A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting

•A multi-objective optimization algorithm is successfully developed.•Employ a data denoising strategy to process the raw wind speed sequence.•Propose a novel method of determining weight to combine all of individual models.•Design four experiments based on actual wind farms to examine the effectiven...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 241; pp. 519 - 539
Main Authors: Niu, Xinsong, Wang, Jiyang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2019
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multi-objective optimization algorithm is successfully developed.•Employ a data denoising strategy to process the raw wind speed sequence.•Propose a novel method of determining weight to combine all of individual models.•Design four experiments based on actual wind farms to examine the effectiveness. Short-term wind speed forecasting plays an important role in wind power generation and considerably contributes to decisions regarding control and operations. In order to improve the accuracy of wind speed forecasting, a large number of prediction methods have been proposed. However, existing prediction models ignore the role of data preprocessing and are susceptible to various limitations of the single individual model that can lead to low prediction accuracy. In this study, a developed combined model is proposed, including complete ensemble empirical mode decomposition with adaptive noise—a multi-objective grasshopper optimization algorithm based on a no-negative constraint theory—and several single models, including four neural network models and a linear model, to achieve accurate prediction results. The novel combined model considers the linear and nonlinear characteristics of the sequence, successfully overcomes the limitations of the single model, and obtains accurate and stable prediction results. In order to test the performance of combined model, the wind speed sequence of a wind farm from China is used for experiments and discussions. The results of the experiments and discussions show that the novel combined model has better forecasting performance than traditional prediction models.
AbstractList •A multi-objective optimization algorithm is successfully developed.•Employ a data denoising strategy to process the raw wind speed sequence.•Propose a novel method of determining weight to combine all of individual models.•Design four experiments based on actual wind farms to examine the effectiveness. Short-term wind speed forecasting plays an important role in wind power generation and considerably contributes to decisions regarding control and operations. In order to improve the accuracy of wind speed forecasting, a large number of prediction methods have been proposed. However, existing prediction models ignore the role of data preprocessing and are susceptible to various limitations of the single individual model that can lead to low prediction accuracy. In this study, a developed combined model is proposed, including complete ensemble empirical mode decomposition with adaptive noise—a multi-objective grasshopper optimization algorithm based on a no-negative constraint theory—and several single models, including four neural network models and a linear model, to achieve accurate prediction results. The novel combined model considers the linear and nonlinear characteristics of the sequence, successfully overcomes the limitations of the single model, and obtains accurate and stable prediction results. In order to test the performance of combined model, the wind speed sequence of a wind farm from China is used for experiments and discussions. The results of the experiments and discussions show that the novel combined model has better forecasting performance than traditional prediction models.
Short-term wind speed forecasting plays an important role in wind power generation and considerably contributes to decisions regarding control and operations. In order to improve the accuracy of wind speed forecasting, a large number of prediction methods have been proposed. However, existing prediction models ignore the role of data preprocessing and are susceptible to various limitations of the single individual model that can lead to low prediction accuracy. In this study, a developed combined model is proposed, including complete ensemble empirical mode decomposition with adaptive noise—a multi-objective grasshopper optimization algorithm based on a no-negative constraint theory—and several single models, including four neural network models and a linear model, to achieve accurate prediction results. The novel combined model considers the linear and nonlinear characteristics of the sequence, successfully overcomes the limitations of the single model, and obtains accurate and stable prediction results. In order to test the performance of combined model, the wind speed sequence of a wind farm from China is used for experiments and discussions. The results of the experiments and discussions show that the novel combined model has better forecasting performance than traditional prediction models.
Author Niu, Xinsong
Wang, Jiyang
Author_xml – sequence: 1
  givenname: Xinsong
  surname: Niu
  fullname: Niu, Xinsong
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 2
  givenname: Jiyang
  surname: Wang
  fullname: Wang, Jiyang
  email: wjiyang@yeah.net
  organization: Faculty of Information Technology, Macau University of Science and Technology, Macau, China
BookMark eNqFkLFu2zAQhokiAeI4eYWAYxepR1K2JKBDgyBpChjo0s4ERZ3sMyRSJekE7gP0ucvE6dIlEw_g__2H-y7ZmfMOGbsRUAoQ60_70szoMGyPpQTRlqBKaOsPbCGaWhatEM0ZW4CCdSHXor1glzHuAUAKCQv255ZbP3XksOeT73HknYl59o73Jhk-B5yDtxgjuS2PKZiE2yM3LscPY6LCd3u0iZ6Q-znRRL9NogybcesDpd3EBx943PmQioRh4s-U0Thj3pF_0JqYcvMVOx_MGPH67V2ynw_3P-4ei833r9_ubjeFVdUqFb2ErhYIUlXKSqtka2vsG1sJNGbVgGpQqE5JpaphWEkpTVu1LZpugGYYBKgl-3jqzUf9OmBMeqJocRyNQ3-IOiMCoKmVyNH1KWqDjzHgoOdAkwlHLUC_iNd7_U-8fhGvQeksPoOf_wMtpVcr2R6N7-NfTjhmD0-EQUdL6Cz2lHUl3Xt6r-IviUCpiw
CitedBy_id crossref_primary_10_1155_2022_2189000
crossref_primary_10_3389_fenvs_2022_904939
crossref_primary_10_3389_fenvs_2022_833374
crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_1109_ACCESS_2021_3116259
crossref_primary_10_1016_j_scs_2020_102036
crossref_primary_10_1155_2020_7854286
crossref_primary_10_1177_0958305X241228515
crossref_primary_10_1016_j_rser_2025_115375
crossref_primary_10_1016_j_energy_2024_133206
crossref_primary_10_1016_j_asoc_2023_110310
crossref_primary_10_1016_j_enbuild_2024_114444
crossref_primary_10_1016_j_eswa_2023_119636
crossref_primary_10_1016_j_eswa_2023_119878
crossref_primary_10_1016_j_ress_2023_109767
crossref_primary_10_1016_j_apr_2020_04_010
crossref_primary_10_1016_j_energy_2021_122024
crossref_primary_10_3390_sym15040781
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_1016_j_apenergy_2022_118674
crossref_primary_10_1016_j_apenergy_2022_118796
crossref_primary_10_1016_j_renene_2019_04_154
crossref_primary_10_1016_j_eswa_2023_122487
crossref_primary_10_21285_1814_3520_2025_3_353_362
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1007_s10489_023_04906_9
crossref_primary_10_1016_j_apenergy_2020_115561
crossref_primary_10_1016_j_renene_2021_02_161
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_apenergy_2022_118725
crossref_primary_10_1016_j_dajour_2025_100598
crossref_primary_10_1016_j_jweia_2023_105499
crossref_primary_10_1016_j_knosys_2022_108687
crossref_primary_10_1016_j_scs_2022_104049
crossref_primary_10_1002_ese3_1380
crossref_primary_10_1016_j_apenergy_2020_115975
crossref_primary_10_1016_j_renene_2023_05_006
crossref_primary_10_1002_ente_202300889
crossref_primary_10_1016_j_eswa_2022_119223
crossref_primary_10_1109_ACCESS_2020_3022872
crossref_primary_10_3390_math8081263
crossref_primary_10_1007_s11356_023_29196_z
crossref_primary_10_1016_j_esr_2022_100864
crossref_primary_10_1016_j_eswa_2023_120117
crossref_primary_10_1371_journal_pone_0322548
crossref_primary_10_1016_j_asoc_2021_108096
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1016_j_energy_2022_125428
crossref_primary_10_1016_j_apenergy_2021_117452
crossref_primary_10_1007_s10489_020_01981_0
crossref_primary_10_1016_j_energy_2024_132192
crossref_primary_10_1016_j_jclepro_2022_135772
crossref_primary_10_1016_j_jclepro_2020_120378
crossref_primary_10_1016_j_jclepro_2020_122953
crossref_primary_10_3390_su16166945
crossref_primary_10_1016_j_renene_2023_119391
crossref_primary_10_1016_j_seta_2020_100757
crossref_primary_10_1016_j_enconman_2022_116579
crossref_primary_10_1007_s10614_024_10705_2
crossref_primary_10_1016_j_ins_2022_11_145
crossref_primary_10_3390_en16104249
crossref_primary_10_3233_JIFS_201191
crossref_primary_10_3390_en12193622
crossref_primary_10_1016_j_engappai_2025_112026
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1063_5_0198183
crossref_primary_10_1016_j_energy_2020_119361
crossref_primary_10_1007_s11760_023_02759_w
crossref_primary_10_1007_s42243_023_00944_2
crossref_primary_10_1016_j_apenergy_2022_119420
crossref_primary_10_3390_en12132467
crossref_primary_10_1016_j_apenergy_2021_116545
crossref_primary_10_1016_j_enconman_2019_112265
crossref_primary_10_1016_j_engappai_2020_103783
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1007_s12667_023_00607_x
crossref_primary_10_1016_j_asoc_2021_107935
crossref_primary_10_1007_s11269_025_04248_w
crossref_primary_10_32604_ee_2024_046374
crossref_primary_10_1016_j_eswa_2023_122477
crossref_primary_10_1109_ACCESS_2019_2957062
crossref_primary_10_1111_joes_70005
crossref_primary_10_1016_j_energy_2023_129823
crossref_primary_10_1016_j_energy_2021_121989
crossref_primary_10_1016_j_resourpol_2021_102222
crossref_primary_10_1016_j_jclepro_2019_118556
crossref_primary_10_1007_s13351_024_3096_z
crossref_primary_10_3390_su11215921
crossref_primary_10_1016_j_apenergy_2022_118756
crossref_primary_10_1016_j_renene_2022_02_005
crossref_primary_10_1109_TPWRS_2023_3249412
crossref_primary_10_1016_j_energy_2022_124095
crossref_primary_10_1016_j_chaos_2023_114222
crossref_primary_10_1063_5_0246082
crossref_primary_10_1016_j_chaos_2022_112285
crossref_primary_10_1016_j_renene_2020_09_110
crossref_primary_10_1109_ACCESS_2020_3032070
crossref_primary_10_1109_ACCESS_2021_3084536
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_1016_j_apenergy_2023_122341
crossref_primary_10_1016_j_energy_2022_124249
crossref_primary_10_1016_j_knosys_2019_07_024
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_apenergy_2021_118191
crossref_primary_10_1109_ACCESS_2020_2973746
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1016_j_knosys_2023_111157
crossref_primary_10_1016_j_energy_2025_135673
crossref_primary_10_1002_2050_7038_13189
crossref_primary_10_1038_s41598_025_10641_7
crossref_primary_10_1016_j_apenergy_2019_114137
crossref_primary_10_1016_j_neucom_2021_07_084
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1016_j_egyr_2025_06_039
crossref_primary_10_1007_s13042_021_01340_6
crossref_primary_10_1016_j_apenergy_2022_119617
crossref_primary_10_3390_en16052094
crossref_primary_10_3390_su15075871
crossref_primary_10_1016_j_renene_2022_12_120
crossref_primary_10_1016_j_asoc_2022_109638
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_3389_fmars_2021_804541
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1007_s12155_019_10009_6
crossref_primary_10_1016_j_apenergy_2021_117815
crossref_primary_10_1016_j_asoc_2020_106809
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_enconman_2020_112995
crossref_primary_10_3390_fractalfract8090532
crossref_primary_10_1016_j_energy_2022_123960
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_1155_2020_9564287
crossref_primary_10_1016_j_asoc_2024_112007
crossref_primary_10_1016_j_apm_2020_07_019
crossref_primary_10_1093_ce_zkac011
crossref_primary_10_1080_15567036_2019_1649757
crossref_primary_10_1016_j_ecolind_2024_112626
crossref_primary_10_1016_j_eswa_2023_122970
crossref_primary_10_1016_j_rser_2020_109856
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1155_2022_5823656
crossref_primary_10_1016_j_energy_2021_120904
crossref_primary_10_1016_j_envres_2024_118577
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_3390_en15082881
crossref_primary_10_3390_en12183586
crossref_primary_10_3390_systems11020055
crossref_primary_10_1002_ese3_1352
crossref_primary_10_3390_en18092246
crossref_primary_10_1016_j_apenergy_2022_118938
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1002_ese3_761
crossref_primary_10_1016_j_energy_2022_124664
crossref_primary_10_1109_ACCESS_2020_2977921
crossref_primary_10_1016_j_techfore_2021_121181
crossref_primary_10_1038_s41598_023_33414_6
crossref_primary_10_1038_s41598_025_03188_0
crossref_primary_10_1109_ACCESS_2019_2951153
crossref_primary_10_3389_fenrg_2021_764635
crossref_primary_10_1016_j_energy_2019_116316
crossref_primary_10_1016_j_energy_2021_121275
crossref_primary_10_1016_j_energy_2021_122128
crossref_primary_10_1016_j_resourpol_2022_102734
crossref_primary_10_1155_2021_6632390
crossref_primary_10_1002_for_2905
crossref_primary_10_1186_s13104_020_05050_0
crossref_primary_10_1007_s00477_022_02178_2
crossref_primary_10_1016_j_asoc_2019_106029
crossref_primary_10_1016_j_asoc_2020_106620
crossref_primary_10_3390_en16031530
crossref_primary_10_1016_j_energy_2024_131950
crossref_primary_10_1016_j_enconman_2020_112779
crossref_primary_10_1016_j_energy_2023_127695
crossref_primary_10_3390_en15114137
crossref_primary_10_1016_j_energy_2022_123195
crossref_primary_10_1016_j_apenergy_2021_116908
crossref_primary_10_1016_j_seta_2022_102535
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_3390_en12193675
crossref_primary_10_3390_en12101931
crossref_primary_10_1177_10963480221142873
crossref_primary_10_3390_pr8010035
crossref_primary_10_1002_er_6679
crossref_primary_10_1109_ACCESS_2024_3430830
crossref_primary_10_1016_j_epsr_2022_108765
Cites_doi 10.1016/j.energy.2015.08.045
10.1016/j.asoc.2018.07.030
10.3390/su8111191
10.1016/j.advengsoft.2017.01.004
10.1016/j.renene.2015.01.022
10.1016/j.asoc.2018.07.022
10.1016/j.apenergy.2017.01.063
10.1016/j.apenergy.2015.12.082
10.1016/j.apenergy.2018.07.032
10.3390/su11020526
10.1016/j.asoc.2014.06.027
10.1016/j.eswa.2010.11.081
10.1016/j.apenergy.2016.08.108
10.1016/j.apenergy.2016.07.113
10.1016/j.enconman.2017.07.065
10.1016/j.econmod.2013.09.033
10.3390/en11061561
10.1098/rspa.1998.0193
10.1016/j.asoc.2014.05.028
10.1016/j.apenergy.2013.02.002
10.1142/S1793536909000047
10.3390/su10051443
10.1016/j.apenergy.2018.02.070
10.1016/j.asoc.2018.09.005
10.1016/S0167-6105(00)00079-9
10.1016/j.renene.2017.08.041
10.1016/j.eswa.2014.08.018
10.1016/j.apenergy.2018.11.012
10.1016/j.apenergy.2018.11.034
10.1016/j.apenergy.2017.10.031
10.3390/su10113913
10.1016/j.apenergy.2019.01.063
10.1016/j.enconman.2018.02.012
10.1016/j.apenergy.2012.03.054
10.1016/j.rser.2008.02.002
10.1016/j.knosys.2017.03.027
10.3390/en11040712
10.1016/j.energy.2018.08.127
10.1016/j.renene.2017.09.089
10.1016/j.renene.2018.11.061
10.1016/j.renene.2016.03.103
10.3390/su8030235
10.1016/j.renene.2017.06.095
10.1016/j.apm.2018.10.019
10.1016/j.physa.2016.08.062
10.3390/su10124601
10.1016/j.renene.2010.08.026
10.1049/iet-rpg.2017.0232
10.1016/j.procbio.2017.01.021
10.1016/j.rser.2013.12.054
10.1016/j.asoc.2018.02.004
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.03.097
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 539
ExternalDocumentID 10_1016_j_apenergy_2019_03_097
S0306261919304994
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-d20b71e02343c2c329c7ed8c41eaa58038e13b32334ff5222a9499eabf08ff103
ISICitedReferencesCount 193
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465509500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 11:08:36 EDT 2025
Tue Nov 18 20:29:12 EST 2025
Sat Nov 29 07:22:02 EST 2025
Fri Feb 23 02:16:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data preprocessing strategy
Combined model
Multi-objective optimization algorithm
Artificial intelligence
Wind speed forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-d20b71e02343c2c329c7ed8c41eaa58038e13b32334ff5222a9499eabf08ff103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221008731
PQPubID 24069
PageCount 21
ParticipantIDs proquest_miscellaneous_2221008731
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_citationtrail_10_1016_j_apenergy_2019_03_097
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_03_097
PublicationCentury 2000
PublicationDate 2019-05-01
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jian, Li, Li, Yang (b0140) 2018
Wang, Du, Niu, Yang (b0070) 2017
Reyes-Alvarado, Okpalanze, Kankanala, Rene, Esposito, Lens (b0135) 2017; 55
Zhao, Wang, Su, Wang (b0200) 2019; 134
Cassola, Burlando (b0045) 2012; 99
Hao, Tian (b0285) 2019; 238
Wang, Wang, Li, Peng, Liu (b0010) 2016; 182
Wang, Du, Lu, Yang, Niu (b0100) 2018; 72
U.S. Department of Energy (DOE. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply, 2008.
Jung, Broadwater (b0065) 2014; 31
Narendra Babu, Reddy (b0075) 2014; 23
Zhang, Wang, Guo (b0170) 2018
Tascikaraoglu, Sanandaji, Poolla, Varaiya (b0090) 2016; 165
Xiao, Shao, Wang, Zhang, Lu (b0225) 2016; 180
Wang, Li, Li (b0085) 2018; 163
Song, Wang, Lu (b0290) 2018; 215
Yao, Wang (b0210) 2018; 10
Li, Jin (b0180) 2018; 228
.
Ramesh Babu, Jagan (b0115) 2015
Saremi, Mirjalili, Lewis (b0265) 2017; 105
Chen, Hou (b0310) 2002
Tian, Hao (b0235) 2018; 11
Cristobal, Ramon (b0280) 2012
Blonbou (b0105) 2011; 36
Wang, Yang, Du (b0295) 2018; 163
Wang, Hu (b0025) 2015; 93
Landberg (b0035) 2001; 89
Fu, Wang (b0205) 2018; 10
Wang, Zhang, Wu, Wang (b0185) 2016; 94
Yang, Wang, Niu, Du (b0220) 2019; 235
Wu, Huang (b0250) 2009; 1
Jiang, Yang, Heng (b0120) 2019; 235
Liu, Zhang, Chen, Wang (b0175) 2018; 10
Liu, Wang, Wang (b0315) 2015; 78
Wang, Zhang, Li, Wang, Dang (b0190) 2014; 23
Cheng, Wei (b0110) 2014; 36
Heng, Wang, Zhao, Xiao (b0195) 2016; 8
Kordanuli, Barjaktarović, Jeremić, Alizamir (b0130) 2017; 465
El-Fergany (b0270) 2018; 12
Jiang, Li, Li (b0215) 2018; 67
Du, Wang, Guo, Yang (b0060) 2017; 150
Xu, Song, Zhang, Bai (b0145) 2007
Wang, Wang, Qu, Liu (b0160) 2018; 66
Biswas, Suganthan, Amaratunga (b0230) 2018; 115
Wang, Zeng, Chen (b0150) 2015; 42
Wang, Luo, Grunder, Lin (b0155) 2017; 113
Wang, Gao, Chen (b0165) 2018; 11
Lei, Shiyan, Chuanwen, Hongling, Yan (b0030) 2009; 13
Li, Wang, Lu, Guo (b0050) 2018; 116
Hao, Tian (b0240) 2019; 71
Torres, Colominas, Schlotthauer, Flandrin (b0255) 2011
Soman, Zareipour, Malik, Mandal (b0055) 2010
Wang, Wu, Niu (b0305) 2019; 11
Negnevitsky, Johnson, Santoso (b0040) 2007; 2007
Wang, Wang, Wu (b0300) 2016; 8
Global Wind Energy Council. Global wind statistics: 2017. p. 2018.
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0260) 2017
Kaya, Kahraman (b0275) 2011; 38
Akçay, Filik (b0020) 2017; 191
Liu, Tian, Pan, Li (b0095) 2013; 107
Huang, Shen, Long, Wu, Shih (b0245) 1998; 454
Qin, Li, Du (b0080) 2017; 125
Wang, Li, Lu (b0125) 2018; 71
Wang (10.1016/j.apenergy.2019.03.097_b0125) 2018; 71
Saremi (10.1016/j.apenergy.2019.03.097_b0265) 2017; 105
Xu (10.1016/j.apenergy.2019.03.097_b0145) 2007
Liu (10.1016/j.apenergy.2019.03.097_b0095) 2013; 107
Fu (10.1016/j.apenergy.2019.03.097_b0205) 2018; 10
Zhao (10.1016/j.apenergy.2019.03.097_b0200) 2019; 134
Jiang (10.1016/j.apenergy.2019.03.097_b0215) 2018; 67
Wang (10.1016/j.apenergy.2019.03.097_b0070) 2017
Wang (10.1016/j.apenergy.2019.03.097_b0165) 2018; 11
Landberg (10.1016/j.apenergy.2019.03.097_b0035) 2001; 89
Jiang (10.1016/j.apenergy.2019.03.097_b0120) 2019; 235
Wang (10.1016/j.apenergy.2019.03.097_b0150) 2015; 42
Heng (10.1016/j.apenergy.2019.03.097_b0195) 2016; 8
Narendra Babu (10.1016/j.apenergy.2019.03.097_b0075) 2014; 23
Wang (10.1016/j.apenergy.2019.03.097_b0190) 2014; 23
Wu (10.1016/j.apenergy.2019.03.097_b0250) 2009; 1
Li (10.1016/j.apenergy.2019.03.097_b0180) 2018; 228
Qin (10.1016/j.apenergy.2019.03.097_b0080) 2017; 125
10.1016/j.apenergy.2019.03.097_b0015
Mirjalili (10.1016/j.apenergy.2019.03.097_b0260) 2017
Liu (10.1016/j.apenergy.2019.03.097_b0315) 2015; 78
Negnevitsky (10.1016/j.apenergy.2019.03.097_b0040) 2007; 2007
Song (10.1016/j.apenergy.2019.03.097_b0290) 2018; 215
Wang (10.1016/j.apenergy.2019.03.097_b0155) 2017; 113
Tian (10.1016/j.apenergy.2019.03.097_b0235) 2018; 11
Hao (10.1016/j.apenergy.2019.03.097_b0285) 2019; 238
Hao (10.1016/j.apenergy.2019.03.097_b0240) 2019; 71
Wang (10.1016/j.apenergy.2019.03.097_b0085) 2018; 163
Blonbou (10.1016/j.apenergy.2019.03.097_b0105) 2011; 36
Torres (10.1016/j.apenergy.2019.03.097_b0255) 2011
Wang (10.1016/j.apenergy.2019.03.097_b0295) 2018; 163
Lei (10.1016/j.apenergy.2019.03.097_b0030) 2009; 13
Kaya (10.1016/j.apenergy.2019.03.097_b0275) 2011; 38
Ramesh Babu (10.1016/j.apenergy.2019.03.097_b0115) 2015
Zhang (10.1016/j.apenergy.2019.03.097_b0170) 2018
Akçay (10.1016/j.apenergy.2019.03.097_b0020) 2017; 191
Wang (10.1016/j.apenergy.2019.03.097_b0305) 2019; 11
10.1016/j.apenergy.2019.03.097_b0005
Cassola (10.1016/j.apenergy.2019.03.097_b0045) 2012; 99
Wang (10.1016/j.apenergy.2019.03.097_b0300) 2016; 8
Reyes-Alvarado (10.1016/j.apenergy.2019.03.097_b0135) 2017; 55
Wang (10.1016/j.apenergy.2019.03.097_b0160) 2018; 66
Li (10.1016/j.apenergy.2019.03.097_b0050) 2018; 116
Xiao (10.1016/j.apenergy.2019.03.097_b0225) 2016; 180
Yao (10.1016/j.apenergy.2019.03.097_b0210) 2018; 10
Soman (10.1016/j.apenergy.2019.03.097_b0055) 2010
Du (10.1016/j.apenergy.2019.03.097_b0060) 2017; 150
Jung (10.1016/j.apenergy.2019.03.097_b0065) 2014; 31
Wang (10.1016/j.apenergy.2019.03.097_b0100) 2018; 72
Kordanuli (10.1016/j.apenergy.2019.03.097_b0130) 2017; 465
Biswas (10.1016/j.apenergy.2019.03.097_b0230) 2018; 115
Liu (10.1016/j.apenergy.2019.03.097_b0175) 2018; 10
Chen (10.1016/j.apenergy.2019.03.097_b0310) 2002
El-Fergany (10.1016/j.apenergy.2019.03.097_b0270) 2018; 12
Yang (10.1016/j.apenergy.2019.03.097_b0220) 2019; 235
Wang (10.1016/j.apenergy.2019.03.097_b0025) 2015; 93
Cristobal (10.1016/j.apenergy.2019.03.097_b0280) 2012
Wang (10.1016/j.apenergy.2019.03.097_b0010) 2016; 182
Cheng (10.1016/j.apenergy.2019.03.097_b0110) 2014; 36
Wang (10.1016/j.apenergy.2019.03.097_b0185) 2016; 94
Tascikaraoglu (10.1016/j.apenergy.2019.03.097_b0090) 2016; 165
Jian (10.1016/j.apenergy.2019.03.097_b0140) 2018
Huang (10.1016/j.apenergy.2019.03.097_b0245) 1998; 454
References_xml – volume: 10
  start-page: 1443
  year: 2018
  ident: b0210
  article-title: A hybrid model based on a modified optimization algorithm and an artificial intelligence algorithm for short-term wind speed multi-step. Ahead forecasting
  publication-title: Sustainability
– volume: 78
  start-page: 599
  year: 2015
  end-page: 608
  ident: b0315
  article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks
  publication-title: Renew Energy
– volume: 235
  start-page: 1205
  year: 2019
  end-page: 1225
  ident: b0220
  article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting
  publication-title: Appl Energy
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b0185
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: b0225
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
– volume: 465
  start-page: 515
  year: 2017
  end-page: 519
  ident: b0130
  article-title: Appraisal of artificial neural network for forecasting of economic parameters
  publication-title: Phys A: Statist Mech Appl
– volume: 67
  start-page: 101
  year: 2018
  end-page: 122
  ident: b0215
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl Math Model
– volume: 55
  start-page: 146
  year: 2017
  end-page: 161
  ident: b0135
  article-title: Forecasting the effect of feast and famine conditions on biological sulphate reduction in an anaerobic inverse fluidized bed reactor using artificial neural networks
  publication-title: Process Biochem
– volume: 11
  start-page: 1561
  year: 2018
  ident: b0165
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
– volume: 36
  start-page: 1118
  year: 2011
  end-page: 1124
  ident: b0105
  article-title: Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
  publication-title: Renew Energy
– volume: 38
  start-page: 6577
  year: 2011
  end-page: 6585
  ident: b0275
  article-title: Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology
  publication-title: Expert Syst Appl
– volume: 8
  start-page: 235
  year: 2016
  ident: b0195
  article-title: Research and application based on adaptive boosting strategy and modified CGFPA algorithm: a case study for wind speed forecasting
  publication-title: Sustainability
– volume: 93
  start-page: 41
  year: 2015
  end-page: 56
  ident: b0025
  article-title: A robust combination approach for short-term wind speed forecasting and analysis - Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
– volume: 116
  start-page: 669
  year: 2018
  end-page: 684
  ident: b0050
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renew Energy
– volume: 23
  start-page: 27
  year: 2014
  end-page: 38
  ident: b0075
  article-title: A moving-average filter based hybrid ARIMAeANN model for forecasting time series data
  publication-title: Appl Soft Comput
– volume: 12
  start-page: 9
  year: 2018
  end-page: 17
  ident: b0270
  article-title: Electrical characterization of proton exchange membrane fuel cells stack using grasshopper optimizer
  publication-title: IET Renew Power Gener
– start-page: 4144
  year: 2011
  end-page: 4147
  ident: b0255
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0250
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adap Data Anal
– start-page: 172
  year: 2002
  end-page: 180
  ident: b0310
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– start-page: 1
  year: 2007
  end-page: 6
  ident: b0145
  article-title: A Monte-Carlo-based network method for source positioning in bioluminescence tomography
  publication-title: Int J Biomed Imaging
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b0010
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Apply Energy
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0115
  article-title: Fault classification in power systems using EMD and SVM
  publication-title: Ain Shams Eng J
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0030
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 11
  start-page: 526
  year: 2019
  ident: b0305
  article-title: A novel system for wind speed forecasting based on multi-objective optimization and echo state network
  publication-title: Sustainability
– reference: U.S. Department of Energy (DOE. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply, 2008.
– volume: 238
  start-page: 368
  year: 2019
  end-page: 383
  ident: b0285
  article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting
  publication-title: Appl Energy
– volume: 2007
  start-page: 1
  year: 2007
  end-page: 4
  ident: b0040
  article-title: Short term wind power forecasting using hybrid intelligent systems
  publication-title: IEEE Power Eng Soc General Meet
– volume: 71
  start-page: 783
  year: 2018
  end-page: 799
  ident: b0125
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Appl Soft Comput
– year: 2018
  ident: b0140
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl-Based Syst
– volume: 165
  start-page: 735
  year: 2016
  end-page: 747
  ident: b0090
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform
  publication-title: Appl Energy
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: b0065
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 855
  year: 2015
  end-page: 863
  ident: b0150
  article-title: propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst Appl
– volume: 23
  start-page: 452
  year: 2014
  end-page: 459
  ident: b0190
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl Soft Comput
– volume: 191
  start-page: 653
  year: 2017
  end-page: 662
  ident: b0020
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
– volume: 10
  start-page: 4601
  year: 2018
  ident: b0175
  article-title: Artificial combined model based on hybrid nonlinear neural network models and statistics linear models—research and application for wind speed forecasting
  publication-title: Sustainability
– volume: 10
  start-page: 3913
  year: 2018
  ident: b0205
  article-title: A hybrid wind speed forecasting method and wind energy resource analysis based on a swarm intelligence optimization algorithm and an artificial intelligence model
  publication-title: Sustainability
– volume: 72
  start-page: 321
  year: 2018
  end-page: 337
  ident: b0100
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl Soft Comput
– volume: 235
  start-page: 786
  year: 2019
  end-page: 801
  ident: b0120
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl Energy
– volume: 36
  start-page: 136
  year: 2014
  end-page: 141
  ident: b0110
  article-title: A novel time-series model based on empirical mode decomposition for forecasting TAIEX
  publication-title: Econ Model
– volume: 228
  start-page: 2207
  year: 2018
  end-page: 2220
  ident: b0180
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl Energy
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: b0290
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
– volume: 11
  start-page: 712
  year: 2018
  ident: b0235
  article-title: A novel nonlinear combined forecasting system for short-term load forecasting
  publication-title: Energies
– volume: 113
  start-page: 1345
  year: 2017
  end-page: 1358
  ident: b0155
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew Energy
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0265
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 66
  start-page: 1
  year: 2018
  end-page: 17
  ident: b0160
  article-title: Optimal forecast combination based on neural networks for time series forecasting
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2017
  end-page: 16
  ident: b0260
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl Intell
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b0045
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
– reference: Global Wind Energy Council. Global wind statistics: 2017. p. 2018.
– volume: 125
  start-page: 39
  year: 2017
  end-page: 52
  ident: b0080
  article-title: Red tide time series forecasting by combining ARIMA and deep belief network
  publication-title: Knowl-Based Syst
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b0095
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
– volume: 163
  start-page: 151
  year: 2018
  end-page: 167
  ident: b0085
  article-title: China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions
  publication-title: Energy
– volume: 8
  start-page: 1191
  year: 2016
  ident: b0300
  article-title: Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms
  publication-title: Sustainability
– volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: b0060
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers Manag
– year: 2017
  ident: b0070
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl Energy
– year: 2012
  ident: b0280
  article-title: Multi-criteria analysis in the renewable energy industry, Green Energy and Technology
– volume: 115
  start-page: 326
  year: 2018
  end-page: 337
  ident: b0230
  article-title: Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization
  publication-title: Renew Energy
– reference: .
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0245
  article-title: Zheng Q, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Royal Soc A: Mathem, Phys Eng Sci
– volume: 163
  start-page: 134
  year: 2018
  end-page: 150
  ident: b0295
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers Manage
– year: 2018
  ident: b0170
  article-title: Research on combined model based on multi-objective optimization and application in time series forecast
  publication-title: Soft Comput
– volume: 134
  start-page: 681
  year: 2019
  end-page: 697
  ident: b0200
  article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system
  publication-title: Renew Energy
– volume: 89
  start-page: 235
  year: 2001
  end-page: 245
  ident: b0035
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
– volume: 71
  start-page: 729
  year: 2019
  end-page: 746
  ident: b0240
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2010
  end-page: 8
  ident: b0055
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North Am Power Symp
– volume: 93
  start-page: 41
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.097_b0025
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
– volume: 71
  start-page: 783
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0125
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.030
– start-page: 1
  year: 2007
  ident: 10.1016/j.apenergy.2019.03.097_b0145
  article-title: A Monte-Carlo-based network method for source positioning in bioluminescence tomography
  publication-title: Int J Biomed Imaging
– volume: 8
  start-page: 1191
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0300
  article-title: Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms
  publication-title: Sustainability
  doi: 10.3390/su8111191
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0265
  article-title: Grasshopper optimization algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 78
  start-page: 599
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.097_b0315
  article-title: Short-term wind speed forecasting based on spectral clustering and optimised echo state networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.01.022
– volume: 72
  start-page: 321
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0100
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.022
– volume: 191
  start-page: 653
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0020
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.063
– volume: 165
  start-page: 735
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0090
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.082
– volume: 228
  start-page: 2207
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0180
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.032
– year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0140
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl-Based Syst
– volume: 2007
  start-page: 1
  year: 2007
  ident: 10.1016/j.apenergy.2019.03.097_b0040
  article-title: Short term wind power forecasting using hybrid intelligent systems
  publication-title: IEEE Power Eng Soc General Meet
– volume: 11
  start-page: 526
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0305
  article-title: A novel system for wind speed forecasting based on multi-objective optimization and echo state network
  publication-title: Sustainability
  doi: 10.3390/su11020526
– volume: 23
  start-page: 452
  year: 2014
  ident: 10.1016/j.apenergy.2019.03.097_b0190
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.06.027
– volume: 38
  start-page: 6577
  year: 2011
  ident: 10.1016/j.apenergy.2019.03.097_b0275
  article-title: Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.11.081
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0010
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Apply Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 180
  start-page: 213
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0225
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0060
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.07.065
– start-page: 1
  year: 2010
  ident: 10.1016/j.apenergy.2019.03.097_b0055
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North Am Power Symp
– volume: 36
  start-page: 136
  year: 2014
  ident: 10.1016/j.apenergy.2019.03.097_b0110
  article-title: A novel time-series model based on empirical mode decomposition for forecasting TAIEX
  publication-title: Econ Model
  doi: 10.1016/j.econmod.2013.09.033
– volume: 11
  start-page: 1561
  issue: 6
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0165
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11061561
– year: 2012
  ident: 10.1016/j.apenergy.2019.03.097_b0280
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.apenergy.2019.03.097_b0245
  article-title: Zheng Q, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Royal Soc A: Mathem, Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 23
  start-page: 27
  year: 2014
  ident: 10.1016/j.apenergy.2019.03.097_b0075
  article-title: A moving-average filter based hybrid ARIMAeANN model for forecasting time series data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.028
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.apenergy.2019.03.097_b0095
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.apenergy.2019.03.097_b0250
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adap Data Anal
  doi: 10.1142/S1793536909000047
– volume: 10
  start-page: 1443
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0210
  article-title: A hybrid model based on a modified optimization algorithm and an artificial intelligence algorithm for short-term wind speed multi-step. Ahead forecasting
  publication-title: Sustainability
  doi: 10.3390/su10051443
– start-page: 4144
  year: 2011
  ident: 10.1016/j.apenergy.2019.03.097_b0255
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0290
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 71
  start-page: 729
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0240
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.005
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.097_b0115
  article-title: Fault classification in power systems using EMD and SVM
  publication-title: Ain Shams Eng J
– volume: 89
  start-page: 235
  year: 2001
  ident: 10.1016/j.apenergy.2019.03.097_b0035
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(00)00079-9
– volume: 115
  start-page: 326
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0230
  article-title: Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.08.041
– volume: 42
  start-page: 855
  year: 2015
  ident: 10.1016/j.apenergy.2019.03.097_b0150
  article-title: propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.018
– volume: 235
  start-page: 786
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0120
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.012
– volume: 235
  start-page: 1205
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0220
  article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.034
– year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0070
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.031
– volume: 10
  start-page: 3913
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0205
  article-title: A hybrid wind speed forecasting method and wind energy resource analysis based on a swarm intelligence optimization algorithm and an artificial intelligence model
  publication-title: Sustainability
  doi: 10.3390/su10113913
– volume: 238
  start-page: 368
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0285
  article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.063
– volume: 163
  start-page: 134
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0295
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.012
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.apenergy.2019.03.097_b0045
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.054
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0260
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl Intell
– volume: 13
  start-page: 915
  year: 2009
  ident: 10.1016/j.apenergy.2019.03.097_b0030
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 125
  start-page: 39
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0080
  article-title: Red tide time series forecasting by combining ARIMA and deep belief network
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.03.027
– volume: 11
  start-page: 712
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0235
  article-title: A novel nonlinear combined forecasting system for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11040712
– volume: 163
  start-page: 151
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0085
  article-title: China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.127
– ident: 10.1016/j.apenergy.2019.03.097_b0015
– volume: 116
  start-page: 669
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0050
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.09.089
– volume: 134
  start-page: 681
  year: 2019
  ident: 10.1016/j.apenergy.2019.03.097_b0200
  article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.11.061
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0185
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 8
  start-page: 235
  year: 2016
  ident: 10.1016/j.apenergy.2019.03.097_b0195
  article-title: Research and application based on adaptive boosting strategy and modified CGFPA algorithm: a case study for wind speed forecasting
  publication-title: Sustainability
  doi: 10.3390/su8030235
– start-page: 172
  year: 2002
  ident: 10.1016/j.apenergy.2019.03.097_b0310
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0170
  article-title: Research on combined model based on multi-objective optimization and application in time series forecast
  publication-title: Soft Comput
– volume: 113
  start-page: 1345
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0155
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.095
– ident: 10.1016/j.apenergy.2019.03.097_b0005
– volume: 67
  start-page: 101
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0215
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.10.019
– volume: 465
  start-page: 515
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0130
  article-title: Appraisal of artificial neural network for forecasting of economic parameters
  publication-title: Phys A: Statist Mech Appl
  doi: 10.1016/j.physa.2016.08.062
– volume: 10
  start-page: 4601
  issue: 12
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0175
  article-title: Artificial combined model based on hybrid nonlinear neural network models and statistics linear models—research and application for wind speed forecasting
  publication-title: Sustainability
  doi: 10.3390/su10124601
– volume: 36
  start-page: 1118
  year: 2011
  ident: 10.1016/j.apenergy.2019.03.097_b0105
  article-title: Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.08.026
– volume: 12
  start-page: 9
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0270
  article-title: Electrical characterization of proton exchange membrane fuel cells stack using grasshopper optimizer
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0232
– volume: 55
  start-page: 146
  year: 2017
  ident: 10.1016/j.apenergy.2019.03.097_b0135
  article-title: Forecasting the effect of feast and famine conditions on biological sulphate reduction in an anaerobic inverse fluidized bed reactor using artificial neural networks
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2017.01.021
– volume: 31
  start-page: 762
  year: 2014
  ident: 10.1016/j.apenergy.2019.03.097_b0065
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.054
– volume: 66
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2019.03.097_b0160
  article-title: Optimal forecast combination based on neural networks for time series forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.004
SSID ssj0002120
Score 2.6296635
Snippet •A multi-objective optimization algorithm is successfully developed.•Employ a data denoising strategy to process the raw wind speed sequence.•Propose a novel...
Short-term wind speed forecasting plays an important role in wind power generation and considerably contributes to decisions regarding control and operations....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 519
SubjectTerms algorithms
Artificial intelligence
China
Combined model
Data preprocessing strategy
grasshoppers
linear models
Multi-objective optimization algorithm
power generation
prediction
wind farms
wind power
wind speed
Wind speed forecasting
Title A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2019.03.097
https://www.proquest.com/docview/2221008731
Volume 241
WOSCitedRecordID wos000465509500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOCAbTNj5kJG6VwYmdxjlWqAgQmjgM1FvkpM7WqkuiJh2buPN38_zVZOVj7MAlipzacvp-eR_2ez8j9Apc6FlMw4zIJJCEy4KSJOKcxIIqKeIsicxZh18_xcfHYjpNPg8G330tzMUyLktxeZnU_1XU0AbC1qWztxD3ZlBogHsQOlxB7HD9J8GPdZo4xLvgSZpjbobaUM30poDOBtWkALUtDrArCYYqwpIwmeRCUmULqwSHFaiTc1enOZTL02o1b8_OTWJicwZuO9Fqffhtrpfea7CC-onKZdN6c-jZbZ2nq0ydYbcTstbynZrys9NuYd-lCM-vpGt1axK6DMpnAPpaLDoiOjbr69nQMlw5TRm5h9boRpbR6Bd9bpcWFq9lbaeoc_EsK63N6r1OoL1l2Dbphj6TbZH6cVI9TkpZCuPcQbthHCWg1XfHHybTjxtDHjpWT_8yvQLz38_oT77NlpU3rsvJQ_TAxRx4bLHyCA1UuYfu95go99D-pCt4hJ86jd88Rj_G2MMJGzhhAydclVjDCV-DE_ZwwgAnvAUn3IcT3sAJA2hwByes4YQNnHAPTk_Ql3eTk7fviTu7g-SMRy2ZhTSLAwUeIWd5mLMwyWM1EzkPlJSRoEyogGUsZIwXBcQAodQsSUpmBRVFEVC2j3bKqlQHCIuYC6VymkFozRULpBiB08yCgvGMZXR0iCL_r6e5I7bX56ss07_L_RC92fSrLbXLjT0SL9TUOajW8UwBrzf2felRkIIG19tyslTVuknh5TXDVsyCo1vP6Cm6131_z9BOu1qr5-huftHOm9ULB-ifRHbIvA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+model+based+on+data+preprocessing+strategy+and+multi-objective+optimization+algorithm+for+short-term+wind+speed+forecasting&rft.jtitle=Applied+energy&rft.au=Niu%2C+Xinsong&rft.au=Wang%2C+Jiyang&rft.date=2019-05-01&rft.issn=0306-2619&rft.volume=241&rft.spage=519&rft.epage=539&rft_id=info:doi/10.1016%2Fj.apenergy.2019.03.097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2019_03_097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon