 1987 ident: 10.1016/j.engappai.2014.07.012_bib11 article-title: Minimizing multimodal functions of continuous variables with the & Ldquo; Simulated Annealing" algorithm Corrigenda for this article is available here publication-title: ACM Trans. Math. Softw. doi: 10.1145/29380.29864 – volume: 42 start-page: 555 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib53 article-title: A poly-hybrid PSO optimization method with intelligent parameter adjustment publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.03.018 – volume: 1 start-page: 32 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib59 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – volume: 217 start-page: 3166 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib60 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.08.049 – volume: 10 start-page: 618 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib42 article-title: Simplifying Particle Swarm Optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.029 – volume: 40 start-page: 333 year: 1983 ident: 10.1016/j.engappai.2014.07.012_bib44 article-title: Global optimization by controlled random search publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00933504 – volume: 218 start-page: 1267 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib37 article-title: Automatic clustering using genetic algorithms publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.06.007 – volume: 15 start-page: 1 year: 2014 ident: 10.1016/j.engappai.2014.07.012_bib50 article-title: A two-swarm cooperative particle swarms optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.10.003 – volume: 9 start-page: 1 year: 1970 ident: 10.1016/j.engappai.2014.07.012_bib5 article-title: A method for unconstrained global optimization publication-title: Math. Biosci. doi: 10.1016/0025-5564(70)90087-8 – volume: 39 start-page: 3747 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib23 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.073 – volume: 80 start-page: 664 issue: 267 year: 1995 ident: 10.1016/j.engappai.2014.07.012_bib13 article-title: Taboo Search: an Approach to the Multiple Minima Problem publication-title: Science doi: 10.1126/science.267.5198.664 – volume: 11 start-page: 2888 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib2 article-title: The best-so-far selection in artificial bee colony algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.11.025 – volume: 41 start-page: 229 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib9 article-title: On the improvements of the particle swarm optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2009.08.003 – volume: 124 start-page: 3103 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib58 article-title: Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion publication-title: Opt.—Int. J. Light Electron. Opt. doi: 10.1016/j.ijleo.2012.09.033 – volume: 2 start-page: 39 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib1 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.08.001 – start-page: 191 year: 2014 ident: 10.1016/j.engappai.2014.07.012_bib6 article-title: Artificial Bee Colony Training of Neural Networks – volume: 12 start-page: 320 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib34 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.040 – volume: 236 start-page: 2741 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib19 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – volume: 39 start-page: 687 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib18 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.06.007 – volume: 59 start-page: 53 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib28 article-title: A new optimization method: Dolphin echolocation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.03.004 – year: 1999 ident: 10.1016/j.engappai.2014.07.012_bib17 article-title: and G.T. – volume: 195 start-page: 124 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib33 article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2012.01.021 – volume: 116 start-page: 355 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib3 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.047 – volume: 39 start-page: 1582 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib12 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.123 – volume: 216 start-page: 2988 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib51 article-title: Enhancing PSO methods for global optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.04.011 – ident: 10.1016/j.engappai.2014.07.012_bib48 doi: 10.1007/b99492 – volume: 10 start-page: 629 year: 2010 ident: 10.1016/j.engappai.2014.07.012_bib36 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – volume: 27 start-page: 57 year: 2014 ident: 10.1016/j.engappai.2014.07.012_bib16 article-title: A new genetic algorithm for solving optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.09.013 – year: 1987 ident: 10.1016/j.engappai.2014.07.012_bib41 – ident: 10.1016/j.engappai.2014.07.012_bib24 – volume: 116 start-page: 367 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib43 article-title: Reducing bioinformatics data dimension with ABC-kNN publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.045 – volume: 12 start-page: 2387 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib52 article-title: Chaotic ant swarm approach for data clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.037 – year: 1989 ident: 10.1016/j.engappai.2014.07.012_bib20 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.engappai.2014.07.012_bib31 article-title: Optimization by Simulated Annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 188 start-page: 129 year: 2007 ident: 10.1016/j.engappai.2014.07.012_bib46 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.098 – ident: 10.1016/j.engappai.2014.07.012_bib45 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.engappai.2014.07.012_bib47 article-title: Differential Evolution—a Simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.engappai.2014.07.012_bib25 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 11 start-page: 652 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib27 article-title: A novel clustering approach: artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – volume: 38 start-page: 14555 year: 2011 ident: 10.1016/j.engappai.2014.07.012_bib10 article-title: Chaotic particle swarm optimization for data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.027 – ident: 10.1016/j.engappai.2014.07.012_bib29 doi: 10.1109/ICNN.1995.488968 – volume: 93 start-page: 1566 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib7 article-title: Efficient ant colony optimization for image feature selection publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.10.022 – volume: 219 start-page: 10253 year: 2013 ident: 10.1016/j.engappai.2014.07.012_bib38 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.04.001 – volume: 75 start-page: 275 year: 1975 ident: 10.1016/j.engappai.2014.07.012_bib21 article-title: Adaptive global search by the process of competitive evolution publication-title: IEEE Trans. Syst. Man Cybergenet. – volume: 219 start-page: 3575 year: 2012 ident: 10.1016/j.engappai.2014.07.012_bib8 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.09.052 – volume: 8 start-page: 687 year: 2008 ident: 10.1016/j.engappai.2014.07.012_bib26 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 |
| SSID | ssj0003846 |
| Score | 2.3350246 |
| Snippet | Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | Algorithms Ant colony optimization Artificial bee colony Continuous optimization Convergence Hybrid optimization algorithm Mathematical analysis Mathematical models Optimization Particle swarm optimization Searching Swarm intelligence |
| Title | Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems |
| URI | https://dx.doi.org/10.1016/j.engappai.2014.07.012 https://www.proquest.com/docview/1651437153 |
| Volume | 36 |
| WOSCitedRecordID | wos000344430700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3NHGTUbirQo0cRLHjxMqAgQV0gbqW-TE9pqpSae2m_aX-JecE9tJxkUDIV6iypETy-frueWcz4S8TMQ01amIgxTdt1jyNBAqNMFUhyaWyVQWuuWZ_cjn82yxEJ9Ho2--F-ZixZsmu7wUZ_9V1DAGwsbW2b8Qd_dQGIDfIHS4gtjh-keC_6rBPqFvjQZKIYlR5VgiCo2l6SuI9ydydbLeVLtl3ZYZImfxRCHPv-XoaAvYq-Ycy2PXoFNq16w5ccfPbK_k83tGw8nwc3hbYdC_vBpwf3Z4RPINm4GdS1NtdZebPlpWtgX-03op61qqyQzC-mVVdwAB6KrK-sCbpayH2Yswdm18XUrNt9X0NUw2NxkFoeCOI9tq5oyzAOtxh6qbDXVvaCk7nRkPrd78yULYZMXpK92cwJ7ICqv74pa_1ZVzX2XfPsK14FIgEEWus-wG2Yt4IrIx2Tt8P1t86Mw-y2xXmF_7oB3912_7nSf0g0_QOjrHd8ltF6HQQ4use2Skm_vkjotWqLMFWxjyB4L4sQdEeezRFnu0Fz8F7FGLPdphjwL2KGKPDrBHe-zRIfaox95D8uXt7PjNu8Ad4xGULE52gdY8Mkg6pEOWKTXlZQmONvjBzEQSB5gImWKsLAsZiyJhoDsioww3mcwKuPGIjJt1o_cJlXEqdGlUKBITFxFMD1OjSq0ydOVLfUASv6V56Tju8aiVVe6LGU9zL4ocRZFPeQ6iOCCvu3lnluXl2hnCSyx3vqr1QXMA2rVzX3gR56DM8QudbDRsax6mGL9w8EIe_8Pzn5Bb_V_tKRnvNuf6GblZXuyq7ea5w-13d_LQzg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Velocity+based+artificial+bee+colony+algorithm+for+high+dimensional+continuous+optimization+problems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Imanian%2C+Nafiseh&rft.au=Shiri%2C+Mohammad+Ebrahim&rft.au=Moradi%2C+Parham&rft.date=2014-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=36&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1016%2Fj.engappai.2014.07.012&rft.externalDocID=S0952197614001808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |