Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems

Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 36; s. 148 - 163
Hlavní autori: Imanian, Nafiseh, Shiri, Mohammad Ebrahim, Moradi, Parham
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2014
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions. •We propose a hybrid ABC algorithm so called VABC for numerical function optimization.•Inspiring from the PSO, the VABC improves the ABC׳s exploitation strategy.•The VABC considers a velocity value for each particle in the onlooker search equation.•The VABC is compared with ABC, PSO and the seven state-of-the-art hybrid methods.•The results show that the VABC has higher convergence speed and better search ability.
AbstractList Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions.
Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Since it was invented, it has received significant interest from researchers studying in different fields because of having fewer control parameters, high global search ability and ease of implementation. Although ABC is good at exploration, the main drawback is its poor exploitation which results in an issue on convergence speed in some cases. Inspired by particle swarm optimization, we propose a modified ABC algorithm called VABC, to overcome this insufficiency by applying a new search equation in the onlooker phase, which uses the PSO search strategy to guide the search for candidate solutions. The experimental results tested on numerical benchmark functions show that the VABC has good performance compared with PSO and ABC. Moreover, the performance of the proposed algorithm is also compared with those of state-of-the-art hybrid methods and the results demonstrate that the proposed method has a higher convergence speed and better search ability for almost all functions. •We propose a hybrid ABC algorithm so called VABC for numerical function optimization.•Inspiring from the PSO, the VABC improves the ABC׳s exploitation strategy.•The VABC considers a velocity value for each particle in the onlooker search equation.•The VABC is compared with ABC, PSO and the seven state-of-the-art hybrid methods.•The results show that the VABC has higher convergence speed and better search ability.
Author Moradi, Parham
Imanian, Nafiseh
Shiri, Mohammad Ebrahim
Author_xml – sequence: 1
  givenname: Nafiseh
  surname: Imanian
  fullname: Imanian, Nafiseh
  email: imanian@aut.ac.ir
  organization: Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran
– sequence: 2
  givenname: Mohammad Ebrahim
  surname: Shiri
  fullname: Shiri, Mohammad Ebrahim
  email: shiri@aut.ac.ir
  organization: Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran
– sequence: 3
  givenname: Parham
  surname: Moradi
  fullname: Moradi, Parham
  email: p.moradi@uok.ac.ir
  organization: Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
BookMark eNqFkE-LFDEQxYOs4OzqV5AcvXSbdLo73eBBWfwHC17Ua0gnlZka0kmbZITx05tx9OJlTwVV7716_G7JTYgBCHnJWcsZH18fWwh7vW0a247xvmWyZbx7QnZ8kqIZ5TjfkB2bh67hsxyfkducj4wxMfXjjtjv4KPBcqaLzmCpTgUdGtSeLgDURB_DmWq_jwnLYaUuJnrA_YFaXCFkjKEqTQwFwymeMo1bwRV_6VIvdEtx8bDm5-Sp0z7Di7_zjnz78P7r_afm4cvHz_fvHhoj-qE0ALJztdcEXEzWMmkM6wYxS-E6fVmImQsrhDGL7udlEDDOnbNOuklPSz3ckVfX3Pr4xwlyUStmA97rALWc4uPAeyH5cJG-uUpNijkncKpC-NO6JI1ecaYucNVR_YOrLnAVk6rCrfbxP_uWcNXp_Ljx7dUIlcNPhKSyQQgGLCYwRdmIj0X8BhdRnXw
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106656
crossref_primary_10_1109_TCSS_2020_3007769
crossref_primary_10_1016_j_swevo_2019_06_006
crossref_primary_10_1016_j_engappai_2023_107579
crossref_primary_10_1007_s00500_018_3273_z
crossref_primary_10_1016_j_asoc_2016_05_007
crossref_primary_10_1002_cepa_1555
crossref_primary_10_1016_j_eswa_2022_117217
crossref_primary_10_1016_j_ceramint_2014_10_158
crossref_primary_10_1155_2016_9820294
crossref_primary_10_1515_bpasts_2017_0030
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1109_ACCESS_2018_2880280
crossref_primary_10_1016_j_ins_2022_05_065
crossref_primary_10_1080_23302674_2020_1753127
crossref_primary_10_1080_08839514_2021_2008147
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1016_j_asoc_2018_06_013
crossref_primary_10_1016_j_eswa_2018_08_027
crossref_primary_10_1016_j_jocs_2022_101651
crossref_primary_10_1007_s40747_016_0022_8
crossref_primary_10_1007_s11721_017_0131_z
crossref_primary_10_1155_2020_3982450
crossref_primary_10_1016_j_engappai_2016_01_034
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_1109_ACCESS_2019_2915343
crossref_primary_10_1016_j_eswa_2018_11_032
crossref_primary_10_1016_j_neunet_2016_04_006
crossref_primary_10_1155_2017_2314927
crossref_primary_10_1016_j_engappai_2016_11_005
crossref_primary_10_1016_j_engappai_2017_05_018
crossref_primary_10_4316_AECE_2017_03011
crossref_primary_10_1016_j_eswa_2015_07_043
crossref_primary_10_1016_j_ins_2014_12_043
crossref_primary_10_3390_computers6010005
crossref_primary_10_1016_j_asoc_2021_107134
crossref_primary_10_4316_AECE_2017_03012
crossref_primary_10_1002_dac_4670
crossref_primary_10_1016_j_engappai_2015_10_006
crossref_primary_10_1109_TNSE_2018_2856522
crossref_primary_10_1007_s00357_018_9270_1
crossref_primary_10_1016_j_engappai_2017_10_002
crossref_primary_10_1080_0305215X_2016_1141204
crossref_primary_10_1016_j_engappai_2015_06_003
crossref_primary_10_1109_TCBB_2020_2971993
crossref_primary_10_1016_j_asoc_2019_105982
crossref_primary_10_1007_s13198_016_0495_2
crossref_primary_10_1016_j_asoc_2017_01_031
crossref_primary_10_1016_j_ins_2018_06_064
crossref_primary_10_1016_j_asoc_2015_12_044
Cites_doi 10.1016/j.ins.2012.09.030
10.1016/j.dss.2010.05.006
10.1016/j.cor.2012.12.006
10.1109/MHS.1995.494215
10.1016/j.engappai.2010.10.001
10.1016/j.asoc.2012.12.007
10.1016/j.engappai.2010.01.015
10.1016/j.advengsoft.2011.12.001
10.1016/j.chemolab.2013.07.004
10.1016/j.amc.2012.06.015
10.1016/j.neucom.2012.04.025
10.1016/j.procs.2013.05.405
10.1145/29380.29864
10.1016/j.advengsoft.2011.03.018
10.1016/j.swevo.2011.03.001
10.1016/j.amc.2010.08.049
10.1016/j.asoc.2009.08.029
10.1007/BF00933504
10.1016/j.amc.2011.06.007
10.1016/j.swevo.2013.10.003
10.1016/0025-5564(70)90087-8
10.1016/j.eswa.2011.09.073
10.1126/science.267.5198.664
10.1016/j.asoc.2010.11.025
10.1016/j.advengsoft.2009.08.003
10.1016/j.ijleo.2012.09.033
10.1016/j.swevo.2011.08.001
10.1016/j.asoc.2011.08.040
10.1016/j.cam.2012.01.013
10.1016/j.cor.2011.06.007
10.1016/j.advengsoft.2013.03.004
10.1016/j.ins.2012.01.021
10.1016/j.neucom.2012.02.047
10.1016/j.eswa.2011.07.123
10.1016/j.amc.2010.04.011
10.1007/b99492
10.1016/j.asoc.2009.08.031
10.1016/j.engappai.2013.09.013
10.1016/j.neucom.2012.01.045
10.1016/j.asoc.2012.03.037
10.1126/science.220.4598.671
10.1016/j.amc.2006.09.098
10.1023/A:1008202821328
10.1016/j.amc.2009.03.090
10.1016/j.asoc.2009.12.025
10.1016/j.eswa.2011.05.027
10.1109/ICNN.1995.488968
10.1016/j.sigpro.2012.10.022
10.1016/j.amc.2013.04.001
10.1016/j.amc.2012.09.052
10.1016/j.asoc.2007.05.007
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2014.07.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 163
ExternalDocumentID 10_1016_j_engappai_2014_07_012
S0952197614001808
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c345t-ee72f0388e138dd07cc0253973f2a8dd03913d33ccba49b53e692fdf7f8a8bd33
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344430700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Thu Oct 02 06:50:24 EDT 2025
Tue Nov 18 22:11:26 EST 2025
Sat Nov 29 08:01:47 EST 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid optimization algorithm
Artificial bee colony
Continuous optimization
Particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-ee72f0388e138dd07cc0253973f2a8dd03913d33ccba49b53e692fdf7f8a8bd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651437153
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1651437153
crossref_citationtrail_10_1016_j_engappai_2014_07_012
crossref_primary_10_1016_j_engappai_2014_07_012
elsevier_sciencedirect_doi_10_1016_j_engappai_2014_07_012
PublicationCentury 2000
PublicationDate November 2014
2014-11-00
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jarvis (bib21) 1975; 75
Kirkpatrick, Gelatt, Vecchi (bib31) 1983; 220
Kuo, Lin (bib32) 2010; 49
van Laarhoven, Aarts (bib41) 1987
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machines and Human Science, MHS, pp. 39–43.
Russell C. Eberhart, Yuhui Shi, J.K., 2001. Swarm Intelligence (The Morgan Kaufmann Series in Evolutionary Computation), 1 edition, New York.
Akbari, Hedayatzadeh, Ziarati, Hassanizadeh (bib1) 2012; 2
Shelokar, Siarry, Jayaraman, Kulkarni (bib46) 2007; 188
Bremermann (bib5) 1970; 9
Storn, Price (bib47) 1997; 11
Cvijovi, Klinowski (bib13) 1995; 80
Luo, Wang, Xiao (bib38) 2013; 219
Montalvo, Izquierdo, Pérez-García, Herrera (bib39) 2010; 23
Eric Bonabeau (bib17) 1999
Chuang, Hsiao, Yang (bib10) 2011; 38
Bullinaria, AlYahya (bib6) 2014
Xiang, An (bib54) 2013; 40
Zhu, Kwong (bib60) 2010; 217
Kuo, Syu, Chen, Tien (bib33) 2012; 195
Li, Niu, Xiao (bib34) 2012; 12
Yu, Duan (bib58) 2013; 124
Price (bib44) 1983; 40
Gao, Liu, Huang (bib19) 2012; 236
Liu, Cai, Wang (bib36) 2010; 10
Chen, Chi (bib9) 2010; 41
Karaboga, Akay (bib25) 2009; 214
Sun, Li (bib50) 2014; 15
Tsoulos, Stavrakoudis (bib51) 2010; 216
Corana, Marchesi, Martini, Ridella (bib11) 1987; 13
Liu, Wu, Shen (bib37) 2011; 218
Bank, Ghomi, Jolai, Behnamian (bib4) 2012; 47
Chen, Chen, Chen (bib7) 2013; 93
Goldberg (bib20) 1989
Yang, Tsai, Chuang, Yang (bib57) 2012; 219
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol.4. pp. 1942–1948
Karaboga, Basturk (bib26) 2008; 8
Wang, Shoup (bib53) 2011; 42
Kaveh, Farhoudi (bib28) 2013; 59
Elsayed, Sarker, Essam (bib16) 2014; 27
Karaboga, D., 2005. An idea based on Honey Bee Swarm for Numerical Optimization.
Deng, Yang, Zou, Wang, Liu, Li (bib14) 2013; 128
Wan, Wang, Li, Yang (bib52) 2012; 12
Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib59) 2011; 1
Yan, Zhu, Zou, Wang (bib56) 2012; 97
Pedersen, Chipperfield (bib42) 2010; 10
Dorige, M., Stitzle, T., 2004. Ant Colony Optimization. Cambridge, MA: MIT Press
Chen, Sarosh, Dong (bib8) 2012; 219
Banharnsakun, Achalakul, Sirinaovakul (bib2) 2011; 11
Kıran, Gündüz (bib30) 2013; 13
Karaboga, Ozturk (bib27) 2011; 11
Banharnsakun, Sirinaovakul, Achalakul (bib3) 2013; 116
Kabir, Shahjahan, Murase (bib23) 2012; 39
Xue, Zhang, Browne (bib55) 2013; 40
Li, Cheng, Tan, Niu (bib35) 2012
Jung, Zscheischler (bib22) 2013; 18
Cura (bib12) 2012; 39
Prasartvit, Banharnsakun, Kaewkamnerdpong, Achalakul (bib43) 2013; 116
Niknam, Taherian Fard, Pourjafarian, Rousta (bib40) 2011; 24
Sun, Zeng, Pan, Xue, Jin (bib49) 2013; 221
Gao, Liu (bib18) 2012; 39
Kabir (10.1016/j.engappai.2014.07.012_bib23) 2012; 39
Kuo (10.1016/j.engappai.2014.07.012_bib33) 2012; 195
Li (10.1016/j.engappai.2014.07.012_bib35) 2012
Eric Bonabeau (10.1016/j.engappai.2014.07.012_bib17) 1999
Banharnsakun (10.1016/j.engappai.2014.07.012_bib3) 2013; 116
Storn (10.1016/j.engappai.2014.07.012_bib47) 1997; 11
Deng (10.1016/j.engappai.2014.07.012_bib14) 2013; 128
Yu (10.1016/j.engappai.2014.07.012_bib58) 2013; 124
10.1016/j.engappai.2014.07.012_bib24
Wan (10.1016/j.engappai.2014.07.012_bib52) 2012; 12
Elsayed (10.1016/j.engappai.2014.07.012_bib16) 2014; 27
10.1016/j.engappai.2014.07.012_bib29
Luo (10.1016/j.engappai.2014.07.012_bib38) 2013; 219
Xue (10.1016/j.engappai.2014.07.012_bib55) 2013; 40
Xiang (10.1016/j.engappai.2014.07.012_bib54) 2013; 40
Corana (10.1016/j.engappai.2014.07.012_bib11) 1987; 13
Kirkpatrick (10.1016/j.engappai.2014.07.012_bib31) 1983; 220
Kıran (10.1016/j.engappai.2014.07.012_bib30) 2013; 13
Sun (10.1016/j.engappai.2014.07.012_bib50) 2014; 15
Sun (10.1016/j.engappai.2014.07.012_bib49) 2013; 221
Zhu (10.1016/j.engappai.2014.07.012_bib60) 2010; 217
Banharnsakun (10.1016/j.engappai.2014.07.012_bib2) 2011; 11
Bullinaria (10.1016/j.engappai.2014.07.012_bib6) 2014
Liu (10.1016/j.engappai.2014.07.012_bib37) 2011; 218
10.1016/j.engappai.2014.07.012_bib15
Karaboga (10.1016/j.engappai.2014.07.012_bib26) 2008; 8
Chen (10.1016/j.engappai.2014.07.012_bib8) 2012; 219
Gao (10.1016/j.engappai.2014.07.012_bib19) 2012; 236
Bank (10.1016/j.engappai.2014.07.012_bib4) 2012; 47
Shelokar (10.1016/j.engappai.2014.07.012_bib46) 2007; 188
Kuo (10.1016/j.engappai.2014.07.012_bib32) 2010; 49
Bremermann (10.1016/j.engappai.2014.07.012_bib5) 1970; 9
Tsoulos (10.1016/j.engappai.2014.07.012_bib51) 2010; 216
Kaveh (10.1016/j.engappai.2014.07.012_bib28) 2013; 59
Niknam (10.1016/j.engappai.2014.07.012_bib40) 2011; 24
Karaboga (10.1016/j.engappai.2014.07.012_bib25) 2009; 214
Price (10.1016/j.engappai.2014.07.012_bib44) 1983; 40
Goldberg (10.1016/j.engappai.2014.07.012_bib20) 1989
Jung (10.1016/j.engappai.2014.07.012_bib22) 2013; 18
Cura (10.1016/j.engappai.2014.07.012_bib12) 2012; 39
Pedersen (10.1016/j.engappai.2014.07.012_bib42) 2010; 10
10.1016/j.engappai.2014.07.012_bib45
Wang (10.1016/j.engappai.2014.07.012_bib53) 2011; 42
10.1016/j.engappai.2014.07.012_bib48
Li (10.1016/j.engappai.2014.07.012_bib34) 2012; 12
Chuang (10.1016/j.engappai.2014.07.012_bib10) 2011; 38
van Laarhoven (10.1016/j.engappai.2014.07.012_bib41) 1987
Akbari (10.1016/j.engappai.2014.07.012_bib1) 2012; 2
Yang (10.1016/j.engappai.2014.07.012_bib57) 2012; 219
Karaboga (10.1016/j.engappai.2014.07.012_bib27) 2011; 11
Gao (10.1016/j.engappai.2014.07.012_bib18) 2012; 39
Yan (10.1016/j.engappai.2014.07.012_bib56) 2012; 97
Jarvis (10.1016/j.engappai.2014.07.012_bib21) 1975; 75
Zhou (10.1016/j.engappai.2014.07.012_bib59) 2011; 1
Chen (10.1016/j.engappai.2014.07.012_bib7) 2013; 93
Montalvo (10.1016/j.engappai.2014.07.012_bib39) 2010; 23
Prasartvit (10.1016/j.engappai.2014.07.012_bib43) 2013; 116
Cvijovi (10.1016/j.engappai.2014.07.012_bib13) 1995; 80
Chen (10.1016/j.engappai.2014.07.012_bib9) 2010; 41
Liu (10.1016/j.engappai.2014.07.012_bib36) 2010; 10
References_xml – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol.4. pp. 1942–1948
– volume: 40
  start-page: 333
  year: 1983
  end-page: 348
  ident: bib44
  article-title: Global optimization by controlled random search
  publication-title: J. Optim. Theory Appl.
– volume: 49
  start-page: 451
  year: 2010
  end-page: 462
  ident: bib32
  article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering
  publication-title: Decis. Support Syst.
– volume: 39
  start-page: 1582
  year: 2012
  end-page: 1588
  ident: bib12
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
– volume: 93
  start-page: 1566
  year: 2013
  end-page: 1576
  ident: bib7
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Process.
– year: 1987
  ident: bib41
  article-title: Simulated Annealing: Theory and Applications
– volume: 40
  start-page: 1256
  year: 2013
  end-page: 1265
  ident: bib54
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
– volume: 12
  start-page: 320
  year: 2012
  end-page: 332
  ident: bib34
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 57
  year: 2014
  end-page: 69
  ident: bib16
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 219
  start-page: 10253
  year: 2013
  end-page: 10262
  ident: bib38
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
– volume: 116
  start-page: 367
  year: 2013
  end-page: 381
  ident: bib43
  article-title: Reducing bioinformatics data dimension with ABC-kNN
  publication-title: Neurocomputing
– volume: 42
  start-page: 555
  year: 2011
  end-page: 565
  ident: bib53
  article-title: A poly-hybrid PSO optimization method with intelligent parameter adjustment
  publication-title: Adv. Eng. Softw.
– reference: Karaboga, D., 2005. An idea based on Honey Bee Swarm for Numerical Optimization.
– volume: 23
  start-page: 727
  year: 2010
  end-page: 735
  ident: bib39
  article-title: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems
  publication-title: Eng. Appl. Artif. Intell.
– reference: Dorige, M., Stitzle, T., 2004. Ant Colony Optimization. Cambridge, MA: MIT Press
– volume: 10
  start-page: 618
  year: 2010
  end-page: 628
  ident: bib42
  article-title: Simplifying Particle Swarm Optimization
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 2188
  year: 2013
  end-page: 2203
  ident: bib30
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl. Soft Comput.
– volume: 218
  start-page: 1267
  year: 2011
  end-page: 1279
  ident: bib37
  article-title: Automatic clustering using genetic algorithms
  publication-title: Appl. Math. Comput.
– volume: 116
  start-page: 355
  year: 2013
  end-page: 366
  ident: bib3
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
– start-page: 566
  year: 2012
  end-page: 573
  ident: bib35
  article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem
  publication-title: Bio-Inspired Computing and Applications SE-75
– volume: 41
  start-page: 229
  year: 2010
  end-page: 239
  ident: bib9
  article-title: On the improvements of the particle swarm optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 124
  start-page: 3103
  year: 2013
  end-page: 3111
  ident: bib58
  article-title: Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion
  publication-title: Opt.—Int. J. Light Electron. Opt.
– reference: Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machines and Human Science, MHS, pp. 39–43.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: bib60
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– year: 1989
  ident: bib20
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 24
  start-page: 306
  year: 2011
  end-page: 317
  ident: bib40
  article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering
  publication-title: Eng. Appl. Artif. Intell.
– volume: 216
  start-page: 2988
  year: 2010
  end-page: 3001
  ident: bib51
  article-title: Enhancing PSO methods for global optimization
  publication-title: Appl. Math. Comput.
– volume: 9
  start-page: 1
  year: 1970
  end-page: 15
  ident: bib5
  article-title: A method for unconstrained global optimization
  publication-title: Math. Biosci.
– year: 1999
  ident: bib17
  article-title: and G.T.
  publication-title: Swarm Intelligence: from Natural to Artificial Systems
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: bib19
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib36
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib31
  article-title: Optimization by Simulated Annealing
  publication-title: Science
– volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: bib18
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib25
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 2888
  year: 2011
  end-page: 2901
  ident: bib2
  article-title: The best-so-far selection in artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: bib28
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv. Eng. Softw.
– volume: 219
  start-page: 3575
  year: 2012
  end-page: 3589
  ident: bib8
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 221
  start-page: 355
  year: 2013
  end-page: 370
  ident: bib49
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
– volume: 195
  start-page: 124
  year: 2012
  end-page: 140
  ident: bib33
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inf. Sci. (Ny).
– volume: 128
  start-page: 66
  year: 2013
  end-page: 76
  ident: bib14
  article-title: An improved self-adaptive differential evolution algorithm and its application
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 15
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib50
  article-title: A two-swarm cooperative particle swarms optimization
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: bib27
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– reference: Russell C. Eberhart, Yuhui Shi, J.K., 2001. Swarm Intelligence (The Morgan Kaufmann Series in Evolutionary Computation), 1 edition, New York.
– volume: 80
  start-page: 664
  year: 1995
  end-page: 666
  ident: bib13
  article-title: Taboo Search: an Approach to the Multiple Minima Problem
  publication-title: Science
– volume: 188
  start-page: 129
  year: 2007
  end-page: 142
  ident: bib46
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
– volume: 47
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib4
  article-title: Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration
  publication-title: Adv. Eng. Softw.
– volume: 18
  start-page: 2337
  year: 2013
  end-page: 2346
  ident: bib22
  article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions
  publication-title: Proced. Comput. Sci.
– volume: 13
  start-page: 262
  year: 1987
  end-page: 280
  ident: bib11
  article-title: Minimizing multimodal functions of continuous variables with the & Ldquo; Simulated Annealing&Rdquo; algorithm Corrigenda for this article is available here
  publication-title: ACM Trans. Math. Softw.
– volume: 12
  start-page: 2387
  year: 2012
  end-page: 2393
  ident: bib52
  article-title: Chaotic ant swarm approach for data clustering
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: bib59
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– volume: 97
  start-page: 241
  year: 2012
  end-page: 250
  ident: bib56
  article-title: A new approach for data clustering using hybrid artificial bee colony algorithm
  publication-title: Neurocomputing
– volume: 2
  start-page: 39
  year: 2012
  end-page: 52
  ident: bib1
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
– volume: 40
  start-page: 1250
  year: 2013
  end-page: 1265
  ident: bib55
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput. Oper. Res.
– volume: 38
  start-page: 14555
  year: 2011
  end-page: 14563
  ident: bib10
  article-title: Chaotic particle swarm optimization for data clustering
  publication-title: Expert Syst. Appl.
– volume: 75
  start-page: 275
  year: 1975
  end-page: 311
  ident: bib21
  article-title: Adaptive global search by the process of competitive evolution
  publication-title: IEEE Trans. Syst. Man Cybergenet.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib26
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– start-page: 191
  year: 2014
  end-page: 201
  ident: bib6
  article-title: Artificial Bee Colony Training of Neural Networks
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013) SE – 15
– volume: 39
  start-page: 3747
  year: 2012
  end-page: 3763
  ident: bib23
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
– volume: 219
  start-page: 260
  year: 2012
  end-page: 279
  ident: bib57
  article-title: An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib47
  article-title: Differential Evolution—a Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 221
  start-page: 355
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib49
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.030
– volume: 49
  start-page: 451
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib32
  article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.05.006
– volume: 40
  start-page: 1256
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib54
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.12.006
– ident: 10.1016/j.engappai.2014.07.012_bib15
  doi: 10.1109/MHS.1995.494215
– volume: 24
  start-page: 306
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib40
  article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.10.001
– volume: 13
  start-page: 2188
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib30
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.007
– volume: 23
  start-page: 727
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib39
  article-title: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.015
– volume: 47
  start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib4
  article-title: Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.12.001
– start-page: 566
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib35
  article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem
– volume: 128
  start-page: 66
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib14
  article-title: An improved self-adaptive differential evolution algorithm and its application
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.07.004
– volume: 219
  start-page: 260
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib57
  article-title: An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.06.015
– volume: 97
  start-page: 241
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib56
  article-title: A new approach for data clustering using hybrid artificial bee colony algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.025
– volume: 18
  start-page: 2337
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib22
  article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2013.05.405
– volume: 40
  start-page: 1250
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib55
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput. Oper. Res.
– volume: 13
  start-page: 262
  year: 1987
  ident: 10.1016/j.engappai.2014.07.012_bib11
  article-title: Minimizing multimodal functions of continuous variables with the & Ldquo; Simulated Annealing" algorithm Corrigenda for this article is available here
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/29380.29864
– volume: 42
  start-page: 555
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib53
  article-title: A poly-hybrid PSO optimization method with intelligent parameter adjustment
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.03.018
– volume: 1
  start-page: 32
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib59
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– volume: 217
  start-page: 3166
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib60
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.08.049
– volume: 10
  start-page: 618
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib42
  article-title: Simplifying Particle Swarm Optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.029
– volume: 40
  start-page: 333
  year: 1983
  ident: 10.1016/j.engappai.2014.07.012_bib44
  article-title: Global optimization by controlled random search
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00933504
– volume: 218
  start-page: 1267
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib37
  article-title: Automatic clustering using genetic algorithms
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.06.007
– volume: 15
  start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2014.07.012_bib50
  article-title: A two-swarm cooperative particle swarms optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.10.003
– volume: 9
  start-page: 1
  year: 1970
  ident: 10.1016/j.engappai.2014.07.012_bib5
  article-title: A method for unconstrained global optimization
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(70)90087-8
– volume: 39
  start-page: 3747
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib23
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.073
– volume: 80
  start-page: 664
  issue: 267
  year: 1995
  ident: 10.1016/j.engappai.2014.07.012_bib13
  article-title: Taboo Search: an Approach to the Multiple Minima Problem
  publication-title: Science
  doi: 10.1126/science.267.5198.664
– volume: 11
  start-page: 2888
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib2
  article-title: The best-so-far selection in artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.11.025
– volume: 41
  start-page: 229
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib9
  article-title: On the improvements of the particle swarm optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.08.003
– volume: 124
  start-page: 3103
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib58
  article-title: Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion
  publication-title: Opt.—Int. J. Light Electron. Opt.
  doi: 10.1016/j.ijleo.2012.09.033
– volume: 2
  start-page: 39
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib1
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.08.001
– start-page: 191
  year: 2014
  ident: 10.1016/j.engappai.2014.07.012_bib6
  article-title: Artificial Bee Colony Training of Neural Networks
– volume: 12
  start-page: 320
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib34
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.040
– volume: 236
  start-page: 2741
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib19
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– volume: 39
  start-page: 687
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib18
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.06.007
– volume: 59
  start-page: 53
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib28
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.03.004
– year: 1999
  ident: 10.1016/j.engappai.2014.07.012_bib17
  article-title: and G.T.
– volume: 195
  start-page: 124
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib33
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2012.01.021
– volume: 116
  start-page: 355
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib3
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.047
– volume: 39
  start-page: 1582
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib12
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.123
– volume: 216
  start-page: 2988
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib51
  article-title: Enhancing PSO methods for global optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.04.011
– ident: 10.1016/j.engappai.2014.07.012_bib48
  doi: 10.1007/b99492
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.engappai.2014.07.012_bib36
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 27
  start-page: 57
  year: 2014
  ident: 10.1016/j.engappai.2014.07.012_bib16
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.09.013
– year: 1987
  ident: 10.1016/j.engappai.2014.07.012_bib41
– ident: 10.1016/j.engappai.2014.07.012_bib24
– volume: 116
  start-page: 367
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib43
  article-title: Reducing bioinformatics data dimension with ABC-kNN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.045
– volume: 12
  start-page: 2387
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib52
  article-title: Chaotic ant swarm approach for data clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.037
– year: 1989
  ident: 10.1016/j.engappai.2014.07.012_bib20
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.engappai.2014.07.012_bib31
  article-title: Optimization by Simulated Annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 188
  start-page: 129
  year: 2007
  ident: 10.1016/j.engappai.2014.07.012_bib46
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.098
– ident: 10.1016/j.engappai.2014.07.012_bib45
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.engappai.2014.07.012_bib47
  article-title: Differential Evolution—a Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.engappai.2014.07.012_bib25
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 11
  start-page: 652
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib27
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.025
– volume: 38
  start-page: 14555
  year: 2011
  ident: 10.1016/j.engappai.2014.07.012_bib10
  article-title: Chaotic particle swarm optimization for data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.027
– ident: 10.1016/j.engappai.2014.07.012_bib29
  doi: 10.1109/ICNN.1995.488968
– volume: 93
  start-page: 1566
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib7
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.10.022
– volume: 219
  start-page: 10253
  year: 2013
  ident: 10.1016/j.engappai.2014.07.012_bib38
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.04.001
– volume: 75
  start-page: 275
  year: 1975
  ident: 10.1016/j.engappai.2014.07.012_bib21
  article-title: Adaptive global search by the process of competitive evolution
  publication-title: IEEE Trans. Syst. Man Cybergenet.
– volume: 219
  start-page: 3575
  year: 2012
  ident: 10.1016/j.engappai.2014.07.012_bib8
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.09.052
– volume: 8
  start-page: 687
  year: 2008
  ident: 10.1016/j.engappai.2014.07.012_bib26
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
SSID ssj0003846
Score 2.334933
Snippet Artificial bee colony (ABC) is a swarm optimization algorithm which has been shown to be more effective than the other population based algorithms such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Algorithms
Ant colony optimization
Artificial bee colony
Continuous optimization
Convergence
Hybrid optimization algorithm
Mathematical analysis
Mathematical models
Optimization
Particle swarm optimization
Searching
Swarm intelligence
Title Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
URI https://dx.doi.org/10.1016/j.engappai.2014.07.012
https://www.proquest.com/docview/1651437153
Volume 36
WOSCitedRecordID wos000344430700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3NHGTUbiLQrUsRM7jxMqAgQV0gbqW-Q4zpKpSae2m_aX-Jccx3aScdFAiJeocuTE8vl6bjnnM0IvE5EzLmd5WHLBQhbnSZgTQsOcUU1SVcpZ0Z1a8pEvFmK5TD9PJt98L8zFiretuLxMz_6rqGEMhG1aZ_9C3P1DYQB-g9DhCmKH6x8J_qsG-2R8a2OgCkNiVDuWiFyb0vQVxPuBXJ2sN_WuaroyQ8NZHBSG599ydHQF7HV7bspj16BTGtesGbjjZ7ZX8vkDo2Ew_hzeVRgML69H3J89Hg35hs3ALmRZb3Wfmz6qatsC_2ldyaaRRTCHsL6qmx4gAN2itj7wppLNOHtBmGvj61Nqvq1mqGGyuckoJCl3HNlWMwtOQ1OPO1bddKx7iaXsdGacWL35k4WwyYrTV7o9gT2RtanuYx1_qyvnvsq-fWTWYpYCgajhOhM30F7E41RM0d7h-_nyQ2_2qbBdYX7to3b0X7_td57QDz5B5-gc30W3XYSCDy2y7qGJbu-jOy5awc4WbGHIHwjixx6gwmMPd9jDg_gxYA9b7OEeexiwhw328Ah7eMAeHmMPe-w9RF_ezo_fvAvdMR6hoizehVrzqDSkQ5pQURQzrhQ42uAH0zKSZoCmhBaUKpVLluYx1UkalUXJSyFFDjceoWm7bvU-wlprpWksWawUIzqGcFyxVCWa0iiWpDxAsd_STDmOe3PUyirzxYynmRdFZkSRzXgGojhAr_t5Z5bl5doZqZdY5nxV64NmALRr577wIs5AmZsvdLLVsK0ZSUz8wsELefwPz3-Cbg1_tadoutuc62foprrY1dvNc4fb7-vz0Og
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Velocity+based+artificial+bee+colony+algorithm+for+high+dimensional+continuous+optimization+problems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Imanian%2C+Nafiseh&rft.au=Shiri%2C+Mohammad+Ebrahim&rft.au=Moradi%2C+Parham&rft.date=2014-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=36&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1016%2Fj.engappai.2014.07.012&rft.externalDocID=S0952197614001808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon