Life cycle-oriented low-carbon product design based on the constraint satisfaction problem
[Display omitted] •Hierarchical life cycle-oriented low-carbon product design model is constructed.•Constraint network is integrated with the design space for low-carbon design.•Hybrid optimizer is proposed to generate the low-carbon design solution. The design and development of low-carbon products...
Uloženo v:
| Vydáno v: | Energy conversion and management Ročník 286; s. 117069 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.06.2023
|
| Témata: | |
| ISSN: | 0196-8904 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Hierarchical life cycle-oriented low-carbon product design model is constructed.•Constraint network is integrated with the design space for low-carbon design.•Hybrid optimizer is proposed to generate the low-carbon design solution.
The design and development of low-carbon products have become a recent global concern due to serious greenhouse gas emissions and climate change. The design phase determines 70 % of the environmental performance of the product, which covers complex life cycle information and diversified constraints, resulting in low efficiency of life cycle modeling and difficulty in realizing design automation. Therefore, this study proposes a life cycle-oriented low-carbon design strategy based on the constraint satisfaction problem to express the association mechanism of life cycle information and constraints and efficiently generate the low-carbon design solution. Specifically, the hierarchical life cycle-oriented low-carbon design model is proposed to manage the associations of life cycle information in terms of function, structure, design feature, and machining feature. On the basis of the model, the constraint-based design space is constructed to explicitly express all the feasible design options and the constraints of the product, which can effectively support the automation of product design. Then, all design options and the constraints for product design are transformed into a constraint satisfaction problem, which can be optimized by the proposed hybrid optimizer algorithm. This algorithm supports the efficient optimization of complex products in large-scale design space, and the low-carbon design solution is effectively generated. An example of the low-carbon design of a wind turbine is given to demonstrate the capability of the suggested method, indicating that they have reduced the carbon emission of the wind turbine nearly by 19.82 % in comparison with the existing design solution, and the material acquisition and manufacturing stages generated the highest carbon emissions, accounting for 47.94 % and 56.42 %, respectively. This work effectively standardizes products’ life cycle design information and various design constraints and provides a targeted strategy for guiding designers to implement low-carbon design through the life cycle. |
|---|---|
| AbstractList | The design and development of low-carbon products have become a recent global concern due to serious greenhouse gas emissions and climate change. The design phase determines 70% of the environmental performance of the product, which covers complex life cycle information and diversified constraints, resulting in low efficiency of life cycle modeling and difficulty in realizing design automation. Therefore, this study proposes a life cycle-oriented low-carbon design strategy based on the constraint satisfaction problem to express the association mechanism of life cycle information and constraints and efficiently generate the low-carbon design solution. Specifically, the hierarchical life cycle-oriented low-carbon design model is proposed to manage the associations of life cycle information in terms of function, structure, design feature, and machining feature. On the basis of the model, the constraint-based design space is constructed to explicitly express all the feasible design options and the constraints of the product, which can effectively support the automation of product design. Then, all design options and the constraints for product design are transformed into a constraint satisfaction problem, which can be optimized by the proposed hybrid optimizer algorithm. This algorithm supports the efficient optimization of complex products in large-scale design space, and the low-carbon design solution is effectively generated. An example of the low-carbon design of a wind turbine is given to demonstrate the capability of the suggested method, indicating that they have reduced the carbon emission of the wind turbine nearly by 19.82% in comparison with the existing design solution, and the material acquisition and manufacturing stages generated the highest carbon emissions, accounting for 47.94% and 56.42%, respectively. This work effectively standardizes products' life cycle design information and various design constraints and provides a targeted strategy for guiding designers to implement low-carbon design through the life cycle. [Display omitted] •Hierarchical life cycle-oriented low-carbon product design model is constructed.•Constraint network is integrated with the design space for low-carbon design.•Hybrid optimizer is proposed to generate the low-carbon design solution. The design and development of low-carbon products have become a recent global concern due to serious greenhouse gas emissions and climate change. The design phase determines 70 % of the environmental performance of the product, which covers complex life cycle information and diversified constraints, resulting in low efficiency of life cycle modeling and difficulty in realizing design automation. Therefore, this study proposes a life cycle-oriented low-carbon design strategy based on the constraint satisfaction problem to express the association mechanism of life cycle information and constraints and efficiently generate the low-carbon design solution. Specifically, the hierarchical life cycle-oriented low-carbon design model is proposed to manage the associations of life cycle information in terms of function, structure, design feature, and machining feature. On the basis of the model, the constraint-based design space is constructed to explicitly express all the feasible design options and the constraints of the product, which can effectively support the automation of product design. Then, all design options and the constraints for product design are transformed into a constraint satisfaction problem, which can be optimized by the proposed hybrid optimizer algorithm. This algorithm supports the efficient optimization of complex products in large-scale design space, and the low-carbon design solution is effectively generated. An example of the low-carbon design of a wind turbine is given to demonstrate the capability of the suggested method, indicating that they have reduced the carbon emission of the wind turbine nearly by 19.82 % in comparison with the existing design solution, and the material acquisition and manufacturing stages generated the highest carbon emissions, accounting for 47.94 % and 56.42 %, respectively. This work effectively standardizes products’ life cycle design information and various design constraints and provides a targeted strategy for guiding designers to implement low-carbon design through the life cycle. |
| ArticleNumber | 117069 |
| Author | Li, Fangyi Zhou, Jiaxuan Li, Jianfeng Cai, Zekang Kong, Lin Wang, Liming Wang, Yitong Guo, Jing Wang, Geng |
| Author_xml | – sequence: 1 givenname: Lin surname: Kong fullname: Kong, Lin organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 2 givenname: Liming surname: Wang fullname: Wang, Liming email: liming_wang@sdu.edu.cn organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 3 givenname: Fangyi surname: Li fullname: Li, Fangyi organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 4 givenname: Jianfeng surname: Li fullname: Li, Jianfeng organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 5 givenname: Yitong surname: Wang fullname: Wang, Yitong organization: National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Jinan 250061, China – sequence: 6 givenname: Zekang surname: Cai fullname: Cai, Zekang organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 7 givenname: Jiaxuan surname: Zhou fullname: Zhou, Jiaxuan organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 8 givenname: Jing surname: Guo fullname: Guo, Jing organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China – sequence: 9 givenname: Geng surname: Wang fullname: Wang, Geng organization: Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China |
| BookMark | eNqFkD1PwzAQhj0UibbwF1BGlhRfHOdDYgBVfEmVWDqxWI59AVeJXWwX1H9PosDC0umku_e50z0LMrPOIiFXQFdAobjZrdAqZ3tpVxnN2AqgpEU9I3MKdZFWNc3PySKEHaWUcVrMydvGtJioo-owdd6gjaiTzn2nSvrG2WTvnT6omGgM5t0mjQzDfOjHj4FyNkQvjY1JkNGEVqpoJqbpsL8gZ63sAl7-1iXZPj5s18_p5vXpZX2_SRXLeUwRWoaYFxlnFQBUbc01zaCsco7A6qxQEpqqqcpMA9dAeU6VllVdy5y3EtmSXE9rh7OfBwxR9CYo7Dpp0R2CyCqWZwxYyYdoMUWVdyF4bMXem176owAqRn9iJ_78idGfmPwN4O0_UJkox2fH_7vT-N2E46Dhy6AXQQ2qFWrjUUWhnTm14gdaP5Vw |
| CitedBy_id | crossref_primary_10_1016_j_aei_2024_103094 crossref_primary_10_1016_j_heliyon_2024_e25407 crossref_primary_10_1016_j_procir_2025_08_079 crossref_primary_10_1115_1_4069126 crossref_primary_10_3390_pr13082354 crossref_primary_10_1007_s13132_024_02068_8 crossref_primary_10_1016_j_ijepes_2024_110085 crossref_primary_10_1016_j_resourpol_2024_104812 crossref_primary_10_1111_1477_8947_12471 crossref_primary_10_3390_su151411288 crossref_primary_10_1088_1742_6596_2992_1_012031 crossref_primary_10_1038_s41598_024_70159_2 crossref_primary_10_1111_1477_8947_12510 crossref_primary_10_1108_MD_10_2023_1962 crossref_primary_10_3390_su16114338 crossref_primary_10_1038_s41598_025_92391_0 crossref_primary_10_1088_1742_6596_2892_1_012006 crossref_primary_10_3389_fenvs_2024_1243962 crossref_primary_10_1007_s40684_025_00730_3 crossref_primary_10_1016_j_heliyon_2024_e33965 crossref_primary_10_1016_j_resourpol_2024_104967 crossref_primary_10_1016_j_resourpol_2024_104969 crossref_primary_10_1016_j_apenergy_2024_123747 crossref_primary_10_1016_j_scitotenv_2024_171926 crossref_primary_10_1111_1477_8947_12442 crossref_primary_10_1007_s00477_024_02696_1 crossref_primary_10_1016_j_egyr_2024_05_014 crossref_primary_10_1371_journal_pone_0327576 crossref_primary_10_1007_s11831_024_10131_5 crossref_primary_10_1016_j_renene_2024_120775 crossref_primary_10_1016_j_ijhydene_2024_06_344 crossref_primary_10_1007_s13201_024_02269_1 crossref_primary_10_11648_j_ijaaa_20251103_17 crossref_primary_10_3390_su16083280 crossref_primary_10_1111_1477_8947_12456 crossref_primary_10_1016_j_resconrec_2024_107769 crossref_primary_10_1016_j_diamond_2024_111364 crossref_primary_10_1093_ijlct_ctae048 crossref_primary_10_3390_su16114873 crossref_primary_10_1016_j_resourpol_2024_104706 crossref_primary_10_3390_pr12122811 crossref_primary_10_1177_07316844241278045 crossref_primary_10_1038_s41598_024_53760_3 crossref_primary_10_1186_s40854_024_00627_1 crossref_primary_10_1080_19942060_2024_2327437 crossref_primary_10_1111_1477_8947_12461 crossref_primary_10_1007_s11356_024_32529_1 crossref_primary_10_1111_1477_8947_12424 crossref_primary_10_1016_j_heliyon_2024_e33148 |
| Cites_doi | 10.1007/s12008-008-0047-3 10.1016/j.jclepro.2020.120952 10.1016/j.jclepro.2022.132516 10.1007/s00170-015-6947-z 10.1016/j.cirp.2011.03.018 10.1007/s00170-010-2798-9 10.1007/s00170-021-07557-7 10.1007/s00170-016-8576-6 10.1080/00207540500142381 10.1109/TASE.2020.2992220 10.1142/S1464333218500072 10.1177/1063293X19832940 10.1016/j.jclepro.2017.09.254 10.1016/j.jclepro.2017.01.011 10.1016/j.enconman.2022.116409 10.1016/j.jclepro.2019.118714 10.1007/s00170-021-06656-9 10.1016/j.jclepro.2014.07.067 10.1115/1.4002241 10.1016/j.procir.2016.11.147 10.1080/09544828.2015.1053437 10.1016/j.jmsy.2021.09.008 10.1016/j.aei.2022.101573 10.1016/j.jclepro.2016.12.005 10.1109/TII.2018.2884845 10.3901/JME.2010.19.117 10.1016/j.enconman.2022.116327 10.1017/S0890060402165024 10.1007/s10845-014-1031-3 10.1016/j.dss.2015.01.004 10.1016/j.jclepro.2019.04.255 10.1115/1.4002308 10.1007/s00170-022-10021-9 10.1016/j.jclepro.2012.10.048 10.1080/09544820110108908 10.1007/s40684-015-0023-x 10.1016/j.enconman.2018.09.039 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2023.117069 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enconman_2023_117069 S0196890423004156 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-e1f3ee4625381118f95d0217845e13926ca1b8b872d15d10540cda899a45fae3 |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988107700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Thu Oct 02 09:22:02 EDT 2025 Tue Nov 18 21:51:49 EST 2025 Sat Nov 29 07:22:19 EST 2025 Tue Dec 03 03:44:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constraint satisfaction problem Life cycle assessment Hybrid optimizer algorithm Low-carbon design |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-e1f3ee4625381118f95d0217845e13926ca1b8b872d15d10540cda899a45fae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834231375 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834231375 crossref_primary_10_1016_j_enconman_2023_117069 crossref_citationtrail_10_1016_j_enconman_2023_117069 elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117069 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Yu, Tao, Li (b0055) 2018; 172 Zhang, Han, Li, Qin, Ding, Yan (b0120) 2016; 87 Giwa, Akbari, Kumar (b0005) 2022; 271 Wang W, Tian G, Chen M, Tao F, Zhang C, AI-Ahmari A, et al. Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J Clean Prod 2020;245:118714. 10.1016/j.jclepro.2019.118714. Chiang, Che (b0125) 2015; 71 Tian, Ren, Feng, Zhou, Zhang, Tan (b0035) 2019; 15 Jeong, Suh, Morrison (b0060) 2010; 2010 Kong, Wang, Li, Tian, Li, Cai (b0170) 2022; 363 Xu, Wang, Teng, Zhong, Teng (b0195) 2015; 103 He, Wang, Huang, Wang (b0080) 2015; 26 Zhang, Liu, Hu, Gao (b0095) 2010; 46 Cheng, Yao (b0185) 2022; 273 Kara, Li (b0025) 2011; 60 Guo, Zhou, Liu, Qi (b0105) 2021; 18 Kong, Wang, Li, Guo (b0070) 2022;122:2217-2234 Wang, Li, Ding, Qin, Cai (b0135) 2022; 52 Ballouki, Douimi, Ouzizi (b0015) 2018; 20 Deng (b0065) 2002; 16 Kong, Wang, Li, Lv, Li, Ma (b0040) 2021; 61 Peng, Li, Li, Xie, Xu (b0050) 2019; 228 Xie, Henderson, Kernahan (b0100) 2005; 43 Anand, Wani (b0030) 2010; 132 Tchertchian, Yvars, Millet (b0145) 2013; 42 Chu, Zhao, Jiao, Chen (b0160) 2021; 15 Popoff, Millet (b0140) 2017; 61 Ma, Li, Wang, Wang, Kong (b0180) 2021; 113 Shin, Jun, Kiritsis, Xirouchakis (b0115) 2011; 52 Yvars (b0150) 2008; 2 Liu, Cai, Jia, Zhang, Guo, Hu (b0010) 2018; 177 Wang, Zhong, Zhang (b0155) 2017; 28 Lu, Gao, Li, Pan, Wang (b0165) 2017; 144 Meng, Li, Zhou, Li, Ji, Yang (b0200) 2015; 2 Wang, Li, Zhao, Zhou, Huang, Wang (b0075) 2021; 116 He, Hao, Wang, Li, Wang, Huang (b0175) 2020; 258 Ramani, Ramanujan, Bernstein, Zhao, Sutherland, Handwerker (b0020) 2010; 132 Tao, Chen, Yu, Liu (b0085) 2017; 143 Liu, Du, Lin (b0045) 2019; 27 He, Wang, Deng (b0130) 2015; 79 IPCC. Guidelines for National Greenhouse Gas Inventories. Https://WwwIpccCh/ 2006. Lin, Chen (b0090) 2002; 13 Xie (10.1016/j.enconman.2023.117069_b0100) 2005; 43 Lu (10.1016/j.enconman.2023.117069_b0165) 2017; 144 Kong (10.1016/j.enconman.2023.117069_b0170) 2022; 363 Peng (10.1016/j.enconman.2023.117069_b0050) 2019; 228 Wang (10.1016/j.enconman.2023.117069_b0135) 2022; 52 He (10.1016/j.enconman.2023.117069_b0080) 2015; 26 Zhang (10.1016/j.enconman.2023.117069_b0095) 2010; 46 Jeong (10.1016/j.enconman.2023.117069_b0060) 2010; 2010 Liu (10.1016/j.enconman.2023.117069_b0010) 2018; 177 Anand (10.1016/j.enconman.2023.117069_b0030) 2010; 132 Tao (10.1016/j.enconman.2023.117069_b0085) 2017; 143 Liu (10.1016/j.enconman.2023.117069_b0045) 2019; 27 Wang (10.1016/j.enconman.2023.117069_b0075) 2021; 116 Tchertchian (10.1016/j.enconman.2023.117069_b0145) 2013; 42 Popoff (10.1016/j.enconman.2023.117069_b0140) 2017; 61 He (10.1016/j.enconman.2023.117069_b0130) 2015; 79 Wang (10.1016/j.enconman.2023.117069_b0155) 2017; 28 Ballouki (10.1016/j.enconman.2023.117069_b0015) 2018; 20 10.1016/j.enconman.2023.117069_b0110 Meng (10.1016/j.enconman.2023.117069_b0200) 2015; 2 Yvars (10.1016/j.enconman.2023.117069_b0150) 2008; 2 Ma (10.1016/j.enconman.2023.117069_b0180) 2021; 113 Shin (10.1016/j.enconman.2023.117069_b0115) 2011; 52 Ramani (10.1016/j.enconman.2023.117069_b0020) 2010; 132 Cheng (10.1016/j.enconman.2023.117069_b0185) 2022; 273 Guo (10.1016/j.enconman.2023.117069_b0105) 2021; 18 Deng (10.1016/j.enconman.2023.117069_b0065) 2002; 16 Chiang (10.1016/j.enconman.2023.117069_b0125) 2015; 71 10.1016/j.enconman.2023.117069_b0190 Chu (10.1016/j.enconman.2023.117069_b0160) 2021; 15 Lin (10.1016/j.enconman.2023.117069_b0090) 2002; 13 Kong (10.1016/j.enconman.2023.117069_b0070) 20221222217 Xu (10.1016/j.enconman.2023.117069_b0195) 2015; 103 He (10.1016/j.enconman.2023.117069_b0175) 2020; 258 Li (10.1016/j.enconman.2023.117069_b0055) 2018; 172 Zhang (10.1016/j.enconman.2023.117069_b0120) 2016; 87 Kong (10.1016/j.enconman.2023.117069_b0040) 2021; 61 Giwa (10.1016/j.enconman.2023.117069_b0005) 2022; 271 Kara (10.1016/j.enconman.2023.117069_b0025) 2011; 60 Tian (10.1016/j.enconman.2023.117069_b0035) 2019; 15 |
| References_xml | – volume: 61 start-page: 75 year: 2017 end-page: 80 ident: b0140 article-title: Sustainable Life Cycle Design Using Constraint Satisfaction Problems and Quality Function Deployment publication-title: Procedia CIRP – volume: 71 start-page: 1 year: 2015 end-page: 13 ident: b0125 article-title: A decision-making methodology for low-carbon electronic product design publication-title: Decis Support Syst – volume: 172 start-page: 1 year: 2018 end-page: 13 ident: b0055 article-title: A FBS-based energy modelling method for energy efficiency-oriented design publication-title: J Clean Prod – volume: 61 start-page: 223 year: 2021 end-page: 238 ident: b0040 article-title: Multi-layer integration framework for low carbon design based on design features publication-title: J Manuf Syst – volume: 103 start-page: 747 year: 2015 end-page: 758 ident: b0195 article-title: Low-carbon product multi-objective optimization design for meeting requirements of enterprise, user and government publication-title: J Clean Prod – volume: 18 start-page: 804 year: 2021 end-page: 816 ident: b0105 article-title: Multiresource-Constrained Selective Disassembly with Maximal Profit and Minimal Energy Consumption publication-title: IEEE Trans Autom Sci Eng – volume: 2 start-page: 161 year: 2008 end-page: 167 ident: b0150 article-title: Using constraint satisfaction for designing mechanical systems publication-title: Int J Interact Des Manuf – volume: 132 start-page: 0910041 year: 2010 end-page: 09100415 ident: b0020 article-title: Integrated sustainable life cycle design: A Review publication-title: J Mech Des Trans ASME – volume: 113 start-page: 1143 year: 2021 end-page: 1152 ident: b0180 article-title: Life cycle carbon emission assessments and comparisons of cast iron and resin mineral composite machine tool bed in China publication-title: Int J Adv Manuf Technol – volume: 271 year: 2022 ident: b0005 article-title: Assessment of the greenhouse gas emission footprint of a biorefinery over its life cycle publication-title: Energy Convers Manag – reference: IPCC. Guidelines for National Greenhouse Gas Inventories. Https://WwwIpccCh/ 2006. – volume: 79 start-page: 1821 year: 2015 end-page: 1828 ident: b0130 article-title: Cost-constrained low-carbon product design publication-title: Int J Adv Manuf Technol – volume: 42 start-page: 1 year: 2013 end-page: 18 ident: b0145 article-title: Benefits and limits of a Constraint Satisfaction Problem/Life Cycle Assessment approach for the ecodesign of complex systems: A case applied to a hybrid passenger ferry publication-title: J Clean Prod – volume: 2 start-page: 189 year: 2015 end-page: 196 ident: b0200 article-title: A rapid life cycle assessment method based on green features in supporting conceptual design publication-title: Int J Precis Eng Manuf - Green Technol – reference: Wang W, Tian G, Chen M, Tao F, Zhang C, AI-Ahmari A, et al. Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J Clean Prod 2020;245:118714. 10.1016/j.jclepro.2019.118714. – volume: 2010 start-page: 118 year: 2010 end-page: 123 ident: b0060 article-title: A framework for stepwise life cycle assessment during product design with case-based reasoning. 2010 publication-title: IEEE Int Conf Autom Sci Eng CASE – volume: 26 start-page: 321 year: 2015 end-page: 339 ident: b0080 article-title: Low-carbon product design for product life cycle publication-title: J Eng Des – volume: 15 start-page: 2665 year: 2021 end-page: 2676 ident: b0160 article-title: Optimal Design of Configuration Scheme for Integrated Modular Avionics Systems With Functional Redundancy publication-title: Requirements – volume: 116 start-page: 3839 year: 2021 end-page: 3857 ident: b0075 article-title: A product carbon footprint model for embodiment design based on macro-micro design features publication-title: Int J Adv Manuf Technol – volume: 143 start-page: 1144 year: 2017 end-page: 1164 ident: b0085 article-title: Integration of Life Cycle Assessment with computer-aided product development by a feature-based approach publication-title: J Clean Prod – volume: 132 start-page: 0910101 year: 2010 end-page: 0910109 ident: b0030 article-title: Product life-cycle modeling and evaluation at the conceptual design stage: A digraph and matrix approach publication-title: J Mech Des Trans ASME – volume: 16 start-page: 343 year: 2002 end-page: 362 ident: b0065 article-title: Function and behavior representation in conceptual mechanical design publication-title: Artif Intell Eng Des Anal Manuf AIEDAM – volume: 15 start-page: 2456 year: 2019 end-page: 2468 ident: b0035 article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using and/or Graph and Discrete Artificial Bee Colony publication-title: IEEE Trans Ind Informatics – volume: 27 start-page: 170 year: 2019 end-page: 185 ident: b0045 article-title: Study on lightweight structural optimization design system for gantry machine tool publication-title: Concurr Eng Res Appl – volume: 228 start-page: 729 year: 2019 end-page: 745 ident: b0050 article-title: Innovative product design method for low-carbon footprint based on multi-layer carbon footprint information publication-title: J Clean Prod – volume: 273 year: 2022 ident: b0185 article-title: Design and optimization of a novel U-type vertical axis wind turbine with response surface and machine learning methodology publication-title: Energy Convers Manag – volume: 363 year: 2022 ident: b0170 article-title: A life-cycle integrated model for product eco-design in the conceptual design phase publication-title: J Clean Prod – volume: 177 start-page: 176 year: 2018 end-page: 189 ident: b0010 article-title: Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance publication-title: Energy Convers Manag – volume: 52 year: 2022 ident: b0135 article-title: Product-service system engineering characteristics design for life cycle cost based on constraint satisfaction problem and Bayesian network publication-title: Adv Eng Informatics – volume: 52 start-page: 865 year: 2011 end-page: 886 ident: b0115 article-title: A decision support method for product conceptual design considering product lifecycle factors and resource constraints publication-title: Int J Adv Manuf Technol – volume: 144 start-page: 228 year: 2017 end-page: 238 ident: b0165 article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm publication-title: J Clean Prod – volume: 60 start-page: 37 year: 2011 end-page: 40 ident: b0025 article-title: Unit process energy consumption models for material removal processes publication-title: CIRP Ann - Manuf Technol – volume: 43 start-page: 4455 year: 2005 end-page: 4469 ident: b0100 article-title: Modelling and solving engineering product configuration problems by constraint satisfaction publication-title: Int J Prod Res – volume: 13 start-page: 205 year: 2002 end-page: 214 ident: b0090 article-title: Constraints modelling in product design publication-title: J Eng Des – volume: 28 start-page: 945 year: 2017 end-page: 957 ident: b0155 article-title: Process configuration based on generative constraint satisfaction problem publication-title: J Intell Manuf – year: 2022;122:2217-2234 ident: b0070 article-title: Toward product green design of modeling, assessment, optimization, and tools: a comprehensive review publication-title: Int J Adv Manuf Technol – volume: 20 year: 2018 ident: b0015 article-title: Decision Support Tool Selection for Eco-Design Integration into the Simultaneous Design of Product and its Supply Chain publication-title: J Environ Assess Policy Manag – volume: 46 start-page: 117 year: 2010 end-page: 124 ident: b0095 article-title: Green product configuration design based on constraint satisfaction problems publication-title: J Mech Eng – volume: 258 year: 2020 ident: b0175 article-title: An ontology-based method of knowledge modelling for remanufacturing process planning publication-title: J Clean Prod – volume: 87 start-page: 2375 year: 2016 end-page: 2389 ident: b0120 article-title: A new conceptual design method to support rapid and effective mapping from product design specification to concept design publication-title: Int J Adv Manuf Technol – volume: 2 start-page: 161 year: 2008 ident: 10.1016/j.enconman.2023.117069_b0150 article-title: Using constraint satisfaction for designing mechanical systems publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-008-0047-3 – volume: 15 start-page: 2665 year: 2021 ident: 10.1016/j.enconman.2023.117069_b0160 article-title: Optimal Design of Configuration Scheme for Integrated Modular Avionics Systems With Functional Redundancy publication-title: Requirements – volume: 258 year: 2020 ident: 10.1016/j.enconman.2023.117069_b0175 article-title: An ontology-based method of knowledge modelling for remanufacturing process planning publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120952 – volume: 363 year: 2022 ident: 10.1016/j.enconman.2023.117069_b0170 article-title: A life-cycle integrated model for product eco-design in the conceptual design phase publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.132516 – volume: 79 start-page: 1821 year: 2015 ident: 10.1016/j.enconman.2023.117069_b0130 article-title: Cost-constrained low-carbon product design publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-6947-z – volume: 60 start-page: 37 year: 2011 ident: 10.1016/j.enconman.2023.117069_b0025 article-title: Unit process energy consumption models for material removal processes publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2011.03.018 – volume: 52 start-page: 865 year: 2011 ident: 10.1016/j.enconman.2023.117069_b0115 article-title: A decision support method for product conceptual design considering product lifecycle factors and resource constraints publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2798-9 – ident: 10.1016/j.enconman.2023.117069_b0190 – volume: 116 start-page: 3839 year: 2021 ident: 10.1016/j.enconman.2023.117069_b0075 article-title: A product carbon footprint model for embodiment design based on macro-micro design features publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-07557-7 – volume: 87 start-page: 2375 year: 2016 ident: 10.1016/j.enconman.2023.117069_b0120 article-title: A new conceptual design method to support rapid and effective mapping from product design specification to concept design publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8576-6 – volume: 43 start-page: 4455 year: 2005 ident: 10.1016/j.enconman.2023.117069_b0100 article-title: Modelling and solving engineering product configuration problems by constraint satisfaction publication-title: Int J Prod Res doi: 10.1080/00207540500142381 – volume: 18 start-page: 804 year: 2021 ident: 10.1016/j.enconman.2023.117069_b0105 article-title: Multiresource-Constrained Selective Disassembly with Maximal Profit and Minimal Energy Consumption publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2020.2992220 – volume: 20 year: 2018 ident: 10.1016/j.enconman.2023.117069_b0015 article-title: Decision Support Tool Selection for Eco-Design Integration into the Simultaneous Design of Product and its Supply Chain publication-title: J Environ Assess Policy Manag doi: 10.1142/S1464333218500072 – volume: 27 start-page: 170 year: 2019 ident: 10.1016/j.enconman.2023.117069_b0045 article-title: Study on lightweight structural optimization design system for gantry machine tool publication-title: Concurr Eng Res Appl doi: 10.1177/1063293X19832940 – volume: 172 start-page: 1 year: 2018 ident: 10.1016/j.enconman.2023.117069_b0055 article-title: A FBS-based energy modelling method for energy efficiency-oriented design publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.09.254 – volume: 144 start-page: 228 year: 2017 ident: 10.1016/j.enconman.2023.117069_b0165 article-title: Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.01.011 – volume: 273 year: 2022 ident: 10.1016/j.enconman.2023.117069_b0185 article-title: Design and optimization of a novel U-type vertical axis wind turbine with response surface and machine learning methodology publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.116409 – ident: 10.1016/j.enconman.2023.117069_b0110 doi: 10.1016/j.jclepro.2019.118714 – volume: 113 start-page: 1143 year: 2021 ident: 10.1016/j.enconman.2023.117069_b0180 article-title: Life cycle carbon emission assessments and comparisons of cast iron and resin mineral composite machine tool bed in China publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06656-9 – volume: 103 start-page: 747 year: 2015 ident: 10.1016/j.enconman.2023.117069_b0195 article-title: Low-carbon product multi-objective optimization design for meeting requirements of enterprise, user and government publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.07.067 – volume: 132 start-page: 0910101 year: 2010 ident: 10.1016/j.enconman.2023.117069_b0030 article-title: Product life-cycle modeling and evaluation at the conceptual design stage: A digraph and matrix approach publication-title: J Mech Des Trans ASME doi: 10.1115/1.4002241 – volume: 2010 start-page: 118 year: 2010 ident: 10.1016/j.enconman.2023.117069_b0060 article-title: A framework for stepwise life cycle assessment during product design with case-based reasoning. 2010 publication-title: IEEE Int Conf Autom Sci Eng CASE – volume: 61 start-page: 75 year: 2017 ident: 10.1016/j.enconman.2023.117069_b0140 article-title: Sustainable Life Cycle Design Using Constraint Satisfaction Problems and Quality Function Deployment publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.147 – volume: 26 start-page: 321 year: 2015 ident: 10.1016/j.enconman.2023.117069_b0080 article-title: Low-carbon product design for product life cycle publication-title: J Eng Des doi: 10.1080/09544828.2015.1053437 – volume: 61 start-page: 223 year: 2021 ident: 10.1016/j.enconman.2023.117069_b0040 article-title: Multi-layer integration framework for low carbon design based on design features publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.09.008 – volume: 52 year: 2022 ident: 10.1016/j.enconman.2023.117069_b0135 article-title: Product-service system engineering characteristics design for life cycle cost based on constraint satisfaction problem and Bayesian network publication-title: Adv Eng Informatics doi: 10.1016/j.aei.2022.101573 – volume: 143 start-page: 1144 year: 2017 ident: 10.1016/j.enconman.2023.117069_b0085 article-title: Integration of Life Cycle Assessment with computer-aided product development by a feature-based approach publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.12.005 – volume: 15 start-page: 2456 year: 2019 ident: 10.1016/j.enconman.2023.117069_b0035 article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using and/or Graph and Discrete Artificial Bee Colony publication-title: IEEE Trans Ind Informatics doi: 10.1109/TII.2018.2884845 – volume: 46 start-page: 117 year: 2010 ident: 10.1016/j.enconman.2023.117069_b0095 article-title: Green product configuration design based on constraint satisfaction problems publication-title: J Mech Eng doi: 10.3901/JME.2010.19.117 – volume: 271 year: 2022 ident: 10.1016/j.enconman.2023.117069_b0005 article-title: Assessment of the greenhouse gas emission footprint of a biorefinery over its life cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.116327 – volume: 16 start-page: 343 year: 2002 ident: 10.1016/j.enconman.2023.117069_b0065 article-title: Function and behavior representation in conceptual mechanical design publication-title: Artif Intell Eng Des Anal Manuf AIEDAM doi: 10.1017/S0890060402165024 – volume: 28 start-page: 945 year: 2017 ident: 10.1016/j.enconman.2023.117069_b0155 article-title: Process configuration based on generative constraint satisfaction problem publication-title: J Intell Manuf doi: 10.1007/s10845-014-1031-3 – volume: 71 start-page: 1 year: 2015 ident: 10.1016/j.enconman.2023.117069_b0125 article-title: A decision-making methodology for low-carbon electronic product design publication-title: Decis Support Syst doi: 10.1016/j.dss.2015.01.004 – volume: 228 start-page: 729 year: 2019 ident: 10.1016/j.enconman.2023.117069_b0050 article-title: Innovative product design method for low-carbon footprint based on multi-layer carbon footprint information publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.04.255 – volume: 132 start-page: 0910041 year: 2010 ident: 10.1016/j.enconman.2023.117069_b0020 article-title: Integrated sustainable life cycle design: A Review publication-title: J Mech Des Trans ASME doi: 10.1115/1.4002308 – year: 20221222217 ident: 10.1016/j.enconman.2023.117069_b0070 article-title: Toward product green design of modeling, assessment, optimization, and tools: a comprehensive review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10021-9 – volume: 42 start-page: 1 year: 2013 ident: 10.1016/j.enconman.2023.117069_b0145 article-title: Benefits and limits of a Constraint Satisfaction Problem/Life Cycle Assessment approach for the ecodesign of complex systems: A case applied to a hybrid passenger ferry publication-title: J Clean Prod doi: 10.1016/j.jclepro.2012.10.048 – volume: 13 start-page: 205 year: 2002 ident: 10.1016/j.enconman.2023.117069_b0090 article-title: Constraints modelling in product design publication-title: J Eng Des doi: 10.1080/09544820110108908 – volume: 2 start-page: 189 year: 2015 ident: 10.1016/j.enconman.2023.117069_b0200 article-title: A rapid life cycle assessment method based on green features in supporting conceptual design publication-title: Int J Precis Eng Manuf - Green Technol doi: 10.1007/s40684-015-0023-x – volume: 177 start-page: 176 year: 2018 ident: 10.1016/j.enconman.2023.117069_b0010 article-title: Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.09.039 |
| SSID | ssj0003506 |
| Score | 2.5850344 |
| Snippet | [Display omitted]
•Hierarchical life cycle-oriented low-carbon product design model is constructed.•Constraint network is integrated with the design space for... The design and development of low-carbon products have become a recent global concern due to serious greenhouse gas emissions and climate change. The design... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117069 |
| SubjectTerms | administrative management algorithms automation carbon climate change Constraint satisfaction problem energy conversion environmental performance greenhouse gases Hybrid optimizer algorithm Life cycle assessment life cycle design Low-carbon design wind turbines |
| Title | Life cycle-oriented low-carbon product design based on the constraint satisfaction problem |
| URI | https://dx.doi.org/10.1016/j.enconman.2023.117069 https://www.proquest.com/docview/2834231375 |
| Volume | 286 |
| WOSCitedRecordID | wos000988107700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003506 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5UAPiKcoj8pIiEuUsnk4j2OFdlVKtHAIsOJi2Y6DtmqT7e4W2n_PjO1kdymo5cDFiiaxY3k-eR4ezxDyOoqkSqJU-glTAzBQlPRBrmNMQ432SCQzk0j7S5GOx9lkkn9y9TsXppxA2jTZxUU--6-sBhowG6_O_gO7-0GBAM_AdGiB7dDeiPHFtNaeugSq32ISY1QpT9qfvhJz2ZqALEzx6lUmdMNDKVa5EwMMQV-YmhFLb7F268FzVWc2vPj2zqAJWjceN3MKcXolmOaDC_ktpj0Kv4qOdNrJTYwIMmEFI3h3Od2kHQGCa-2-dA6KEItF-PaKZuezzBM_y22V4Ss7tnUeHO9j2s4GZrmPQ-BR8sCWcNlMkT3-yEefi4KXw0n5ZnaG6_gdT9ldKZXbZDtMWQ4b9PbB--HkqJfJETNVVvuprN0V__Ov_6am_CawjRZS3if3nPlADyzbH5BbunlIdtaSSj4i3xAAdBMAdAUA6gBALQCoAQAFOgCArgBA1wFAHQAek3I0LN8d-q6Chq-imC19HdSR1jHYuKCYgSlZ56xCIzSLmQbVP0yUCGQmszSsAlYFqL6rSoAJLmJWCx09IVtN2-inhNYwUF5Dm-g4HuRCgiwQsPkLKUKZKr1LWLdeXLns8jjfE96FER7zbp05rjO367xL3vb9Zja_yrU98o4d3GmJVvvjAKlr-77q-MdhG8WzMdHo9nzBQcsGwyKIUvbsBt88J3dXSH9Btpbzc_2S3FE_gDPzPQe-X6uimKs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle-oriented+low-carbon+product+design+based+on+the+constraint+satisfaction+problem&rft.jtitle=Energy+conversion+and+management&rft.au=Kong%2C+Lin&rft.au=Wang%2C+Liming&rft.au=Li%2C+Fangyi&rft.au=Li%2C+Jianfeng&rft.date=2023-06-15&rft.issn=0196-8904&rft_id=info:doi/10.1016%2Fj.enconman.2023.117069&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |