Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network

•A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved.•Quantitative and qualitative evaluation of combustion stability are presented.•Generalization and robustness of the model are verified. Combustion instabil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 259; s. 114159
Hlavní autoři: Han, Zhezhe, Hossain, Md. Moinul, Wang, Yuwei, Li, Jian, Xu, Chuanlong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2020
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved.•Quantitative and qualitative evaluation of combustion stability are presented.•Generalization and robustness of the model are verified. Combustion instability is a well-known problem in the combustion processes and closely linked to lower combustion efficiency and higher pollutant emissions. Therefore, it is important to monitor combustion stability for optimizing efficiency and maintaining furnace safety. However, it is difficult to establish a robust monitoring model with high precision through traditional data-driven methods, where prior knowledge of labeled data is required. This study proposes a novel approach for combustion stability monitoring through stacked sparse autoencoder based deep neural network. The proposed stacked sparse autoencoder is firstly utilized to extract flame representative features from the unlabeled images, and an improved loss function is used to enhance the training efficiency. The extracted features are then used to identify the classification label and stability index through clustering and statistical analysis. Classification and regression models incorporating the stacked sparse autoencoder are established for the qualitative and quantitative characterization of combustion stability. Experiments were carried out on a gas combustor to establish and evaluate the proposed models. It has been found that the classification model provides an F1-score of 0.99, whilst the R-squared of 0.98 is achieved through the regression model. Results obtained from the experiments demonstrated that the stacked sparse autoencoder model is capable of extracting flame representative features automatically without having manual interference. The results also show that the proposed model provides a higher prediction accuracy in comparison to the traditional data-driven methods and also demonstrates as a promising tool for monitoring the combustion stability accurately.
AbstractList •A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved.•Quantitative and qualitative evaluation of combustion stability are presented.•Generalization and robustness of the model are verified. Combustion instability is a well-known problem in the combustion processes and closely linked to lower combustion efficiency and higher pollutant emissions. Therefore, it is important to monitor combustion stability for optimizing efficiency and maintaining furnace safety. However, it is difficult to establish a robust monitoring model with high precision through traditional data-driven methods, where prior knowledge of labeled data is required. This study proposes a novel approach for combustion stability monitoring through stacked sparse autoencoder based deep neural network. The proposed stacked sparse autoencoder is firstly utilized to extract flame representative features from the unlabeled images, and an improved loss function is used to enhance the training efficiency. The extracted features are then used to identify the classification label and stability index through clustering and statistical analysis. Classification and regression models incorporating the stacked sparse autoencoder are established for the qualitative and quantitative characterization of combustion stability. Experiments were carried out on a gas combustor to establish and evaluate the proposed models. It has been found that the classification model provides an F1-score of 0.99, whilst the R-squared of 0.98 is achieved through the regression model. Results obtained from the experiments demonstrated that the stacked sparse autoencoder model is capable of extracting flame representative features automatically without having manual interference. The results also show that the proposed model provides a higher prediction accuracy in comparison to the traditional data-driven methods and also demonstrates as a promising tool for monitoring the combustion stability accurately.
Combustion instability is a well-known problem in the combustion processes and closely linked to lower combustion efficiency and higher pollutant emissions. Therefore, it is important to monitor combustion stability for optimizing efficiency and maintaining furnace safety. However, it is difficult to establish a robust monitoring model with high precision through traditional data-driven methods, where prior knowledge of labeled data is required. This study proposes a novel approach for combustion stability monitoring through stacked sparse autoencoder based deep neural network. The proposed stacked sparse autoencoder is firstly utilized to extract flame representative features from the unlabeled images, and an improved loss function is used to enhance the training efficiency. The extracted features are then used to identify the classification label and stability index through clustering and statistical analysis. Classification and regression models incorporating the stacked sparse autoencoder are established for the qualitative and quantitative characterization of combustion stability. Experiments were carried out on a gas combustor to establish and evaluate the proposed models. It has been found that the classification model provides an F₁-score of 0.99, whilst the R-squared of 0.98 is achieved through the regression model. Results obtained from the experiments demonstrated that the stacked sparse autoencoder model is capable of extracting flame representative features automatically without having manual interference. The results also show that the proposed model provides a higher prediction accuracy in comparison to the traditional data-driven methods and also demonstrates as a promising tool for monitoring the combustion stability accurately.
ArticleNumber 114159
Author Hossain, Md. Moinul
Xu, Chuanlong
Li, Jian
Han, Zhezhe
Wang, Yuwei
Author_xml – sequence: 1
  givenname: Zhezhe
  surname: Han
  fullname: Han, Zhezhe
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Md. Moinul
  surname: Hossain
  fullname: Hossain, Md. Moinul
  organization: School of Engineering and Digital Arts, University of Kent, Canterbury, Kent CT2 7NT, UK
– sequence: 3
  givenname: Yuwei
  surname: Wang
  fullname: Wang, Yuwei
  organization: China Energy Jianbi Power Plant, Zhenjiang 212006, China
– sequence: 4
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 5
  givenname: Chuanlong
  surname: Xu
  fullname: Xu, Chuanlong
  email: chuanlongxu@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
BookMark eNqFkE1r3DAQhkVJIZukfyH42Iu3GtmWLeihZekXBHppz2IsjTfa2JIryS3772Oz7aWXnF6YeZ-BeW7YlQ-eGLsHvgcO8t1pjzN5isfzXnBQe4AaGvWK7aBrRakAuiu24xWXpZCgrtlNSifOuQDBd8wfwtQvKbvgi5Sxd6PL52IK3uUQnT8W-TGG5fhYDCNOVLgJj9sUvd3q5onWnDEmKnDJgbwJlmLRY1oXlmguPC0RxzXynxCf7tjrAcdEb_7mLfv5-dOPw9fy4fuXb4ePD6Wp6iaXFnqUYCpAYTrkVUdkYag63qNSBlrVgqwaY2vTyU60QwsNYWtBKkUN9F11y95e7s4x_FooZT25ZGgc0VNYkhZVI-q6qaVaq_JSNTGkFGnQc1zfjGcNXG-C9Un_E6w3wfoieAXf_wcal3EzmSO68WX8wwWn1cNvR1En41aBZF0kk7UN7qUTz37-oGI
CitedBy_id crossref_primary_10_3390_electronics9050848
crossref_primary_10_1016_j_ijhydene_2024_11_103
crossref_primary_10_1016_j_ijhydene_2020_08_045
crossref_primary_10_1016_j_measurement_2024_115679
crossref_primary_10_1016_j_proci_2025_105796
crossref_primary_10_1016_j_ijepes_2021_107861
crossref_primary_10_1016_j_chemolab_2024_105269
crossref_primary_10_3390_pr12040816
crossref_primary_10_1364_AO_444118
crossref_primary_10_4018_IJSWIS_365203
crossref_primary_10_1016_j_fuel_2022_124915
crossref_primary_10_1016_j_energy_2022_123877
crossref_primary_10_1016_j_fuel_2020_119745
crossref_primary_10_3390_s21082708
crossref_primary_10_1088_1361_6501_acb001
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1016_j_engappai_2023_106772
crossref_primary_10_1016_j_aej_2025_05_076
crossref_primary_10_1109_TII_2021_3118135
crossref_primary_10_1007_s10845_021_01842_8
crossref_primary_10_1016_j_fuel_2023_129915
crossref_primary_10_1016_j_rineng_2025_106003
crossref_primary_10_32604_cmc_2022_024764
crossref_primary_10_1016_j_ast_2020_106443
crossref_primary_10_1007_s11431_020_1796_2
crossref_primary_10_1016_j_energy_2025_136735
crossref_primary_10_3390_aerospace11060455
crossref_primary_10_1109_ACCESS_2021_3119544
crossref_primary_10_1016_j_combustflame_2025_113981
crossref_primary_10_1016_j_csite_2025_106151
crossref_primary_10_1016_j_conengprac_2023_105612
crossref_primary_10_1016_j_fuel_2021_120444
crossref_primary_10_3390_en13215592
crossref_primary_10_1016_j_jclepro_2025_145510
crossref_primary_10_3390_pr10091694
crossref_primary_10_3390_s24216853
crossref_primary_10_4271_2022_01_0492
crossref_primary_10_1016_j_apenergy_2024_123776
crossref_primary_10_1016_j_epsr_2022_107845
crossref_primary_10_1016_j_joei_2024_101733
crossref_primary_10_1016_j_eswa_2023_122188
crossref_primary_10_1016_j_fuel_2023_130770
crossref_primary_10_1016_j_energy_2025_137196
crossref_primary_10_1016_j_petsci_2021_08_001
crossref_primary_10_1016_j_aei_2020_101136
crossref_primary_10_1109_ACCESS_2022_3140758
crossref_primary_10_1016_j_engappai_2024_109374
crossref_primary_10_1038_s41598_025_14016_w
crossref_primary_10_1016_j_engappai_2025_112032
crossref_primary_10_1016_j_psep_2025_106854
crossref_primary_10_3390_s23031236
crossref_primary_10_2298_TSCI230627044Z
Cites_doi 10.1016/j.apenergy.2017.05.080
10.1021/ie301945s
10.1016/j.apenergy.2019.04.048
10.1016/j.apenergy.2016.12.067
10.1016/j.apenergy.2017.04.074
10.1109/TIM.2004.830571
10.1016/j.fuel.2017.01.115
10.1016/j.neucom.2015.07.119
10.3390/en12132585
10.1109/TIP.2003.819861
10.1126/science.1127647
10.1016/j.apenergy.2011.01.037
10.1214/aoms/1177729694
10.1016/j.flowmeasinst.2016.05.006
10.1364/OE.24.001118
10.1016/j.energy.2017.05.012
10.1016/j.ygeno.2017.09.010
10.1016/j.aei.2017.02.005
10.1007/s10462-018-9614-6
10.1007/s10994-014-5456-x
10.1016/j.apenergy.2018.05.084
10.1016/j.apenergy.2017.12.014
10.2514/2.1766
10.1093/bioinformatics/btr136
10.1016/j.combustflame.2003.08.007
10.1016/j.apenergy.2009.11.008
10.1016/j.ast.2015.01.013
10.1016/j.apenergy.2008.11.035
10.1016/0146-664X(80)90054-4
10.1021/acs.energyfuels.7b00576
10.1016/j.measurement.2016.04.007
10.1016/j.fuproc.2016.10.013
10.1016/j.apenergy.2015.11.060
10.1109/TIM.2015.2444262
10.1016/j.apenergy.2017.09.100
10.1016/S0306-2619(01)00020-4
10.1109/34.990138
10.1016/j.apenergy.2013.04.036
10.1016/j.fuproc.2015.08.009
10.1016/S0360-1285(00)00006-X
10.1016/S0306-2619(02)00024-7
10.1080/00102202.2016.1250749
10.1016/j.apenergy.2015.02.063
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.114159
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2019_114159
S030626191931846X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-d1ba61c31a2c8a038eed1f380ba99c17971635cd4c86827f715ea7d1699e51b83
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506575800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Nov 09 13:54:04 EST 2025
Sat Nov 29 07:24:10 EST 2025
Tue Nov 18 21:33:18 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Innovative loss function
Stacked sparse autoencoder
Combustion stability
Flame imaging
Gaussian mixture model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-d1ba61c31a2c8a038eed1f380ba99c17971635cd4c86827f715ea7d1699e51b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2352445469
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2352445469
crossref_primary_10_1016_j_apenergy_2019_114159
crossref_citationtrail_10_1016_j_apenergy_2019_114159
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_114159
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Chan, Cheng (b0075) 2013; 111
Chen, Hsu, Chen, Cheng (b0080) 2010; 87
Wang, Bovik, Sheikh, Simoncelli (b0160) 2004; 13
Liu, Ma, Tao, You (b0145) 2015; 187
Bai, Lu, Hossain, Yan, Liu (b0070) 2016; 189
Liu, Fan, Chen (b0085) 2017; 31
Li, Wang, Gu, Li, Wu (b0175) 2016; 162
Zhang, Hao, Fan (b0010) 2018; 225
Ma, Schadt, Kaplan, Zhao (b0235) 2011; 27
Katzer, Babul, Klatt, Krautz (b0120) 2017; 156
Xu, Zhao, Hu, Zhang, Wang (b0215) 2017; 196
Qian, Jin, Yi, Zhang, Zhu (b0220) 2015; 99
Laurens, Hinton (b0230) 2008; 9
Figueiredo, Jain (b0180) 2002; 24
An, Tang, Vallinayagam, Shi, Sim, Chang (b0035) 2019; 248
Sun, Lu, Zhou, Yan, Liu (b0115) 2015; 64
Li, Huang, Zhao, Yang, Yang, Wen (b0045) 2017; 199
Li, Meng, Cai, Yoshino, Mochida (b0200) 2009; 86
Hinton, Salakhutdinov (b0100) 2006; 313
Li, Outbib, Giurgea, Hissel, Jemei, Giraud (b0195) 2016; 164
Cammarata, Fichera, Pagano (b0060) 2002; 72
Humphreys, Naguib (b0155) 2002; 40
Wang, Song, Chen (b0090) 2017; 131
Ti, Chen, Li, Kuang, Xu, Lai (b0005) 2018; 211
Ge, Song (b0185) 2013; 52
Su, Pohl, Holcombe, Hart (b0055) 2001; 27
Fichera, Losenno, Pagano (b0040) 2001; 70
Danielsson (b0170) 1980; 14
Ni, Qi, Mu (b0165) 2017; 110
Sun, Xu, Zhang, Hossain, Wang, Qi (b0210) 2016; 24
Schuller, Durox, Candel (b0050) 2003; 135
Hussain, Alalili (b0240) 2017; 208
Shi, Wang, Ding, Zhao, New (b0225) 2016; 49
Krzywanski, Nowak (b0020) 2017; 97
Lu, Wang, Zhou (b0095) 2017; 32
Vincent, Larochelle, Bengio, Manzagol (b0125) 2008
Kullback, Leibler (b0150) 1951; 22
Habib, Rashwan, Nemitallah, Abdelhafez (b0030) 2017; 189
Qin, Liu, Zhou, Wang, Cao (b0110) 2019; 12
Chauhan, Dahiya, Sharma (b0205) 2018; 52
Krzywanski, Czakiert, Blaszczuk, Rajczyk, Muskala, Nowak (b0025) 2015; 139
Bouzgou, Nabil (b0190) 2011; 88
Sun, Shao, Zhao, Yan, Zhang, Chen (b0130) 2016; 89
Tóth, Garami, Csordás (b0135) 2017; 200
Lu, Yan, Colechin (b0065) 2004; 53
Park, Lee (b0015) 2015; 42
Long, Shelhamer, Darrell (b0140) 2014; 39
Akintayo, Lore, Sarkar, Sarkar (b0105) 2016
Sun (10.1016/j.apenergy.2019.114159_b0115) 2015; 64
Long (10.1016/j.apenergy.2019.114159_b0140) 2014; 39
Wang (10.1016/j.apenergy.2019.114159_b0160) 2004; 13
Sun (10.1016/j.apenergy.2019.114159_b0130) 2016; 89
Qian (10.1016/j.apenergy.2019.114159_b0220) 2015; 99
Danielsson (10.1016/j.apenergy.2019.114159_b0170) 1980; 14
Li (10.1016/j.apenergy.2019.114159_b0195) 2016; 164
Schuller (10.1016/j.apenergy.2019.114159_b0050) 2003; 135
Hinton (10.1016/j.apenergy.2019.114159_b0100) 2006; 313
Ma (10.1016/j.apenergy.2019.114159_b0235) 2011; 27
An (10.1016/j.apenergy.2019.114159_b0035) 2019; 248
Laurens (10.1016/j.apenergy.2019.114159_b0230) 2008; 9
Cammarata (10.1016/j.apenergy.2019.114159_b0060) 2002; 72
Lu (10.1016/j.apenergy.2019.114159_b0095) 2017; 32
Li (10.1016/j.apenergy.2019.114159_b0175) 2016; 162
Li (10.1016/j.apenergy.2019.114159_b0200) 2009; 86
Tóth (10.1016/j.apenergy.2019.114159_b0135) 2017; 200
Ge (10.1016/j.apenergy.2019.114159_b0185) 2013; 52
Bouzgou (10.1016/j.apenergy.2019.114159_b0190) 2011; 88
Liu (10.1016/j.apenergy.2019.114159_b0085) 2017; 31
Li (10.1016/j.apenergy.2019.114159_b0045) 2017; 199
Chen (10.1016/j.apenergy.2019.114159_b0075) 2013; 111
Vincent (10.1016/j.apenergy.2019.114159_b0125) 2008
Kullback (10.1016/j.apenergy.2019.114159_b0150) 1951; 22
Habib (10.1016/j.apenergy.2019.114159_b0030) 2017; 189
Lu (10.1016/j.apenergy.2019.114159_b0065) 2004; 53
Humphreys (10.1016/j.apenergy.2019.114159_b0155) 2002; 40
Zhang (10.1016/j.apenergy.2019.114159_b0010) 2018; 225
Park (10.1016/j.apenergy.2019.114159_b0015) 2015; 42
Hussain (10.1016/j.apenergy.2019.114159_b0240) 2017; 208
Krzywanski (10.1016/j.apenergy.2019.114159_b0025) 2015; 139
Liu (10.1016/j.apenergy.2019.114159_b0145) 2015; 187
Shi (10.1016/j.apenergy.2019.114159_b0225) 2016; 49
Krzywanski (10.1016/j.apenergy.2019.114159_b0020) 2017; 97
Katzer (10.1016/j.apenergy.2019.114159_b0120) 2017; 156
Figueiredo (10.1016/j.apenergy.2019.114159_b0180) 2002; 24
Akintayo (10.1016/j.apenergy.2019.114159_b0105) 2016
Sun (10.1016/j.apenergy.2019.114159_b0210) 2016; 24
Wang (10.1016/j.apenergy.2019.114159_b0090) 2017; 131
Ti (10.1016/j.apenergy.2019.114159_b0005) 2018; 211
Fichera (10.1016/j.apenergy.2019.114159_b0040) 2001; 70
Chauhan (10.1016/j.apenergy.2019.114159_b0205) 2018; 52
Bai (10.1016/j.apenergy.2019.114159_b0070) 2016; 189
Qin (10.1016/j.apenergy.2019.114159_b0110) 2019; 12
Ni (10.1016/j.apenergy.2019.114159_b0165) 2017; 110
Xu (10.1016/j.apenergy.2019.114159_b0215) 2017; 196
Su (10.1016/j.apenergy.2019.114159_b0055) 2001; 27
Chen (10.1016/j.apenergy.2019.114159_b0080) 2010; 87
References_xml – volume: 40
  start-page: 1026
  year: 2002
  end-page: 1036
  ident: b0155
  article-title: Comparative study of image compression techniques for digital particle image velocimetry
  publication-title: AIAA J
– volume: 187
  start-page: 59
  year: 2015
  end-page: 65
  ident: b0145
  article-title: HSAE: A Hessian regularized sparse auto-encoders
  publication-title: Neurocomputing
– volume: 225
  start-page: 940
  year: 2018
  end-page: 954
  ident: b0010
  article-title: Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines
  publication-title: Appl Energy
– volume: 131
  start-page: 106
  year: 2017
  end-page: 112
  ident: b0090
  article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate
  publication-title: Energy
– volume: 162
  start-page: 1530
  year: 2016
  end-page: 1536
  ident: b0175
  article-title: A novel time-of-use tariff design based on Gaussian Mixture Model
  publication-title: Appl Energy
– volume: 200
  start-page: 155
  year: 2017
  end-page: 169
  ident: b0135
  article-title: Image-based deep neural network prediction of the heat output of a step-grate biomass boiler
  publication-title: Appl Energy
– volume: 97
  start-page: 75
  year: 2017
  end-page: 84
  ident: b0020
  article-title: Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres
  publication-title: J Power Technol
– year: 2008
  ident: b0125
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Int Conf Mach Learn
– volume: 211
  start-page: 1179
  year: 2018
  end-page: 1189
  ident: b0005
  article-title: Wang Z. Influence of primary air cone length on combustion characteristics and NOx emissions of a swirl burner from a 0.5 MW pulverized coal-fired furnace with air staging
  publication-title: Appl Energy
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 110
  start-page: 180
  year: 2017
  end-page: 190
  ident: b0165
  article-title: Applying MSSIM combined chaos game representation to genome sequences analysis
  publication-title: Genomics
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b0130
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 27
  start-page: 75
  year: 2001
  end-page: 98
  ident: b0055
  article-title: Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers
  publication-title: Prog Energy Combust Sci
– volume: 27
  start-page: 1290
  year: 2011
  end-page: 1298
  ident: b0235
  article-title: COSINE: COndition-SpecIfic sub-NEtwork identification using a global optimization method
  publication-title: Bioinformatics
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0100
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 196
  start-page: 550
  year: 2017
  end-page: 563
  ident: b0215
  article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement
  publication-title: Fuel
– volume: 87
  start-page: 2169
  year: 2010
  end-page: 2179
  ident: b0080
  article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images
  publication-title: Appl Energy
– volume: 52
  start-page: 1947
  year: 2013
  end-page: 1957
  ident: b0185
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Ind Eng Chem Res
– volume: 189
  start-page: 776
  year: 2016
  end-page: 792
  ident: b0070
  article-title: Multimode monitoring of oxy-gas combustion through flame imaging, principal component analysis, and kernel support vector machine
  publication-title: Combust Sci Technol
– volume: 139
  start-page: 73
  year: 2015
  end-page: 85
  ident: b0025
  article-title: A generalized model of SO2 emissions from large- and small-scale CFB boilers by artificial neural network approach Part 2. SO2 emissions from large- and pilot-scale CFB boilers in O2/N2, O2/CO2 and O2/RFG combustion atmospheres
  publication-title: Fuel Process Technol
– volume: 32
  start-page: 139
  year: 2017
  end-page: 151
  ident: b0095
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv Eng Inf
– volume: 208
  start-page: 540
  year: 2017
  end-page: 550
  ident: b0240
  article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks
  publication-title: Appl Energy
– year: 2016
  ident: b0105
  article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video
  publication-title: Int J Prognostics Health Monitor
– volume: 156
  start-page: 138
  year: 2017
  end-page: 155
  ident: b0120
  article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length
  publication-title: Fuel Process Technol
– volume: 248
  start-page: 626
  year: 2019
  end-page: 639
  ident: b0035
  article-title: Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel
  publication-title: Appl Energy
– volume: 72
  start-page: 513
  year: 2002
  end-page: 528
  ident: b0060
  article-title: Neural prediction of combustion instability
  publication-title: Appl Energy
– volume: 70
  start-page: 179
  year: 2001
  end-page: 191
  ident: b0040
  article-title: Experimental analysis of thermo-acoustic combustion instability
  publication-title: Appl Energy
– volume: 12
  start-page: 2585
  year: 2019
  ident: b0110
  article-title: An unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden Markov model
  publication-title: Energies
– volume: 99
  start-page: 353
  year: 2015
  end-page: 372
  ident: b0220
  article-title: Efficient distance metric learning by adaptive sampling and mini-batch Stochastic Gradient Descent (SGD)
  publication-title: Mach Learn
– volume: 64
  start-page: 3323
  year: 2015
  end-page: 3333
  ident: b0115
  article-title: Quantitative assessment of flame stability through image processing and spectral analysis
  publication-title: IEEE Trans Instrum Meas
– volume: 49
  start-page: 70
  year: 2016
  end-page: 88
  ident: b0225
  article-title: Parametric study on light field volumetric particle image velocimetry
  publication-title: Flow Meas Instrum
– volume: 189
  start-page: 177
  year: 2017
  end-page: 186
  ident: b0030
  article-title: Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor
  publication-title: Appl Energy
– volume: 39
  start-page: 640
  year: 2014
  end-page: 651
  ident: b0140
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 164
  start-page: 284
  year: 2016
  end-page: 293
  ident: b0195
  article-title: Online implementation of SVM based fault diagnosis strategy for PEMFC systems
  publication-title: Appl Energy
– volume: 199
  start-page: 217
  year: 2017
  end-page: 224
  ident: b0045
  article-title: Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index
  publication-title: Appl Energy
– volume: 111
  start-page: 153
  year: 2013
  end-page: 160
  ident: b0075
  article-title: Gaussian process regression based optimal design of combustion systems using flame images
  publication-title: Appl Energy
– volume: 88
  start-page: 2463
  year: 2011
  end-page: 2471
  ident: b0190
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl Energy
– volume: 42
  start-page: 148
  year: 2015
  end-page: 157
  ident: b0015
  article-title: Low frequency instability in laboratory-scale hybrid rocket motors
  publication-title: Aerosp Sci Technol
– volume: 135
  start-page: 525
  year: 2003
  end-page: 537
  ident: b0050
  article-title: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners
  publication-title: Combust Flame
– volume: 53
  start-page: 1152
  year: 2004
  end-page: 1158
  ident: b0065
  article-title: A digital imaging based multifunctional flame monitoring system
  publication-title: IEEE Trans Instrum Meas
– volume: 24
  start-page: 1118
  year: 2016
  end-page: 1132
  ident: b0210
  article-title: Three-dimensional temperature field measurement of flame using a single light field camera
  publication-title: Opt Express
– volume: 31
  start-page: 8776
  year: 2017
  end-page: 8783
  ident: b0085
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
– volume: 14
  start-page: 227
  year: 1980
  end-page: 248
  ident: b0170
  article-title: Euclidean distance mapping
  publication-title: Comput Graph Image Process
– volume: 52
  start-page: 803
  year: 2018
  end-page: 855
  ident: b0205
  article-title: Problem formulations and solvers in linear SVM: a review
  publication-title: Artif Intell Rev
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  ident: b0180
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: b0200
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b0150
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0230
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 200
  start-page: 155
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0135
  article-title: Image-based deep neural network prediction of the heat output of a step-grate biomass boiler
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.080
– volume: 52
  start-page: 1947
  issue: 5
  year: 2013
  ident: 10.1016/j.apenergy.2019.114159_b0185
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie301945s
– volume: 9
  start-page: 2579
  issue: 2605
  year: 2008
  ident: 10.1016/j.apenergy.2019.114159_b0230
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 248
  start-page: 626
  year: 2019
  ident: 10.1016/j.apenergy.2019.114159_b0035
  article-title: Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.048
– volume: 189
  start-page: 177
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0030
  article-title: Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.067
– volume: 199
  start-page: 217
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0045
  article-title: Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.074
– volume: 53
  start-page: 1152
  issue: 4
  year: 2004
  ident: 10.1016/j.apenergy.2019.114159_b0065
  article-title: A digital imaging based multifunctional flame monitoring system
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2004.830571
– volume: 196
  start-page: 550
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0215
  article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.01.115
– volume: 187
  start-page: 59
  year: 2015
  ident: 10.1016/j.apenergy.2019.114159_b0145
  article-title: HSAE: A Hessian regularized sparse auto-encoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.119
– volume: 12
  start-page: 2585
  year: 2019
  ident: 10.1016/j.apenergy.2019.114159_b0110
  article-title: An unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden Markov model
  publication-title: Energies
  doi: 10.3390/en12132585
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.apenergy.2019.114159_b0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 97
  start-page: 75
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0020
  article-title: Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres
  publication-title: J Power Technol
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.apenergy.2019.114159_b0100
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 88
  start-page: 2463
  issue: 7
  year: 2011
  ident: 10.1016/j.apenergy.2019.114159_b0190
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.037
– year: 2008
  ident: 10.1016/j.apenergy.2019.114159_b0125
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Int Conf Mach Learn
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.apenergy.2019.114159_b0150
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 49
  start-page: 70
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0225
  article-title: Parametric study on light field volumetric particle image velocimetry
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2016.05.006
– volume: 24
  start-page: 1118
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0210
  article-title: Three-dimensional temperature field measurement of flame using a single light field camera
  publication-title: Opt Express
  doi: 10.1364/OE.24.001118
– volume: 131
  start-page: 106
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0090
  article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.012
– year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0105
  article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video
  publication-title: Int J Prognostics Health Monitor
– volume: 39
  start-page: 640
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2019.114159_b0140
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 110
  start-page: 180
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0165
  article-title: Applying MSSIM combined chaos game representation to genome sequences analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.09.010
– volume: 32
  start-page: 139
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0095
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2017.02.005
– volume: 52
  start-page: 803
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2019.114159_b0205
  article-title: Problem formulations and solvers in linear SVM: a review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-9614-6
– volume: 99
  start-page: 353
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2019.114159_b0220
  article-title: Efficient distance metric learning by adaptive sampling and mini-batch Stochastic Gradient Descent (SGD)
  publication-title: Mach Learn
  doi: 10.1007/s10994-014-5456-x
– volume: 225
  start-page: 940
  year: 2018
  ident: 10.1016/j.apenergy.2019.114159_b0010
  article-title: Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.084
– volume: 211
  start-page: 1179
  year: 2018
  ident: 10.1016/j.apenergy.2019.114159_b0005
  article-title: Wang Z. Influence of primary air cone length on combustion characteristics and NOx emissions of a swirl burner from a 0.5 MW pulverized coal-fired furnace with air staging
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.014
– volume: 40
  start-page: 1026
  issue: 6
  year: 2002
  ident: 10.1016/j.apenergy.2019.114159_b0155
  article-title: Comparative study of image compression techniques for digital particle image velocimetry
  publication-title: AIAA J
  doi: 10.2514/2.1766
– volume: 27
  start-page: 1290
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2019.114159_b0235
  article-title: COSINE: COndition-SpecIfic sub-NEtwork identification using a global optimization method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr136
– volume: 135
  start-page: 525
  issue: 4
  year: 2003
  ident: 10.1016/j.apenergy.2019.114159_b0050
  article-title: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2003.08.007
– volume: 87
  start-page: 2169
  issue: 7
  year: 2010
  ident: 10.1016/j.apenergy.2019.114159_b0080
  article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.11.008
– volume: 42
  start-page: 148
  year: 2015
  ident: 10.1016/j.apenergy.2019.114159_b0015
  article-title: Low frequency instability in laboratory-scale hybrid rocket motors
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2015.01.013
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 10.1016/j.apenergy.2019.114159_b0200
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 14
  start-page: 227
  issue: 3
  year: 1980
  ident: 10.1016/j.apenergy.2019.114159_b0170
  article-title: Euclidean distance mapping
  publication-title: Comput Graph Image Process
  doi: 10.1016/0146-664X(80)90054-4
– volume: 31
  start-page: 8776
  issue: 8
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0085
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00576
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0130
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 156
  start-page: 138
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0120
  article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2016.10.013
– volume: 164
  start-page: 284
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0195
  article-title: Online implementation of SVM based fault diagnosis strategy for PEMFC systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.11.060
– volume: 64
  start-page: 3323
  issue: 12
  year: 2015
  ident: 10.1016/j.apenergy.2019.114159_b0115
  article-title: Quantitative assessment of flame stability through image processing and spectral analysis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2444262
– volume: 208
  start-page: 540
  year: 2017
  ident: 10.1016/j.apenergy.2019.114159_b0240
  article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.100
– volume: 70
  start-page: 179
  issue: 2
  year: 2001
  ident: 10.1016/j.apenergy.2019.114159_b0040
  article-title: Experimental analysis of thermo-acoustic combustion instability
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(01)00020-4
– volume: 24
  start-page: 381
  issue: 3
  year: 2002
  ident: 10.1016/j.apenergy.2019.114159_b0180
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.990138
– volume: 111
  start-page: 153
  year: 2013
  ident: 10.1016/j.apenergy.2019.114159_b0075
  article-title: Gaussian process regression based optimal design of combustion systems using flame images
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.04.036
– volume: 139
  start-page: 73
  year: 2015
  ident: 10.1016/j.apenergy.2019.114159_b0025
  article-title: A generalized model of SO2 emissions from large- and small-scale CFB boilers by artificial neural network approach Part 2. SO2 emissions from large- and pilot-scale CFB boilers in O2/N2, O2/CO2 and O2/RFG combustion atmospheres
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2015.08.009
– volume: 27
  start-page: 75
  issue: 1
  year: 2001
  ident: 10.1016/j.apenergy.2019.114159_b0055
  article-title: Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/S0360-1285(00)00006-X
– volume: 72
  start-page: 513
  issue: 2
  year: 2002
  ident: 10.1016/j.apenergy.2019.114159_b0060
  article-title: Neural prediction of combustion instability
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(02)00024-7
– volume: 189
  start-page: 776
  issue: 5
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0070
  article-title: Multimode monitoring of oxy-gas combustion through flame imaging, principal component analysis, and kernel support vector machine
  publication-title: Combust Sci Technol
  doi: 10.1080/00102202.2016.1250749
– volume: 162
  start-page: 1530
  year: 2016
  ident: 10.1016/j.apenergy.2019.114159_b0175
  article-title: A novel time-of-use tariff design based on Gaussian Mixture Model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.063
SSID ssj0002120
Score 2.5603294
Snippet •A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved.•Quantitative...
Combustion instability is a well-known problem in the combustion processes and closely linked to lower combustion efficiency and higher pollutant emissions....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114159
SubjectTerms combustion
combustion efficiency
Combustion stability
emissions
Flame imaging
furnaces
Gaussian mixture model
image analysis
Innovative loss function
monitoring
pollutants
prediction
regression analysis
Stacked sparse autoencoder
Title Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
URI https://dx.doi.org/10.1016/j.apenergy.2019.114159
https://www.proquest.com/docview/2352445469
Volume 259
WOSCitedRecordID wos000506575800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEOCAbTxpeMhLhEgXw4iX2cUCeYSuHQQeFiOY6jddrS0KZj8Ot5HdtJhIY2DlzSKoqbqM_j18_rvB8IvSyCSIISUL4ULPIJyVM_T2jqp0qLBSHLvN3K_jzJplM6n7NPo1HpcmEuzrKqopeXrP6vUMM5AFunzv4D3N2Pwgn4DqDDEWCH442Ahxme6xZdACsovzb29ad33k7dlcmNMp15SuCC8hbnpk1Ru3_eCJjT8FmDt6s8sWmWusylrjahF7vCK5SqPV0BE3CtTPz4UNw6RavafMLetrWG7duJ-nXSswjWZmHKF3wowLAsqj5A8Yvdwv66-aEW7uSkjTo4cmS2-xTglAZdzIfNzwpSX_trQ9sLzpdX63rFoKr8Ky262Vw4fS1q8_A6Go_ZEf0a5t7bTz_yw-PJhM_G89mr-ruvu4vpt_C21cottB1lCQMDvn3wfjw_6tbsyBbwdM84yCW_-tZ_kzF_LOitSpndR_ese4EPDC0eoJGqdtDdQdHJHbQ77nMb4VJr3NcPUdUzB3fMwT1zsGUObpmDLXMwMAdb5mDDHDxgDm6ZgzVzsGEOtsx5hI4Px7O373zbjsOXMUkavwhzkYYyDkUkqQhiCvIqLGMa5IIxCYYdXO84kQWRNKVRVmZhokRWhCljKglzGu-irWpZqT2EC3BikzRjup8BAYnLwpKUKS1FRilhRO6jxP27XNpa9bplyhl3QYmn3KHCNSrcoLKP3nTjalOt5doRzIHHreY0WpIDAa8d-8KhzcEo6zdtolLLzZpH4NYQkpCUPb7BNU_QnX7CPEVbzWqjnqHb8qJZrFfPLVV_A6rTs7c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combustion+stability+monitoring+through+flame+imaging+and+stacked+sparse+autoencoder+based+deep+neural+network&rft.jtitle=Applied+energy&rft.au=Han%2C+Zhezhe&rft.au=Hossain%2C+Md+Moinul&rft.au=Wang%2C+Yuwei&rft.au=Li%2C+Jian&rft.date=2020-02-01&rft.issn=0306-2619&rft.volume=259+p.114159-&rft_id=info:doi/10.1016%2Fj.apenergy.2019.114159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon