A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
•A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability....
Saved in:
| Published in: | Applied energy Vol. 237; pp. 103 - 116 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2019
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability.•Proposed method is validated by seven contrast methods in Keras python framework.
Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods. |
|---|---|
| AbstractList | •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability.•Proposed method is validated by seven contrast methods in Keras python framework.
Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods. Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods. |
| Author | Zhou, Jianzhong Feng, Zhong-kai Yang, Yuqi He, Feifei Liu, Guangbiao |
| Author_xml | – sequence: 1 givenname: Feifei orcidid: 0000-0002-5702-3946 surname: He fullname: He, Feifei email: hefeifei@hust.edu.cn organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Jianzhong surname: Zhou fullname: Zhou, Jianzhong email: jz.zhou@mail.hust.edu.cn organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Zhong-kai surname: Feng fullname: Feng, Zhong-kai organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Guangbiao surname: Liu fullname: Liu, Guangbiao organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 5 givenname: Yuqi surname: Yang fullname: Yang, Yuqi organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
| BookMark | eNqFkctq3DAUQEVJoZPHLwQtu7EryW_oomnoCwLdpGtxLV3PaGrrupIywf2yfl49mRZKN1kJdO85IJ1zdubJI2PXUuRSyPrNPocZPYbtkishu1zIXFTVC7aRbaOyTsr2jG1EIepM1bJ7xc5j3AshlFRiw37d8N3SB2d53FFIWcIw8ZHA8oECGojJ-S2fyOLIe4hoOXl-gOAgOfIwPo24RUPTTNEdLzl4uypW7B_lhBOFhXtMjxS-R27IR2cxHO0BRzyAT3wAkyhE_ujSjr-HBaMDz2lObnI_4eQetxTW8XTJXg4wRrz6c16wbx8_3N9-zu6-fvpye3OXmaKsUmbM0HW26gvbDhWY3vamrWEoK1n0jQJZlQIaMTQFYoP90DVKFXUnVKnQ9FhAccFen7xzoB8PGJOeXDQ4juCRHqJWSq0V2lLKdbU-rZpAMQYc9BzcBGHRUuhjKr3Xf1PpYyotpF5TreDb_0Dj0tN7UwA3Po-_O-G4_sPBYdDROPQGrVsTJm3JPaf4DXhwvic |
| CitedBy_id | crossref_primary_10_1109_TPWRS_2020_3042389 crossref_primary_10_1016_j_energy_2020_117514 crossref_primary_10_1007_s40899_024_01064_9 crossref_primary_10_1016_j_rser_2024_115097 crossref_primary_10_1109_JIOT_2023_3300695 crossref_primary_10_2166_ws_2021_151 crossref_primary_10_1016_j_segan_2022_100622 crossref_primary_10_2166_nh_2021_028 crossref_primary_10_3390_polym14122475 crossref_primary_10_1371_journal_pone_0272637 crossref_primary_10_3390_en15197170 crossref_primary_10_1016_j_scs_2020_102679 crossref_primary_10_1016_j_apenergy_2023_120920 crossref_primary_10_1016_j_energy_2024_132482 crossref_primary_10_3390_math12213353 crossref_primary_10_1007_s00521_019_04236_3 crossref_primary_10_1007_s12293_022_00355_y crossref_primary_10_1016_j_eswa_2021_114844 crossref_primary_10_1109_TIM_2024_3353274 crossref_primary_10_1007_s11356_024_32280_7 crossref_primary_10_3389_fphy_2023_1070762 crossref_primary_10_1016_j_jup_2021_101294 crossref_primary_10_3390_en15020487 crossref_primary_10_1080_13467581_2025_2481236 crossref_primary_10_3390_math9141645 crossref_primary_10_1007_s11356_024_32807_y crossref_primary_10_1016_j_jechem_2022_11_036 crossref_primary_10_1155_2021_7653091 crossref_primary_10_3390_en16052283 crossref_primary_10_1016_j_apenergy_2020_115144 crossref_primary_10_1016_j_apenergy_2020_114850 crossref_primary_10_1016_j_est_2023_108915 crossref_primary_10_3233_JIFS_213064 crossref_primary_10_1007_s10489_023_04599_0 crossref_primary_10_1016_j_scs_2022_104034 crossref_primary_10_1016_j_epsr_2024_111198 crossref_primary_10_1093_ijlct_ctae052 crossref_primary_10_3390_en15155742 crossref_primary_10_1016_j_ribaf_2025_102871 crossref_primary_10_1016_j_apenergy_2019_114396 crossref_primary_10_3389_fenrg_2022_923311 crossref_primary_10_1016_j_asoc_2023_110335 crossref_primary_10_3390_s22124446 crossref_primary_10_2166_nh_2021_161 crossref_primary_10_1016_j_jhydrol_2021_126526 crossref_primary_10_1007_s12665_023_11377_1 crossref_primary_10_1016_j_energy_2024_133535 crossref_primary_10_1016_j_egyr_2024_08_035 crossref_primary_10_1109_JSYST_2023_3310548 crossref_primary_10_3390_en17225599 crossref_primary_10_3389_fenrg_2023_1296800 crossref_primary_10_1049_itr2_12463 crossref_primary_10_3390_en17236131 crossref_primary_10_1016_j_energy_2022_124752 crossref_primary_10_1109_ACCESS_2023_3343103 crossref_primary_10_1016_j_epsr_2019_106025 crossref_primary_10_1016_j_energy_2022_125609 crossref_primary_10_3390_s21217079 crossref_primary_10_1016_j_apenergy_2021_117992 crossref_primary_10_1007_s10489_021_03083_x crossref_primary_10_1016_j_heliyon_2024_e33273 crossref_primary_10_1109_TPWRS_2024_3431880 crossref_primary_10_1007_s13042_024_02302_4 crossref_primary_10_1016_j_apenergy_2024_124085 crossref_primary_10_1016_j_energy_2023_128575 crossref_primary_10_1016_j_egyr_2025_05_078 crossref_primary_10_1016_j_eswa_2020_113686 crossref_primary_10_1016_j_apenergy_2019_114131 crossref_primary_10_1016_j_asoc_2022_108560 crossref_primary_10_1016_j_energy_2021_120682 crossref_primary_10_1109_TTE_2023_3299417 crossref_primary_10_1109_TIM_2021_3098377 crossref_primary_10_1016_j_apenergy_2021_118191 crossref_primary_10_1186_s42162_025_00552_2 crossref_primary_10_3390_app13084749 crossref_primary_10_1016_j_resourpol_2020_101588 crossref_primary_10_1016_j_epsr_2022_108796 crossref_primary_10_1109_ACCESS_2020_2994444 crossref_primary_10_1007_s00521_024_09449_9 crossref_primary_10_1016_j_neucom_2020_03_054 crossref_primary_10_1109_ACCESS_2025_3581194 crossref_primary_10_1016_j_envres_2024_119911 crossref_primary_10_1016_j_egyr_2021_09_115 crossref_primary_10_1080_15435075_2020_1865375 crossref_primary_10_1016_j_renene_2021_07_119 crossref_primary_10_1109_ACCESS_2023_3322167 crossref_primary_10_1007_s42835_022_01101_7 crossref_primary_10_1109_TII_2021_3130237 crossref_primary_10_1016_j_apenergy_2019_114243 crossref_primary_10_3390_brainsci15050450 crossref_primary_10_1007_s00202_019_00886_7 crossref_primary_10_1016_j_applthermaleng_2025_125811 crossref_primary_10_2166_nh_2023_069 crossref_primary_10_1016_j_apenergy_2023_121823 crossref_primary_10_7717_peerj_cs_2393 crossref_primary_10_1016_j_egyr_2023_09_028 crossref_primary_10_1155_2020_4516132 crossref_primary_10_1016_j_egyr_2022_09_188 crossref_primary_10_3389_fenrg_2021_772508 crossref_primary_10_1016_j_frl_2023_104254 crossref_primary_10_1016_j_renene_2023_118942 crossref_primary_10_3390_app14062286 crossref_primary_10_1016_j_engappai_2024_108375 crossref_primary_10_3390_en14206606 crossref_primary_10_1007_s11356_023_28877_z crossref_primary_10_1061__ASCE_HE_1943_5584_0001902 crossref_primary_10_1177_01436244241274924 crossref_primary_10_1016_j_asoc_2021_107730 crossref_primary_10_3390_en15030750 crossref_primary_10_1049_rpg2_12514 crossref_primary_10_1016_j_enconman_2019_112461 crossref_primary_10_3390_en17225797 crossref_primary_10_1016_j_asoc_2019_105739 crossref_primary_10_1016_j_jhydrol_2021_127366 crossref_primary_10_1016_j_aei_2021_101357 crossref_primary_10_1109_ACCESS_2024_3440631 crossref_primary_10_3390_electronics10202455 crossref_primary_10_1016_j_oceaneng_2024_116880 crossref_primary_10_3390_en16176230 crossref_primary_10_1109_ACCESS_2023_3283436 crossref_primary_10_1016_j_epsr_2024_111172 crossref_primary_10_1016_j_engappai_2024_109453 crossref_primary_10_1016_j_seta_2024_103818 crossref_primary_10_3390_electronics13163109 crossref_primary_10_1016_j_chaos_2020_110511 crossref_primary_10_1007_s00170_024_13849_5 crossref_primary_10_1016_j_asoc_2021_108032 crossref_primary_10_3390_app13116845 crossref_primary_10_1016_j_apenergy_2023_121607 crossref_primary_10_1109_TII_2022_3163137 crossref_primary_10_1016_j_energy_2024_133964 crossref_primary_10_1007_s10115_024_02301_5 crossref_primary_10_1016_j_apenergy_2020_116415 crossref_primary_10_1016_j_eswa_2025_126449 crossref_primary_10_1016_j_rser_2024_114284 crossref_primary_10_1155_2022_2166082 crossref_primary_10_1007_s13042_022_01586_8 crossref_primary_10_1002_cpe_8391 crossref_primary_10_1016_j_apenergy_2020_114915 crossref_primary_10_1109_TEM_2023_3274544 crossref_primary_10_1007_s11837_025_07625_3 crossref_primary_10_1155_2022_1562544 crossref_primary_10_1016_j_engappai_2020_104071 crossref_primary_10_1016_j_eswa_2024_126038 crossref_primary_10_1016_j_apenergy_2021_118303 crossref_primary_10_1016_j_energy_2025_135632 crossref_primary_10_1007_s40808_023_01828_w crossref_primary_10_1007_s10710_022_09430_2 crossref_primary_10_1155_2023_5070504 crossref_primary_10_1016_j_ifacol_2022_07_407 crossref_primary_10_3390_healthcare10030494 crossref_primary_10_3390_w16040618 crossref_primary_10_1016_j_engappai_2023_107199 crossref_primary_10_1016_j_aei_2023_102060 crossref_primary_10_1007_s11053_024_10360_2 crossref_primary_10_1016_j_apenergy_2019_113596 crossref_primary_10_1016_j_jclepro_2023_139796 crossref_primary_10_3390_s23239327 crossref_primary_10_1016_j_jobe_2021_103182 crossref_primary_10_1016_j_renene_2025_124141 crossref_primary_10_3390_en13164121 crossref_primary_10_3390_w13020139 crossref_primary_10_1016_j_energy_2022_125556 crossref_primary_10_1108_ECAM_11_2023_1194 crossref_primary_10_1016_j_energy_2022_126402 crossref_primary_10_1016_j_ijepes_2023_109620 crossref_primary_10_1016_j_apenergy_2022_119269 crossref_primary_10_1007_s11440_023_02050_9 crossref_primary_10_1016_j_chaos_2021_111783 crossref_primary_10_1007_s10479_025_06832_0 crossref_primary_10_3233_JCM_204550 crossref_primary_10_1016_j_apenergy_2024_123283 crossref_primary_10_1016_j_asoc_2023_111040 crossref_primary_10_1016_j_ijepes_2025_111163 crossref_primary_10_1016_j_energy_2020_117902 crossref_primary_10_3390_s23115058 crossref_primary_10_3390_su15097458 crossref_primary_10_1016_j_scs_2023_104898 crossref_primary_10_1002_ima_22570 crossref_primary_10_1016_j_enconman_2020_112902 crossref_primary_10_1016_j_apenergy_2022_120394 crossref_primary_10_1016_j_jobe_2023_108095 crossref_primary_10_1016_j_ssci_2024_106596 crossref_primary_10_1016_j_eswa_2024_124907 crossref_primary_10_1016_j_energy_2023_129938 crossref_primary_10_1016_j_annals_2020_102925 crossref_primary_10_1016_j_energy_2021_121377 crossref_primary_10_1016_j_energy_2023_128841 crossref_primary_10_1007_s00202_024_02685_1 crossref_primary_10_1016_j_apenergy_2022_119963 crossref_primary_10_3390_w15081548 crossref_primary_10_1016_j_ijepes_2022_108073 crossref_primary_10_3390_en16041925 crossref_primary_10_1007_s11042_022_13462_2 crossref_primary_10_1016_j_jobe_2023_107432 crossref_primary_10_1016_j_energy_2022_125592 crossref_primary_10_1016_j_energy_2023_128048 crossref_primary_10_1002_2050_7038_12709 crossref_primary_10_1016_j_jksuci_2022_04_016 crossref_primary_10_1080_19942060_2022_2104928 crossref_primary_10_1016_j_apenergy_2022_120281 crossref_primary_10_1016_j_energy_2022_125107 crossref_primary_10_1016_j_apenergy_2024_123149 crossref_primary_10_3390_w13233390 crossref_primary_10_1016_j_apenergy_2022_118882 crossref_primary_10_1016_j_jobe_2022_105028 crossref_primary_10_3390_en16104060 crossref_primary_10_1049_cps2_12032 crossref_primary_10_1007_s11269_024_03806_y crossref_primary_10_1016_j_chaos_2019_07_011 crossref_primary_10_1016_j_jobe_2022_104975 crossref_primary_10_1016_j_asoc_2020_106996 crossref_primary_10_1016_j_enconman_2024_118632 crossref_primary_10_3390_math13071066 crossref_primary_10_3390_en14071894 crossref_primary_10_1016_j_egyr_2024_09_025 crossref_primary_10_1016_j_oceaneng_2023_116178 crossref_primary_10_1016_j_wasman_2020_11_006 crossref_primary_10_1016_j_energy_2021_122245 crossref_primary_10_1016_j_epsr_2021_107761 crossref_primary_10_1016_j_epsr_2021_107762 crossref_primary_10_1016_j_ymssp_2023_110981 crossref_primary_10_1016_j_jhydrol_2020_124627 crossref_primary_10_1109_ACCESS_2022_3202970 crossref_primary_10_1002_cpe_70082 crossref_primary_10_1016_j_apenergy_2020_116328 crossref_primary_10_1016_j_jhydrol_2023_130177 crossref_primary_10_1016_j_oceaneng_2023_115776 crossref_primary_10_3390_data9010013 crossref_primary_10_1016_j_epsr_2025_111861 crossref_primary_10_3389_fsufs_2024_1334098 crossref_primary_10_3390_en17235881 crossref_primary_10_1109_ACCESS_2020_3028959 crossref_primary_10_3390_su17125267 crossref_primary_10_1007_s10845_021_01821_z crossref_primary_10_1016_j_ijhydene_2025_151304 crossref_primary_10_1016_j_enconman_2020_113234 crossref_primary_10_1007_s11356_021_13503_7 crossref_primary_10_1155_2023_8669796 crossref_primary_10_1007_s10479_022_04821_1 |
| Cites_doi | 10.1016/j.enconman.2015.04.057 10.1016/j.apenergy.2014.07.064 10.1109/JPROC.2015.2494218 10.1016/j.ijepes.2014.05.036 10.1109/TPAS.1971.293123 10.1016/j.enconman.2014.02.004 10.1098/rspa.1998.0193 10.1016/j.egypro.2012.01.229 10.1016/j.apenergy.2016.02.114 10.1016/j.ijepes.2012.09.002 10.1016/j.apenergy.2018.04.075 10.1109/72.279181 10.1016/j.energy.2018.09.180 10.1016/j.apenergy.2015.08.014 10.1016/j.apenergy.2018.02.131 10.1162/neco.1997.9.8.1735 10.1162/neco.1989.1.2.270 10.1109/TSP.2013.2288675 10.1016/j.enconman.2017.04.007 10.1080/01621459.1970.10481180 10.1016/j.energy.2018.06.083 10.1016/j.enconman.2017.10.021 10.1016/j.apenergy.2018.09.012 10.1016/j.neucom.2005.12.126 10.1109/59.651623 10.1016/j.apenergy.2018.01.094 10.1109/TPWRS.2005.857397 10.1016/j.energy.2014.05.065 10.1016/j.apenergy.2014.07.104 10.3389/fnbot.2017.00042 10.1016/j.apenergy.2014.05.023 10.1016/j.enconman.2013.03.014 10.1016/j.apenergy.2012.06.009 10.1109/TPWRS.2002.1007923 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2019.01.055 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 116 |
| ExternalDocumentID | 10_1016_j_apenergy_2019_01_055 S0306261919300571 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-ccf99d5b3d8f5acbdbc86af4513b72a1540a70f73ee7ebf97223690242ecbe3a3 |
| ISICitedReferencesCount | 262 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459845100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Thu Oct 02 09:21:30 EDT 2025 Sat Nov 29 07:24:14 EST 2025 Tue Nov 18 21:50:47 EST 2025 Fri Feb 23 02:30:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Long short-term memory network Variational mode decomposition Relevant factors Short-term load forecasting Bayesian optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-ccf99d5b3d8f5acbdbc86af4513b72a1540a70f73ee7ebf97223690242ecbe3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5702-3946 |
| PQID | 2221018411 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2221018411 crossref_primary_10_1016_j_apenergy_2019_01_055 crossref_citationtrail_10_1016_j_apenergy_2019_01_055 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_01_055 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 2019-03-00 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pankratz (b0035) 2009 Mukaka (b0240) 2012; 24 Fan, Peng, Hong (b0135) 2018; 224 Paliwal, Basu (b0030) 1987 Kouhi, Keynia (b0115) 2013; 71 Hor, Watson, Majithia (b0185) 2005; 20 Shahriari, Swersky, Wang, Adams, de Freitas (b0230) 2016; 104 Box, Pierce (b0025) 1970; 65 Yu, Moirangthem, Lee (b0100) 2017; 11 Tian, Hao, Hu (b0180) 2018; 231 Rasmussen (b0235) 2004 Liu, Tang, Zhang, Fan, Liu (b0105) 2014; 129 Liu, Tian, Li (b0170) 2015; 100 Singh, Dwivedi (b0075) 2018; 217 Kandil, El-Debeiky, Hasanien (b0045) 2002; 17 Che, Wang (b0055) 2014; 132 Moazzami, Khodabakhshian, Hooshmand (b0110) 2013; 101 Sun, Zhou, Chen, Jia, Tayyab, Peng (b0175) 2018; 165 Huang, Shen, Long, Wu, Shih, Zheng (b0195) 1998; 454 Bahrami, Hooshmand, Parastegari (b0130) 2014; 72 Huang, Zhu, Siew (b0060) 2006; 70 Li, Xiao, Xia, Zou, Zhang (b0165) 2018; 215 Dianmin, Xiaohong, Jie, Yong (b0050) 2002; 26 Jiang, Li, Li, Ji (b0010) 2018; 158 Snoek, Larochelle, Adams (b0225) 2012 Fu, Wang, Li, Li, Li, Zhong (b0145) 2018 Williams, Zipser (b0205) 1989; 1 Kouhi, Keynia, Ravadanegh (b0065) 2014; 62 Yu, Xu (b0070) 2014; 134 Peng, Zhou, Zhang, Zheng (b0155) 2017; 153 Vermaak, Botha (b0085) 1998; 13 Bengio, Simard, Frasconi (b0090) 1994; 5 Hooshmand, Amooshahi, Parastegari (b0125) 2013; 45 Mohammadi, Mehrtash, Kargarian (b0080) 2018 Amral, Ozveren, King (b0020) 2007 Hochreiter, Schmidhuber (b0095) 1997; 9 Pelikan, Goldberg, Cantú-Paz (b0220) 1999; vol. 1 Kaur, Pedro, Coimbra (b0120) 2014; 80 Christiaanse (b0040) 1971; PAS-90 Dragomiretskiy, Zosso (b0200) 2014; 62 Hochreiter, Bengio, Frasconi, Schmidhuber (b0210) 2001 Kar, Hug, Mohammadi, Moura (b0005) 2014; 8 Li, Goel, Wang (b0140) 2016; 170 Olah C. Understanding lstm networks. GITHUB blog, posted on August 2015;27:2015. Zhang, Zhou, Li, Fu, Peng (b0160) 2017; 143 Dehalwar, Kalam, Kolhe, Zayegh (b0190) 2016 Nie, Liu, Liu, Wang (b0015) 2012; 16 Liu, Tian, Liang, Li (b0150) 2015; 157 Dehalwar (10.1016/j.apenergy.2019.01.055_b0190) 2016 Box (10.1016/j.apenergy.2019.01.055_b0025) 1970; 65 Tian (10.1016/j.apenergy.2019.01.055_b0180) 2018; 231 Dragomiretskiy (10.1016/j.apenergy.2019.01.055_b0200) 2014; 62 Singh (10.1016/j.apenergy.2019.01.055_b0075) 2018; 217 Yu (10.1016/j.apenergy.2019.01.055_b0100) 2017; 11 Christiaanse (10.1016/j.apenergy.2019.01.055_b0040) 1971; PAS-90 Yu (10.1016/j.apenergy.2019.01.055_b0070) 2014; 134 Hochreiter (10.1016/j.apenergy.2019.01.055_b0210) 2001 Hochreiter (10.1016/j.apenergy.2019.01.055_b0095) 1997; 9 Pankratz (10.1016/j.apenergy.2019.01.055_b0035) 2009 Bahrami (10.1016/j.apenergy.2019.01.055_b0130) 2014; 72 Kouhi (10.1016/j.apenergy.2019.01.055_b0065) 2014; 62 Liu (10.1016/j.apenergy.2019.01.055_b0105) 2014; 129 Li (10.1016/j.apenergy.2019.01.055_b0140) 2016; 170 Shahriari (10.1016/j.apenergy.2019.01.055_b0230) 2016; 104 Li (10.1016/j.apenergy.2019.01.055_b0165) 2018; 215 Kouhi (10.1016/j.apenergy.2019.01.055_b0115) 2013; 71 Mohammadi (10.1016/j.apenergy.2019.01.055_b0080) 2018 Liu (10.1016/j.apenergy.2019.01.055_b0150) 2015; 157 Kar (10.1016/j.apenergy.2019.01.055_b0005) 2014; 8 Kandil (10.1016/j.apenergy.2019.01.055_b0045) 2002; 17 Sun (10.1016/j.apenergy.2019.01.055_b0175) 2018; 165 Fan (10.1016/j.apenergy.2019.01.055_b0135) 2018; 224 Dianmin (10.1016/j.apenergy.2019.01.055_b0050) 2002; 26 Moazzami (10.1016/j.apenergy.2019.01.055_b0110) 2013; 101 Hooshmand (10.1016/j.apenergy.2019.01.055_b0125) 2013; 45 Hor (10.1016/j.apenergy.2019.01.055_b0185) 2005; 20 Pelikan (10.1016/j.apenergy.2019.01.055_b0220) 1999; vol. 1 Che (10.1016/j.apenergy.2019.01.055_b0055) 2014; 132 Paliwal (10.1016/j.apenergy.2019.01.055_b0030) 1987 Fu (10.1016/j.apenergy.2019.01.055_b0145) 2018 Snoek (10.1016/j.apenergy.2019.01.055_b0225) 2012 Huang (10.1016/j.apenergy.2019.01.055_b0060) 2006; 70 Peng (10.1016/j.apenergy.2019.01.055_b0155) 2017; 153 Kaur (10.1016/j.apenergy.2019.01.055_b0120) 2014; 80 Rasmussen (10.1016/j.apenergy.2019.01.055_b0235) 2004 Williams (10.1016/j.apenergy.2019.01.055_b0205) 1989; 1 Jiang (10.1016/j.apenergy.2019.01.055_b0010) 2018; 158 Vermaak (10.1016/j.apenergy.2019.01.055_b0085) 1998; 13 Mukaka (10.1016/j.apenergy.2019.01.055_b0240) 2012; 24 Nie (10.1016/j.apenergy.2019.01.055_b0015) 2012; 16 Zhang (10.1016/j.apenergy.2019.01.055_b0160) 2017; 143 Amral (10.1016/j.apenergy.2019.01.055_b0020) 2007 10.1016/j.apenergy.2019.01.055_b0215 Liu (10.1016/j.apenergy.2019.01.055_b0170) 2015; 100 Bengio (10.1016/j.apenergy.2019.01.055_b0090) 1994; 5 Huang (10.1016/j.apenergy.2019.01.055_b0195) 1998; 454 |
| References_xml | – year: 2018 ident: b0145 article-title: Vibration trend measurement for hydropower generator based on optimal variational mode decomposition and LSSVM improved with chaotic sine cosine algorithm optimization publication-title: Meas Sci Technol – volume: 80 start-page: 582 year: 2014 end-page: 590 ident: b0120 article-title: Ensemble re-forecasting methods for enhanced power load prediction publication-title: Energ Convers Manage – start-page: 355 year: 2016 end-page: 359 ident: b0190 article-title: Electricity load forecasting for Urban area using weather forecast information publication-title: IEEE – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0195 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc Roy Soc Lond A: Math Phys Eng Sci – volume: 72 start-page: 434 year: 2014 end-page: 442 ident: b0130 article-title: Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm publication-title: Energy – volume: 65 start-page: 1509 year: 1970 end-page: 1526 ident: b0025 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J Am Stat Assoc – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0200 article-title: Variational mode decomposition publication-title: Ieee T Signal Proces – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: b0230 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: P Ieee – volume: 170 start-page: 22 year: 2016 end-page: 29 ident: b0140 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl Energ – volume: 217 start-page: 537 year: 2018 end-page: 549 ident: b0075 article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem publication-title: Appl Energ – volume: 153 start-page: 589 year: 2017 end-page: 602 ident: b0155 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energ Convers Manage – volume: vol. 1 start-page: 525 year: 1999 end-page: 532 ident: b0220 article-title: BOA: the bayesian optimization algorithm publication-title: Proceedings of the 1st annual conference on genetic and evolutionary computation – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: b0090 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Networks – volume: 71 start-page: 76 year: 2013 end-page: 83 ident: b0115 article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market publication-title: Energ Convers Manage – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0060 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 224 start-page: 13 year: 2018 end-page: 33 ident: b0135 article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model publication-title: Appl Energ – volume: 62 start-page: 862 year: 2014 end-page: 867 ident: b0065 article-title: A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection publication-title: Int J Elec Power – volume: 165 start-page: 939 year: 2018 end-page: 957 ident: b0175 article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine publication-title: Energy – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: b0205 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput – volume: 132 start-page: 602 year: 2014 end-page: 609 ident: b0055 article-title: Short-term load forecasting using a kernel-based support vector regression combination model publication-title: Appl Energ – start-page: 63 year: 2004 end-page: 71 ident: b0235 article-title: Gaussian processes in machine learning. Advanced lectures on machine learning – volume: PAS-90 start-page: 900 year: 1971 end-page: 911 ident: b0040 article-title: Short-Term load forecasting using general exponential smoothing publication-title: IEEE Trans Power Apparatus Syst – start-page: 1192 year: 2007 end-page: 1198 ident: b0020 article-title: Short term load forecasting using multiple linear regression publication-title: Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International – volume: 24 start-page: 69 year: 2012 end-page: 71 ident: b0240 article-title: A guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med J – start-page: 2951 year: 2012 end-page: 2959 ident: b0225 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv Neural Inform Process Syst – start-page: 177 year: 1987 end-page: 180 ident: b0030 article-title: A speech enhancement method based on Kalman filtering publication-title: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'87 – volume: 26 start-page: 10 year: 2002 end-page: 13 ident: b0050 article-title: A short-term load forecasting system based on BP artificial neural network publication-title: Power Syst Technol-Beijing – volume: 8 start-page: 1022 year: 2014 end-page: 1038 ident: b0005 article-title: Distributed state estimation and energy management in smart grids: a consensus + innovations approach publication-title: Ieee J-Stsp – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0095 article-title: Long short-term memory publication-title: Neural Comput – volume: 158 start-page: 693 year: 2018 end-page: 708 ident: b0010 article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application publication-title: Energy – volume: 20 start-page: 2078 year: 2005 end-page: 2085 ident: b0185 article-title: Analyzing the Impact of Weather Variables on Monthly Electricity Demand publication-title: Ieee T Power Syst – volume: 101 start-page: 489 year: 2013 end-page: 501 ident: b0110 article-title: A new hybrid day-ahead peak load forecasting method for Iran’s National Grid publication-title: Appl Energ – volume: 129 start-page: 336 year: 2014 end-page: 345 ident: b0105 article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids publication-title: Appl Energ – start-page: 1 year: 2018 ident: b0080 article-title: Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow publication-title: Ieee T Smart Grid – volume: 100 start-page: 16 year: 2015 end-page: 22 ident: b0170 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energ Convers Manage – volume: 13 start-page: 126 year: 1998 end-page: 132 ident: b0085 article-title: Recurrent neural networks for short-term load forecasting publication-title: Ieee T Power Syst – volume: 11 start-page: 42 year: 2017 ident: b0100 article-title: Continuous timescale long-short term memory neural network for human intent understanding publication-title: Front Neurorobotics – volume: 215 start-page: 131 year: 2018 end-page: 144 ident: b0165 article-title: A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting publication-title: Appl Energ – volume: 134 start-page: 102 year: 2014 end-page: 113 ident: b0070 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl Energ – start-page: p year: 2001 ident: b0210 article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies: a field guide to dynamical recurrent neural networks publication-title: IEEE Press – start-page: 557 year: 2009 ident: b0035 article-title: Forecasting with univariate Box-Jenkins models: concepts and cases publication-title: Wiley-Blackwell – reference: Olah C. Understanding lstm networks. GITHUB blog, posted on August 2015;27:2015. – volume: 231 start-page: 301 year: 2018 end-page: 319 ident: b0180 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl Energ – volume: 45 start-page: 313 year: 2013 end-page: 324 ident: b0125 article-title: A hybrid intelligent algorithm based short-term load forecasting approach publication-title: Int J Elec Power – volume: 16 start-page: 1455 year: 2012 end-page: 1460 ident: b0015 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Procedia – volume: 17 start-page: 491 year: 2002 end-page: 496 ident: b0045 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: Ieee T Power Syst – volume: 157 start-page: 183 year: 2015 end-page: 194 ident: b0150 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energ – volume: 143 start-page: 360 year: 2017 end-page: 376 ident: b0160 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energ Convers Manage – volume: 100 start-page: 16 year: 2015 ident: 10.1016/j.apenergy.2019.01.055_b0170 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2015.04.057 – start-page: 2951 year: 2012 ident: 10.1016/j.apenergy.2019.01.055_b0225 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv Neural Inform Process Syst – ident: 10.1016/j.apenergy.2019.01.055_b0215 – volume: 132 start-page: 602 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0055 article-title: Short-term load forecasting using a kernel-based support vector regression combination model publication-title: Appl Energ doi: 10.1016/j.apenergy.2014.07.064 – start-page: 355 year: 2016 ident: 10.1016/j.apenergy.2019.01.055_b0190 article-title: Electricity load forecasting for Urban area using weather forecast information publication-title: IEEE – volume: 104 start-page: 148 year: 2016 ident: 10.1016/j.apenergy.2019.01.055_b0230 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: P Ieee doi: 10.1109/JPROC.2015.2494218 – start-page: 1192 year: 2007 ident: 10.1016/j.apenergy.2019.01.055_b0020 article-title: Short term load forecasting using multiple linear regression – volume: 26 start-page: 10 year: 2002 ident: 10.1016/j.apenergy.2019.01.055_b0050 article-title: A short-term load forecasting system based on BP artificial neural network publication-title: Power Syst Technol-Beijing – volume: 62 start-page: 862 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0065 article-title: A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection publication-title: Int J Elec Power doi: 10.1016/j.ijepes.2014.05.036 – volume: PAS-90 start-page: 900 year: 1971 ident: 10.1016/j.apenergy.2019.01.055_b0040 article-title: Short-Term load forecasting using general exponential smoothing publication-title: IEEE Trans Power Apparatus Syst doi: 10.1109/TPAS.1971.293123 – volume: 80 start-page: 582 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0120 article-title: Ensemble re-forecasting methods for enhanced power load prediction publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2014.02.004 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.apenergy.2019.01.055_b0195 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc Roy Soc Lond A: Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 16 start-page: 1455 year: 2012 ident: 10.1016/j.apenergy.2019.01.055_b0015 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.01.229 – volume: 170 start-page: 22 year: 2016 ident: 10.1016/j.apenergy.2019.01.055_b0140 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl Energ doi: 10.1016/j.apenergy.2016.02.114 – volume: 45 start-page: 313 year: 2013 ident: 10.1016/j.apenergy.2019.01.055_b0125 article-title: A hybrid intelligent algorithm based short-term load forecasting approach publication-title: Int J Elec Power doi: 10.1016/j.ijepes.2012.09.002 – volume: 224 start-page: 13 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0135 article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model publication-title: Appl Energ doi: 10.1016/j.apenergy.2018.04.075 – start-page: p year: 2001 ident: 10.1016/j.apenergy.2019.01.055_b0210 article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies: a field guide to dynamical recurrent neural networks publication-title: IEEE Press – volume: 5 start-page: 157 year: 1994 ident: 10.1016/j.apenergy.2019.01.055_b0090 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Networks doi: 10.1109/72.279181 – year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0145 article-title: Vibration trend measurement for hydropower generator based on optimal variational mode decomposition and LSSVM improved with chaotic sine cosine algorithm optimization publication-title: Meas Sci Technol – volume: 165 start-page: 939 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0175 article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2018.09.180 – start-page: 177 year: 1987 ident: 10.1016/j.apenergy.2019.01.055_b0030 article-title: A speech enhancement method based on Kalman filtering – volume: 157 start-page: 183 year: 2015 ident: 10.1016/j.apenergy.2019.01.055_b0150 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energ doi: 10.1016/j.apenergy.2015.08.014 – volume: 217 start-page: 537 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0075 article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem publication-title: Appl Energ doi: 10.1016/j.apenergy.2018.02.131 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.apenergy.2019.01.055_b0095 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 1 start-page: 270 year: 1989 ident: 10.1016/j.apenergy.2019.01.055_b0205 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.270 – volume: 24 start-page: 69 year: 2012 ident: 10.1016/j.apenergy.2019.01.055_b0240 article-title: A guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med J – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0080 article-title: Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow publication-title: Ieee T Smart Grid – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0200 article-title: Variational mode decomposition publication-title: Ieee T Signal Proces doi: 10.1109/TSP.2013.2288675 – volume: 143 start-page: 360 year: 2017 ident: 10.1016/j.apenergy.2019.01.055_b0160 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2017.04.007 – volume: 65 start-page: 1509 year: 1970 ident: 10.1016/j.apenergy.2019.01.055_b0025 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J Am Stat Assoc doi: 10.1080/01621459.1970.10481180 – volume: 158 start-page: 693 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0010 article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application publication-title: Energy doi: 10.1016/j.energy.2018.06.083 – volume: 153 start-page: 589 year: 2017 ident: 10.1016/j.apenergy.2019.01.055_b0155 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2017.10.021 – volume: 231 start-page: 301 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0180 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl Energ doi: 10.1016/j.apenergy.2018.09.012 – volume: 8 start-page: 1022 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0005 article-title: Distributed state estimation and energy management in smart grids: a consensus + innovations approach publication-title: Ieee J-Stsp – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.apenergy.2019.01.055_b0060 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 13 start-page: 126 year: 1998 ident: 10.1016/j.apenergy.2019.01.055_b0085 article-title: Recurrent neural networks for short-term load forecasting publication-title: Ieee T Power Syst doi: 10.1109/59.651623 – volume: 215 start-page: 131 year: 2018 ident: 10.1016/j.apenergy.2019.01.055_b0165 article-title: A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting publication-title: Appl Energ doi: 10.1016/j.apenergy.2018.01.094 – start-page: 557 year: 2009 ident: 10.1016/j.apenergy.2019.01.055_b0035 article-title: Forecasting with univariate Box-Jenkins models: concepts and cases publication-title: Wiley-Blackwell – volume: 20 start-page: 2078 year: 2005 ident: 10.1016/j.apenergy.2019.01.055_b0185 article-title: Analyzing the Impact of Weather Variables on Monthly Electricity Demand publication-title: Ieee T Power Syst doi: 10.1109/TPWRS.2005.857397 – volume: 72 start-page: 434 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0130 article-title: Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.065 – start-page: 63 year: 2004 ident: 10.1016/j.apenergy.2019.01.055_b0235 – volume: 134 start-page: 102 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0070 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl Energ doi: 10.1016/j.apenergy.2014.07.104 – volume: 11 start-page: 42 year: 2017 ident: 10.1016/j.apenergy.2019.01.055_b0100 article-title: Continuous timescale long-short term memory neural network for human intent understanding publication-title: Front Neurorobotics doi: 10.3389/fnbot.2017.00042 – volume: vol. 1 start-page: 525 year: 1999 ident: 10.1016/j.apenergy.2019.01.055_b0220 article-title: BOA: the bayesian optimization algorithm – volume: 129 start-page: 336 year: 2014 ident: 10.1016/j.apenergy.2019.01.055_b0105 article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids publication-title: Appl Energ doi: 10.1016/j.apenergy.2014.05.023 – volume: 71 start-page: 76 year: 2013 ident: 10.1016/j.apenergy.2019.01.055_b0115 article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2013.03.014 – volume: 101 start-page: 489 year: 2013 ident: 10.1016/j.apenergy.2019.01.055_b0110 article-title: A new hybrid day-ahead peak load forecasting method for Iran’s National Grid publication-title: Appl Energ doi: 10.1016/j.apenergy.2012.06.009 – volume: 17 start-page: 491 year: 2002 ident: 10.1016/j.apenergy.2019.01.055_b0045 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: Ieee T Power Syst doi: 10.1109/TPWRS.2002.1007923 |
| SSID | ssj0002120 |
| Score | 2.6506395 |
| Snippet | •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian... Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103 |
| SubjectTerms | algorithms Bayesian optimization algorithm Bayesian theory China energy Long short-term memory network lymphocytes prediction processing technology regression analysis Relevant factors Short-term load forecasting temperature Variational mode decomposition |
| Title | A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.apenergy.2019.01.055 https://www.proquest.com/docview/2221018411 |
| Volume | 237 |
| WOSCitedRecordID | wos000459845100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IChUlJcWiZtl8CN-HQMKAlRVSBQp4mLtenebtIkdxUnU8Mv4QfwQZnb9WAqoIMTFiuzsxtF8nvlmPA9CnidJKgRXsSsVK9yhiFOXe2nmKuWHiiuZCaabuB4nJyfpZJJ9GAy-tbUw23lSlunlZbb8r6KGcyBsLJ39C3F3m8IJ-AxChyOIHY5_JPiRM91hGZZTT4Fau6h6nXnFBCYUyoLVOs9ZD8Bx0IQJfF2wBY-5jQriJUdIzDVvErr0C4Y5DiWytlxgiu7OKU0aeY3p63ryJ-6Og1iAoa-7aT462vuK7aQu2axATS2a-k-Hzc-qFVxe2DS55cZSVyb28VpNteVMyVkf8K42Gomw8Zdp1dhhzW2NFvuMJ90L1q04nukF8GyUZ3zGKjvugaVWoR336Apy-uwnXQTmxS46hca8GZ2eJgHq9NRW-oFpNdOobd8LLQbgm-rPn4yLiXOcv2BL8-8xMTDTTV9Np-Erjbs_4s3gvQBHxppf8NH3gyTKwHzsj96NJ-87xhA07UPbm7cq2X_9a78jUVfohOZIp3fI7ca5oSMDyrtkIMsDcstqeXlADsd9ZSV8tTEt9T3ydUQNbmkPMoq4pRZuqcYt1bilVUkt3OpL9AfcUsAtRdzaWxrc0ha31MItbXFLG9xSxC1tcUtt3NIOt_fJpzfj09dv3WasiFuEw2jtFoXKMhHxUKQqYgUXvEhjpoaRH_IkYOBTeCzxVBJKmUiusgQYdJwhl5UFlyELD8leWZXyAaEe40EURirUVDfgmRLCS2LOwGtKi8g_IlErp7xoeu7j6Jd53iZXnuetfHOUb-75Ocj3iLzs1i1N15lrV2QtDPKGOxtOnAN6r137rMVNDsYF3xiyUlabOgfnATv6DX3_4T_s_4jc7B_gx2RvvdrIJ-RGsV3P6tXT5mH4Dq9eCCE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+short-term+load+forecasting+model+based+on+variational+mode+decomposition+and+long+short-term+memory+networks+considering+relevant+factors+with+Bayesian+optimization+algorithm&rft.jtitle=Applied+energy&rft.au=He%2C+Feifei&rft.au=Zhou%2C+Jianzhong&rft.au=Feng%2C+Zhong-kai&rft.au=Liu%2C+Guangbiao&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=237&rft.spage=103&rft.epage=116&rft_id=info:doi/10.1016%2Fj.apenergy.2019.01.055&rft.externalDocID=S0306261919300571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |