A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm

•A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability....

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 237; pp. 103 - 116
Main Authors: He, Feifei, Zhou, Jianzhong, Feng, Zhong-kai, Liu, Guangbiao, Yang, Yuqi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2019
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability.•Proposed method is validated by seven contrast methods in Keras python framework. Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods.
AbstractList •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian Optimization Algorithm (BOA) is used in hyperparameter optimization.•Proposed model periodically moves the data window which has high practicability.•Proposed method is validated by seven contrast methods in Keras python framework. Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods.
Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods.
Author Zhou, Jianzhong
Feng, Zhong-kai
Yang, Yuqi
He, Feifei
Liu, Guangbiao
Author_xml – sequence: 1
  givenname: Feifei
  orcidid: 0000-0002-5702-3946
  surname: He
  fullname: He, Feifei
  email: hefeifei@hust.edu.cn
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Jianzhong
  surname: Zhou
  fullname: Zhou, Jianzhong
  email: jz.zhou@mail.hust.edu.cn
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Zhong-kai
  surname: Feng
  fullname: Feng, Zhong-kai
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Guangbiao
  surname: Liu
  fullname: Liu, Guangbiao
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 5
  givenname: Yuqi
  surname: Yang
  fullname: Yang, Yuqi
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqFkctq3DAUQEVJoZPHLwQtu7EryW_oomnoCwLdpGtxLV3PaGrrupIywf2yfl49mRZKN1kJdO85IJ1zdubJI2PXUuRSyPrNPocZPYbtkishu1zIXFTVC7aRbaOyTsr2jG1EIepM1bJ7xc5j3AshlFRiw37d8N3SB2d53FFIWcIw8ZHA8oECGojJ-S2fyOLIe4hoOXl-gOAgOfIwPo24RUPTTNEdLzl4uypW7B_lhBOFhXtMjxS-R27IR2cxHO0BRzyAT3wAkyhE_ujSjr-HBaMDz2lObnI_4eQetxTW8XTJXg4wRrz6c16wbx8_3N9-zu6-fvpye3OXmaKsUmbM0HW26gvbDhWY3vamrWEoK1n0jQJZlQIaMTQFYoP90DVKFXUnVKnQ9FhAccFen7xzoB8PGJOeXDQ4juCRHqJWSq0V2lLKdbU-rZpAMQYc9BzcBGHRUuhjKr3Xf1PpYyotpF5TreDb_0Dj0tN7UwA3Po-_O-G4_sPBYdDROPQGrVsTJm3JPaf4DXhwvic
CitedBy_id crossref_primary_10_1109_TPWRS_2020_3042389
crossref_primary_10_1016_j_energy_2020_117514
crossref_primary_10_1007_s40899_024_01064_9
crossref_primary_10_1016_j_rser_2024_115097
crossref_primary_10_1109_JIOT_2023_3300695
crossref_primary_10_2166_ws_2021_151
crossref_primary_10_1016_j_segan_2022_100622
crossref_primary_10_2166_nh_2021_028
crossref_primary_10_3390_polym14122475
crossref_primary_10_1371_journal_pone_0272637
crossref_primary_10_3390_en15197170
crossref_primary_10_1016_j_scs_2020_102679
crossref_primary_10_1016_j_apenergy_2023_120920
crossref_primary_10_1016_j_energy_2024_132482
crossref_primary_10_3390_math12213353
crossref_primary_10_1007_s00521_019_04236_3
crossref_primary_10_1007_s12293_022_00355_y
crossref_primary_10_1016_j_eswa_2021_114844
crossref_primary_10_1109_TIM_2024_3353274
crossref_primary_10_1007_s11356_024_32280_7
crossref_primary_10_3389_fphy_2023_1070762
crossref_primary_10_1016_j_jup_2021_101294
crossref_primary_10_3390_en15020487
crossref_primary_10_1080_13467581_2025_2481236
crossref_primary_10_3390_math9141645
crossref_primary_10_1007_s11356_024_32807_y
crossref_primary_10_1016_j_jechem_2022_11_036
crossref_primary_10_1155_2021_7653091
crossref_primary_10_3390_en16052283
crossref_primary_10_1016_j_apenergy_2020_115144
crossref_primary_10_1016_j_apenergy_2020_114850
crossref_primary_10_1016_j_est_2023_108915
crossref_primary_10_3233_JIFS_213064
crossref_primary_10_1007_s10489_023_04599_0
crossref_primary_10_1016_j_scs_2022_104034
crossref_primary_10_1016_j_epsr_2024_111198
crossref_primary_10_1093_ijlct_ctae052
crossref_primary_10_3390_en15155742
crossref_primary_10_1016_j_ribaf_2025_102871
crossref_primary_10_1016_j_apenergy_2019_114396
crossref_primary_10_3389_fenrg_2022_923311
crossref_primary_10_1016_j_asoc_2023_110335
crossref_primary_10_3390_s22124446
crossref_primary_10_2166_nh_2021_161
crossref_primary_10_1016_j_jhydrol_2021_126526
crossref_primary_10_1007_s12665_023_11377_1
crossref_primary_10_1016_j_energy_2024_133535
crossref_primary_10_1016_j_egyr_2024_08_035
crossref_primary_10_1109_JSYST_2023_3310548
crossref_primary_10_3390_en17225599
crossref_primary_10_3389_fenrg_2023_1296800
crossref_primary_10_1049_itr2_12463
crossref_primary_10_3390_en17236131
crossref_primary_10_1016_j_energy_2022_124752
crossref_primary_10_1109_ACCESS_2023_3343103
crossref_primary_10_1016_j_epsr_2019_106025
crossref_primary_10_1016_j_energy_2022_125609
crossref_primary_10_3390_s21217079
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_1007_s10489_021_03083_x
crossref_primary_10_1016_j_heliyon_2024_e33273
crossref_primary_10_1109_TPWRS_2024_3431880
crossref_primary_10_1007_s13042_024_02302_4
crossref_primary_10_1016_j_apenergy_2024_124085
crossref_primary_10_1016_j_energy_2023_128575
crossref_primary_10_1016_j_egyr_2025_05_078
crossref_primary_10_1016_j_eswa_2020_113686
crossref_primary_10_1016_j_apenergy_2019_114131
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_1016_j_energy_2021_120682
crossref_primary_10_1109_TTE_2023_3299417
crossref_primary_10_1109_TIM_2021_3098377
crossref_primary_10_1016_j_apenergy_2021_118191
crossref_primary_10_1186_s42162_025_00552_2
crossref_primary_10_3390_app13084749
crossref_primary_10_1016_j_resourpol_2020_101588
crossref_primary_10_1016_j_epsr_2022_108796
crossref_primary_10_1109_ACCESS_2020_2994444
crossref_primary_10_1007_s00521_024_09449_9
crossref_primary_10_1016_j_neucom_2020_03_054
crossref_primary_10_1109_ACCESS_2025_3581194
crossref_primary_10_1016_j_envres_2024_119911
crossref_primary_10_1016_j_egyr_2021_09_115
crossref_primary_10_1080_15435075_2020_1865375
crossref_primary_10_1016_j_renene_2021_07_119
crossref_primary_10_1109_ACCESS_2023_3322167
crossref_primary_10_1007_s42835_022_01101_7
crossref_primary_10_1109_TII_2021_3130237
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_3390_brainsci15050450
crossref_primary_10_1007_s00202_019_00886_7
crossref_primary_10_1016_j_applthermaleng_2025_125811
crossref_primary_10_2166_nh_2023_069
crossref_primary_10_1016_j_apenergy_2023_121823
crossref_primary_10_7717_peerj_cs_2393
crossref_primary_10_1016_j_egyr_2023_09_028
crossref_primary_10_1155_2020_4516132
crossref_primary_10_1016_j_egyr_2022_09_188
crossref_primary_10_3389_fenrg_2021_772508
crossref_primary_10_1016_j_frl_2023_104254
crossref_primary_10_1016_j_renene_2023_118942
crossref_primary_10_3390_app14062286
crossref_primary_10_1016_j_engappai_2024_108375
crossref_primary_10_3390_en14206606
crossref_primary_10_1007_s11356_023_28877_z
crossref_primary_10_1061__ASCE_HE_1943_5584_0001902
crossref_primary_10_1177_01436244241274924
crossref_primary_10_1016_j_asoc_2021_107730
crossref_primary_10_3390_en15030750
crossref_primary_10_1049_rpg2_12514
crossref_primary_10_1016_j_enconman_2019_112461
crossref_primary_10_3390_en17225797
crossref_primary_10_1016_j_asoc_2019_105739
crossref_primary_10_1016_j_jhydrol_2021_127366
crossref_primary_10_1016_j_aei_2021_101357
crossref_primary_10_1109_ACCESS_2024_3440631
crossref_primary_10_3390_electronics10202455
crossref_primary_10_1016_j_oceaneng_2024_116880
crossref_primary_10_3390_en16176230
crossref_primary_10_1109_ACCESS_2023_3283436
crossref_primary_10_1016_j_epsr_2024_111172
crossref_primary_10_1016_j_engappai_2024_109453
crossref_primary_10_1016_j_seta_2024_103818
crossref_primary_10_3390_electronics13163109
crossref_primary_10_1016_j_chaos_2020_110511
crossref_primary_10_1007_s00170_024_13849_5
crossref_primary_10_1016_j_asoc_2021_108032
crossref_primary_10_3390_app13116845
crossref_primary_10_1016_j_apenergy_2023_121607
crossref_primary_10_1109_TII_2022_3163137
crossref_primary_10_1016_j_energy_2024_133964
crossref_primary_10_1007_s10115_024_02301_5
crossref_primary_10_1016_j_apenergy_2020_116415
crossref_primary_10_1016_j_eswa_2025_126449
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_1155_2022_2166082
crossref_primary_10_1007_s13042_022_01586_8
crossref_primary_10_1002_cpe_8391
crossref_primary_10_1016_j_apenergy_2020_114915
crossref_primary_10_1109_TEM_2023_3274544
crossref_primary_10_1007_s11837_025_07625_3
crossref_primary_10_1155_2022_1562544
crossref_primary_10_1016_j_engappai_2020_104071
crossref_primary_10_1016_j_eswa_2024_126038
crossref_primary_10_1016_j_apenergy_2021_118303
crossref_primary_10_1016_j_energy_2025_135632
crossref_primary_10_1007_s40808_023_01828_w
crossref_primary_10_1007_s10710_022_09430_2
crossref_primary_10_1155_2023_5070504
crossref_primary_10_1016_j_ifacol_2022_07_407
crossref_primary_10_3390_healthcare10030494
crossref_primary_10_3390_w16040618
crossref_primary_10_1016_j_engappai_2023_107199
crossref_primary_10_1016_j_aei_2023_102060
crossref_primary_10_1007_s11053_024_10360_2
crossref_primary_10_1016_j_apenergy_2019_113596
crossref_primary_10_1016_j_jclepro_2023_139796
crossref_primary_10_3390_s23239327
crossref_primary_10_1016_j_jobe_2021_103182
crossref_primary_10_1016_j_renene_2025_124141
crossref_primary_10_3390_en13164121
crossref_primary_10_3390_w13020139
crossref_primary_10_1016_j_energy_2022_125556
crossref_primary_10_1108_ECAM_11_2023_1194
crossref_primary_10_1016_j_energy_2022_126402
crossref_primary_10_1016_j_ijepes_2023_109620
crossref_primary_10_1016_j_apenergy_2022_119269
crossref_primary_10_1007_s11440_023_02050_9
crossref_primary_10_1016_j_chaos_2021_111783
crossref_primary_10_1007_s10479_025_06832_0
crossref_primary_10_3233_JCM_204550
crossref_primary_10_1016_j_apenergy_2024_123283
crossref_primary_10_1016_j_asoc_2023_111040
crossref_primary_10_1016_j_ijepes_2025_111163
crossref_primary_10_1016_j_energy_2020_117902
crossref_primary_10_3390_s23115058
crossref_primary_10_3390_su15097458
crossref_primary_10_1016_j_scs_2023_104898
crossref_primary_10_1002_ima_22570
crossref_primary_10_1016_j_enconman_2020_112902
crossref_primary_10_1016_j_apenergy_2022_120394
crossref_primary_10_1016_j_jobe_2023_108095
crossref_primary_10_1016_j_ssci_2024_106596
crossref_primary_10_1016_j_eswa_2024_124907
crossref_primary_10_1016_j_energy_2023_129938
crossref_primary_10_1016_j_annals_2020_102925
crossref_primary_10_1016_j_energy_2021_121377
crossref_primary_10_1016_j_energy_2023_128841
crossref_primary_10_1007_s00202_024_02685_1
crossref_primary_10_1016_j_apenergy_2022_119963
crossref_primary_10_3390_w15081548
crossref_primary_10_1016_j_ijepes_2022_108073
crossref_primary_10_3390_en16041925
crossref_primary_10_1007_s11042_022_13462_2
crossref_primary_10_1016_j_jobe_2023_107432
crossref_primary_10_1016_j_energy_2022_125592
crossref_primary_10_1016_j_energy_2023_128048
crossref_primary_10_1002_2050_7038_12709
crossref_primary_10_1016_j_jksuci_2022_04_016
crossref_primary_10_1080_19942060_2022_2104928
crossref_primary_10_1016_j_apenergy_2022_120281
crossref_primary_10_1016_j_energy_2022_125107
crossref_primary_10_1016_j_apenergy_2024_123149
crossref_primary_10_3390_w13233390
crossref_primary_10_1016_j_apenergy_2022_118882
crossref_primary_10_1016_j_jobe_2022_105028
crossref_primary_10_3390_en16104060
crossref_primary_10_1049_cps2_12032
crossref_primary_10_1007_s11269_024_03806_y
crossref_primary_10_1016_j_chaos_2019_07_011
crossref_primary_10_1016_j_jobe_2022_104975
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1016_j_enconman_2024_118632
crossref_primary_10_3390_math13071066
crossref_primary_10_3390_en14071894
crossref_primary_10_1016_j_egyr_2024_09_025
crossref_primary_10_1016_j_oceaneng_2023_116178
crossref_primary_10_1016_j_wasman_2020_11_006
crossref_primary_10_1016_j_energy_2021_122245
crossref_primary_10_1016_j_epsr_2021_107761
crossref_primary_10_1016_j_epsr_2021_107762
crossref_primary_10_1016_j_ymssp_2023_110981
crossref_primary_10_1016_j_jhydrol_2020_124627
crossref_primary_10_1109_ACCESS_2022_3202970
crossref_primary_10_1002_cpe_70082
crossref_primary_10_1016_j_apenergy_2020_116328
crossref_primary_10_1016_j_jhydrol_2023_130177
crossref_primary_10_1016_j_oceaneng_2023_115776
crossref_primary_10_3390_data9010013
crossref_primary_10_1016_j_epsr_2025_111861
crossref_primary_10_3389_fsufs_2024_1334098
crossref_primary_10_3390_en17235881
crossref_primary_10_1109_ACCESS_2020_3028959
crossref_primary_10_3390_su17125267
crossref_primary_10_1007_s10845_021_01821_z
crossref_primary_10_1016_j_ijhydene_2025_151304
crossref_primary_10_1016_j_enconman_2020_113234
crossref_primary_10_1007_s11356_021_13503_7
crossref_primary_10_1155_2023_8669796
crossref_primary_10_1007_s10479_022_04821_1
Cites_doi 10.1016/j.enconman.2015.04.057
10.1016/j.apenergy.2014.07.064
10.1109/JPROC.2015.2494218
10.1016/j.ijepes.2014.05.036
10.1109/TPAS.1971.293123
10.1016/j.enconman.2014.02.004
10.1098/rspa.1998.0193
10.1016/j.egypro.2012.01.229
10.1016/j.apenergy.2016.02.114
10.1016/j.ijepes.2012.09.002
10.1016/j.apenergy.2018.04.075
10.1109/72.279181
10.1016/j.energy.2018.09.180
10.1016/j.apenergy.2015.08.014
10.1016/j.apenergy.2018.02.131
10.1162/neco.1997.9.8.1735
10.1162/neco.1989.1.2.270
10.1109/TSP.2013.2288675
10.1016/j.enconman.2017.04.007
10.1080/01621459.1970.10481180
10.1016/j.energy.2018.06.083
10.1016/j.enconman.2017.10.021
10.1016/j.apenergy.2018.09.012
10.1016/j.neucom.2005.12.126
10.1109/59.651623
10.1016/j.apenergy.2018.01.094
10.1109/TPWRS.2005.857397
10.1016/j.energy.2014.05.065
10.1016/j.apenergy.2014.07.104
10.3389/fnbot.2017.00042
10.1016/j.apenergy.2014.05.023
10.1016/j.enconman.2013.03.014
10.1016/j.apenergy.2012.06.009
10.1109/TPWRS.2002.1007923
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.01.055
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 116
ExternalDocumentID 10_1016_j_apenergy_2019_01_055
S0306261919300571
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-ccf99d5b3d8f5acbdbc86af4513b72a1540a70f73ee7ebf97223690242ecbe3a3
ISICitedReferencesCount 262
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459845100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 09:21:30 EDT 2025
Sat Nov 29 07:24:14 EST 2025
Tue Nov 18 21:50:47 EST 2025
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory network
Variational mode decomposition
Relevant factors
Short-term load forecasting
Bayesian optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-ccf99d5b3d8f5acbdbc86af4513b72a1540a70f73ee7ebf97223690242ecbe3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5702-3946
PQID 2221018411
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2221018411
crossref_primary_10_1016_j_apenergy_2019_01_055
crossref_citationtrail_10_1016_j_apenergy_2019_01_055
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_01_055
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pankratz (b0035) 2009
Mukaka (b0240) 2012; 24
Fan, Peng, Hong (b0135) 2018; 224
Paliwal, Basu (b0030) 1987
Kouhi, Keynia (b0115) 2013; 71
Hor, Watson, Majithia (b0185) 2005; 20
Shahriari, Swersky, Wang, Adams, de Freitas (b0230) 2016; 104
Box, Pierce (b0025) 1970; 65
Yu, Moirangthem, Lee (b0100) 2017; 11
Tian, Hao, Hu (b0180) 2018; 231
Rasmussen (b0235) 2004
Liu, Tang, Zhang, Fan, Liu (b0105) 2014; 129
Liu, Tian, Li (b0170) 2015; 100
Singh, Dwivedi (b0075) 2018; 217
Kandil, El-Debeiky, Hasanien (b0045) 2002; 17
Che, Wang (b0055) 2014; 132
Moazzami, Khodabakhshian, Hooshmand (b0110) 2013; 101
Sun, Zhou, Chen, Jia, Tayyab, Peng (b0175) 2018; 165
Huang, Shen, Long, Wu, Shih, Zheng (b0195) 1998; 454
Bahrami, Hooshmand, Parastegari (b0130) 2014; 72
Huang, Zhu, Siew (b0060) 2006; 70
Li, Xiao, Xia, Zou, Zhang (b0165) 2018; 215
Dianmin, Xiaohong, Jie, Yong (b0050) 2002; 26
Jiang, Li, Li, Ji (b0010) 2018; 158
Snoek, Larochelle, Adams (b0225) 2012
Fu, Wang, Li, Li, Li, Zhong (b0145) 2018
Williams, Zipser (b0205) 1989; 1
Kouhi, Keynia, Ravadanegh (b0065) 2014; 62
Yu, Xu (b0070) 2014; 134
Peng, Zhou, Zhang, Zheng (b0155) 2017; 153
Vermaak, Botha (b0085) 1998; 13
Bengio, Simard, Frasconi (b0090) 1994; 5
Hooshmand, Amooshahi, Parastegari (b0125) 2013; 45
Mohammadi, Mehrtash, Kargarian (b0080) 2018
Amral, Ozveren, King (b0020) 2007
Hochreiter, Schmidhuber (b0095) 1997; 9
Pelikan, Goldberg, Cantú-Paz (b0220) 1999; vol. 1
Kaur, Pedro, Coimbra (b0120) 2014; 80
Christiaanse (b0040) 1971; PAS-90
Dragomiretskiy, Zosso (b0200) 2014; 62
Hochreiter, Bengio, Frasconi, Schmidhuber (b0210) 2001
Kar, Hug, Mohammadi, Moura (b0005) 2014; 8
Li, Goel, Wang (b0140) 2016; 170
Olah C. Understanding lstm networks. GITHUB blog, posted on August 2015;27:2015.
Zhang, Zhou, Li, Fu, Peng (b0160) 2017; 143
Dehalwar, Kalam, Kolhe, Zayegh (b0190) 2016
Nie, Liu, Liu, Wang (b0015) 2012; 16
Liu, Tian, Liang, Li (b0150) 2015; 157
Dehalwar (10.1016/j.apenergy.2019.01.055_b0190) 2016
Box (10.1016/j.apenergy.2019.01.055_b0025) 1970; 65
Tian (10.1016/j.apenergy.2019.01.055_b0180) 2018; 231
Dragomiretskiy (10.1016/j.apenergy.2019.01.055_b0200) 2014; 62
Singh (10.1016/j.apenergy.2019.01.055_b0075) 2018; 217
Yu (10.1016/j.apenergy.2019.01.055_b0100) 2017; 11
Christiaanse (10.1016/j.apenergy.2019.01.055_b0040) 1971; PAS-90
Yu (10.1016/j.apenergy.2019.01.055_b0070) 2014; 134
Hochreiter (10.1016/j.apenergy.2019.01.055_b0210) 2001
Hochreiter (10.1016/j.apenergy.2019.01.055_b0095) 1997; 9
Pankratz (10.1016/j.apenergy.2019.01.055_b0035) 2009
Bahrami (10.1016/j.apenergy.2019.01.055_b0130) 2014; 72
Kouhi (10.1016/j.apenergy.2019.01.055_b0065) 2014; 62
Liu (10.1016/j.apenergy.2019.01.055_b0105) 2014; 129
Li (10.1016/j.apenergy.2019.01.055_b0140) 2016; 170
Shahriari (10.1016/j.apenergy.2019.01.055_b0230) 2016; 104
Li (10.1016/j.apenergy.2019.01.055_b0165) 2018; 215
Kouhi (10.1016/j.apenergy.2019.01.055_b0115) 2013; 71
Mohammadi (10.1016/j.apenergy.2019.01.055_b0080) 2018
Liu (10.1016/j.apenergy.2019.01.055_b0150) 2015; 157
Kar (10.1016/j.apenergy.2019.01.055_b0005) 2014; 8
Kandil (10.1016/j.apenergy.2019.01.055_b0045) 2002; 17
Sun (10.1016/j.apenergy.2019.01.055_b0175) 2018; 165
Fan (10.1016/j.apenergy.2019.01.055_b0135) 2018; 224
Dianmin (10.1016/j.apenergy.2019.01.055_b0050) 2002; 26
Moazzami (10.1016/j.apenergy.2019.01.055_b0110) 2013; 101
Hooshmand (10.1016/j.apenergy.2019.01.055_b0125) 2013; 45
Hor (10.1016/j.apenergy.2019.01.055_b0185) 2005; 20
Pelikan (10.1016/j.apenergy.2019.01.055_b0220) 1999; vol. 1
Che (10.1016/j.apenergy.2019.01.055_b0055) 2014; 132
Paliwal (10.1016/j.apenergy.2019.01.055_b0030) 1987
Fu (10.1016/j.apenergy.2019.01.055_b0145) 2018
Snoek (10.1016/j.apenergy.2019.01.055_b0225) 2012
Huang (10.1016/j.apenergy.2019.01.055_b0060) 2006; 70
Peng (10.1016/j.apenergy.2019.01.055_b0155) 2017; 153
Kaur (10.1016/j.apenergy.2019.01.055_b0120) 2014; 80
Rasmussen (10.1016/j.apenergy.2019.01.055_b0235) 2004
Williams (10.1016/j.apenergy.2019.01.055_b0205) 1989; 1
Jiang (10.1016/j.apenergy.2019.01.055_b0010) 2018; 158
Vermaak (10.1016/j.apenergy.2019.01.055_b0085) 1998; 13
Mukaka (10.1016/j.apenergy.2019.01.055_b0240) 2012; 24
Nie (10.1016/j.apenergy.2019.01.055_b0015) 2012; 16
Zhang (10.1016/j.apenergy.2019.01.055_b0160) 2017; 143
Amral (10.1016/j.apenergy.2019.01.055_b0020) 2007
10.1016/j.apenergy.2019.01.055_b0215
Liu (10.1016/j.apenergy.2019.01.055_b0170) 2015; 100
Bengio (10.1016/j.apenergy.2019.01.055_b0090) 1994; 5
Huang (10.1016/j.apenergy.2019.01.055_b0195) 1998; 454
References_xml – year: 2018
  ident: b0145
  article-title: Vibration trend measurement for hydropower generator based on optimal variational mode decomposition and LSSVM improved with chaotic sine cosine algorithm optimization
  publication-title: Meas Sci Technol
– volume: 80
  start-page: 582
  year: 2014
  end-page: 590
  ident: b0120
  article-title: Ensemble re-forecasting methods for enhanced power load prediction
  publication-title: Energ Convers Manage
– start-page: 355
  year: 2016
  end-page: 359
  ident: b0190
  article-title: Electricity load forecasting for Urban area using weather forecast information
  publication-title: IEEE
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Roy Soc Lond A: Math Phys Eng Sci
– volume: 72
  start-page: 434
  year: 2014
  end-page: 442
  ident: b0130
  article-title: Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm
  publication-title: Energy
– volume: 65
  start-page: 1509
  year: 1970
  end-page: 1526
  ident: b0025
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J Am Stat Assoc
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0200
  article-title: Variational mode decomposition
  publication-title: Ieee T Signal Proces
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b0230
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: P Ieee
– volume: 170
  start-page: 22
  year: 2016
  end-page: 29
  ident: b0140
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl Energ
– volume: 217
  start-page: 537
  year: 2018
  end-page: 549
  ident: b0075
  article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem
  publication-title: Appl Energ
– volume: 153
  start-page: 589
  year: 2017
  end-page: 602
  ident: b0155
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energ Convers Manage
– volume: vol. 1
  start-page: 525
  year: 1999
  end-page: 532
  ident: b0220
  article-title: BOA: the bayesian optimization algorithm
  publication-title: Proceedings of the 1st annual conference on genetic and evolutionary computation
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b0090
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Networks
– volume: 71
  start-page: 76
  year: 2013
  end-page: 83
  ident: b0115
  article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market
  publication-title: Energ Convers Manage
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0060
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 224
  start-page: 13
  year: 2018
  end-page: 33
  ident: b0135
  article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model
  publication-title: Appl Energ
– volume: 62
  start-page: 862
  year: 2014
  end-page: 867
  ident: b0065
  article-title: A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
  publication-title: Int J Elec Power
– volume: 165
  start-page: 939
  year: 2018
  end-page: 957
  ident: b0175
  article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine
  publication-title: Energy
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: b0205
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
– volume: 132
  start-page: 602
  year: 2014
  end-page: 609
  ident: b0055
  article-title: Short-term load forecasting using a kernel-based support vector regression combination model
  publication-title: Appl Energ
– start-page: 63
  year: 2004
  end-page: 71
  ident: b0235
  article-title: Gaussian processes in machine learning. Advanced lectures on machine learning
– volume: PAS-90
  start-page: 900
  year: 1971
  end-page: 911
  ident: b0040
  article-title: Short-Term load forecasting using general exponential smoothing
  publication-title: IEEE Trans Power Apparatus Syst
– start-page: 1192
  year: 2007
  end-page: 1198
  ident: b0020
  article-title: Short term load forecasting using multiple linear regression
  publication-title: Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International
– volume: 24
  start-page: 69
  year: 2012
  end-page: 71
  ident: b0240
  article-title: A guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med J
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: b0225
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inform Process Syst
– start-page: 177
  year: 1987
  end-page: 180
  ident: b0030
  article-title: A speech enhancement method based on Kalman filtering
  publication-title: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'87
– volume: 26
  start-page: 10
  year: 2002
  end-page: 13
  ident: b0050
  article-title: A short-term load forecasting system based on BP artificial neural network
  publication-title: Power Syst Technol-Beijing
– volume: 8
  start-page: 1022
  year: 2014
  end-page: 1038
  ident: b0005
  article-title: Distributed state estimation and energy management in smart grids: a consensus + innovations approach
  publication-title: Ieee J-Stsp
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0095
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 158
  start-page: 693
  year: 2018
  end-page: 708
  ident: b0010
  article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application
  publication-title: Energy
– volume: 20
  start-page: 2078
  year: 2005
  end-page: 2085
  ident: b0185
  article-title: Analyzing the Impact of Weather Variables on Monthly Electricity Demand
  publication-title: Ieee T Power Syst
– volume: 101
  start-page: 489
  year: 2013
  end-page: 501
  ident: b0110
  article-title: A new hybrid day-ahead peak load forecasting method for Iran’s National Grid
  publication-title: Appl Energ
– volume: 129
  start-page: 336
  year: 2014
  end-page: 345
  ident: b0105
  article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
  publication-title: Appl Energ
– start-page: 1
  year: 2018
  ident: b0080
  article-title: Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow
  publication-title: Ieee T Smart Grid
– volume: 100
  start-page: 16
  year: 2015
  end-page: 22
  ident: b0170
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energ Convers Manage
– volume: 13
  start-page: 126
  year: 1998
  end-page: 132
  ident: b0085
  article-title: Recurrent neural networks for short-term load forecasting
  publication-title: Ieee T Power Syst
– volume: 11
  start-page: 42
  year: 2017
  ident: b0100
  article-title: Continuous timescale long-short term memory neural network for human intent understanding
  publication-title: Front Neurorobotics
– volume: 215
  start-page: 131
  year: 2018
  end-page: 144
  ident: b0165
  article-title: A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting
  publication-title: Appl Energ
– volume: 134
  start-page: 102
  year: 2014
  end-page: 113
  ident: b0070
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl Energ
– start-page: p
  year: 2001
  ident: b0210
  article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies: a field guide to dynamical recurrent neural networks
  publication-title: IEEE Press
– start-page: 557
  year: 2009
  ident: b0035
  article-title: Forecasting with univariate Box-Jenkins models: concepts and cases
  publication-title: Wiley-Blackwell
– reference: Olah C. Understanding lstm networks. GITHUB blog, posted on August 2015;27:2015.
– volume: 231
  start-page: 301
  year: 2018
  end-page: 319
  ident: b0180
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl Energ
– volume: 45
  start-page: 313
  year: 2013
  end-page: 324
  ident: b0125
  article-title: A hybrid intelligent algorithm based short-term load forecasting approach
  publication-title: Int J Elec Power
– volume: 16
  start-page: 1455
  year: 2012
  end-page: 1460
  ident: b0015
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Procedia
– volume: 17
  start-page: 491
  year: 2002
  end-page: 496
  ident: b0045
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: Ieee T Power Syst
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b0150
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energ
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b0160
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energ Convers Manage
– volume: 100
  start-page: 16
  year: 2015
  ident: 10.1016/j.apenergy.2019.01.055_b0170
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2015.04.057
– start-page: 2951
  year: 2012
  ident: 10.1016/j.apenergy.2019.01.055_b0225
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inform Process Syst
– ident: 10.1016/j.apenergy.2019.01.055_b0215
– volume: 132
  start-page: 602
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0055
  article-title: Short-term load forecasting using a kernel-based support vector regression combination model
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2014.07.064
– start-page: 355
  year: 2016
  ident: 10.1016/j.apenergy.2019.01.055_b0190
  article-title: Electricity load forecasting for Urban area using weather forecast information
  publication-title: IEEE
– volume: 104
  start-page: 148
  year: 2016
  ident: 10.1016/j.apenergy.2019.01.055_b0230
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: P Ieee
  doi: 10.1109/JPROC.2015.2494218
– start-page: 1192
  year: 2007
  ident: 10.1016/j.apenergy.2019.01.055_b0020
  article-title: Short term load forecasting using multiple linear regression
– volume: 26
  start-page: 10
  year: 2002
  ident: 10.1016/j.apenergy.2019.01.055_b0050
  article-title: A short-term load forecasting system based on BP artificial neural network
  publication-title: Power Syst Technol-Beijing
– volume: 62
  start-page: 862
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0065
  article-title: A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2014.05.036
– volume: PAS-90
  start-page: 900
  year: 1971
  ident: 10.1016/j.apenergy.2019.01.055_b0040
  article-title: Short-Term load forecasting using general exponential smoothing
  publication-title: IEEE Trans Power Apparatus Syst
  doi: 10.1109/TPAS.1971.293123
– volume: 80
  start-page: 582
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0120
  article-title: Ensemble re-forecasting methods for enhanced power load prediction
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2014.02.004
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.apenergy.2019.01.055_b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Roy Soc Lond A: Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 16
  start-page: 1455
  year: 2012
  ident: 10.1016/j.apenergy.2019.01.055_b0015
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.01.229
– volume: 170
  start-page: 22
  year: 2016
  ident: 10.1016/j.apenergy.2019.01.055_b0140
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2016.02.114
– volume: 45
  start-page: 313
  year: 2013
  ident: 10.1016/j.apenergy.2019.01.055_b0125
  article-title: A hybrid intelligent algorithm based short-term load forecasting approach
  publication-title: Int J Elec Power
  doi: 10.1016/j.ijepes.2012.09.002
– volume: 224
  start-page: 13
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0135
  article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.04.075
– start-page: p
  year: 2001
  ident: 10.1016/j.apenergy.2019.01.055_b0210
  article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies: a field guide to dynamical recurrent neural networks
  publication-title: IEEE Press
– volume: 5
  start-page: 157
  year: 1994
  ident: 10.1016/j.apenergy.2019.01.055_b0090
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.279181
– year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0145
  article-title: Vibration trend measurement for hydropower generator based on optimal variational mode decomposition and LSSVM improved with chaotic sine cosine algorithm optimization
  publication-title: Meas Sci Technol
– volume: 165
  start-page: 939
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0175
  article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.180
– start-page: 177
  year: 1987
  ident: 10.1016/j.apenergy.2019.01.055_b0030
  article-title: A speech enhancement method based on Kalman filtering
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.apenergy.2019.01.055_b0150
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 217
  start-page: 537
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0075
  article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.02.131
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.apenergy.2019.01.055_b0095
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 1
  start-page: 270
  year: 1989
  ident: 10.1016/j.apenergy.2019.01.055_b0205
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.270
– volume: 24
  start-page: 69
  year: 2012
  ident: 10.1016/j.apenergy.2019.01.055_b0240
  article-title: A guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med J
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0080
  article-title: Diagonal quadratic approximation for decentralized collaborative TSO+DSO optimal power flow
  publication-title: Ieee T Smart Grid
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0200
  article-title: Variational mode decomposition
  publication-title: Ieee T Signal Proces
  doi: 10.1109/TSP.2013.2288675
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.apenergy.2019.01.055_b0160
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2017.04.007
– volume: 65
  start-page: 1509
  year: 1970
  ident: 10.1016/j.apenergy.2019.01.055_b0025
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1970.10481180
– volume: 158
  start-page: 693
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0010
  article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.083
– volume: 153
  start-page: 589
  year: 2017
  ident: 10.1016/j.apenergy.2019.01.055_b0155
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2017.10.021
– volume: 231
  start-page: 301
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0180
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.09.012
– volume: 8
  start-page: 1022
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0005
  article-title: Distributed state estimation and energy management in smart grids: a consensus + innovations approach
  publication-title: Ieee J-Stsp
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.apenergy.2019.01.055_b0060
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 13
  start-page: 126
  year: 1998
  ident: 10.1016/j.apenergy.2019.01.055_b0085
  article-title: Recurrent neural networks for short-term load forecasting
  publication-title: Ieee T Power Syst
  doi: 10.1109/59.651623
– volume: 215
  start-page: 131
  year: 2018
  ident: 10.1016/j.apenergy.2019.01.055_b0165
  article-title: A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2018.01.094
– start-page: 557
  year: 2009
  ident: 10.1016/j.apenergy.2019.01.055_b0035
  article-title: Forecasting with univariate Box-Jenkins models: concepts and cases
  publication-title: Wiley-Blackwell
– volume: 20
  start-page: 2078
  year: 2005
  ident: 10.1016/j.apenergy.2019.01.055_b0185
  article-title: Analyzing the Impact of Weather Variables on Monthly Electricity Demand
  publication-title: Ieee T Power Syst
  doi: 10.1109/TPWRS.2005.857397
– volume: 72
  start-page: 434
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0130
  article-title: Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.065
– start-page: 63
  year: 2004
  ident: 10.1016/j.apenergy.2019.01.055_b0235
– volume: 134
  start-page: 102
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0070
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 11
  start-page: 42
  year: 2017
  ident: 10.1016/j.apenergy.2019.01.055_b0100
  article-title: Continuous timescale long-short term memory neural network for human intent understanding
  publication-title: Front Neurorobotics
  doi: 10.3389/fnbot.2017.00042
– volume: vol. 1
  start-page: 525
  year: 1999
  ident: 10.1016/j.apenergy.2019.01.055_b0220
  article-title: BOA: the bayesian optimization algorithm
– volume: 129
  start-page: 336
  year: 2014
  ident: 10.1016/j.apenergy.2019.01.055_b0105
  article-title: A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2014.05.023
– volume: 71
  start-page: 76
  year: 2013
  ident: 10.1016/j.apenergy.2019.01.055_b0115
  article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2013.03.014
– volume: 101
  start-page: 489
  year: 2013
  ident: 10.1016/j.apenergy.2019.01.055_b0110
  article-title: A new hybrid day-ahead peak load forecasting method for Iran’s National Grid
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2012.06.009
– volume: 17
  start-page: 491
  year: 2002
  ident: 10.1016/j.apenergy.2019.01.055_b0045
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: Ieee T Power Syst
  doi: 10.1109/TPWRS.2002.1007923
SSID ssj0002120
Score 2.6506395
Snippet •A hybrid load forecasting model with hyper-parameters optimization is proposed.•Nonlinear mapping is introduced to map the relevant factors.•Bayesian...
Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms algorithms
Bayesian optimization algorithm
Bayesian theory
China
energy
Long short-term memory network
lymphocytes
prediction
processing technology
regression analysis
Relevant factors
Short-term load forecasting
temperature
Variational mode decomposition
Title A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
URI https://dx.doi.org/10.1016/j.apenergy.2019.01.055
https://www.proquest.com/docview/2221018411
Volume 237
WOSCitedRecordID wos000459845100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IChUlJcWiZtl8CN-HQMKAlRVSBQp4mLtenebtIkdxUnU8Mv4QfwQZnb9WAqoIMTFiuzsxtF8nvlmPA9CnidJKgRXsSsVK9yhiFOXe2nmKuWHiiuZCaabuB4nJyfpZJJ9GAy-tbUw23lSlunlZbb8r6KGcyBsLJ39C3F3m8IJ-AxChyOIHY5_JPiRM91hGZZTT4Fau6h6nXnFBCYUyoLVOs9ZD8Bx0IQJfF2wBY-5jQriJUdIzDVvErr0C4Y5DiWytlxgiu7OKU0aeY3p63ryJ-6Og1iAoa-7aT462vuK7aQu2axATS2a-k-Hzc-qFVxe2DS55cZSVyb28VpNteVMyVkf8K42Gomw8Zdp1dhhzW2NFvuMJ90L1q04nukF8GyUZ3zGKjvugaVWoR336Apy-uwnXQTmxS46hca8GZ2eJgHq9NRW-oFpNdOobd8LLQbgm-rPn4yLiXOcv2BL8-8xMTDTTV9Np-Erjbs_4s3gvQBHxppf8NH3gyTKwHzsj96NJ-87xhA07UPbm7cq2X_9a78jUVfohOZIp3fI7ca5oSMDyrtkIMsDcstqeXlADsd9ZSV8tTEt9T3ydUQNbmkPMoq4pRZuqcYt1bilVUkt3OpL9AfcUsAtRdzaWxrc0ha31MItbXFLG9xSxC1tcUtt3NIOt_fJpzfj09dv3WasiFuEw2jtFoXKMhHxUKQqYgUXvEhjpoaRH_IkYOBTeCzxVBJKmUiusgQYdJwhl5UFlyELD8leWZXyAaEe40EURirUVDfgmRLCS2LOwGtKi8g_IlErp7xoeu7j6Jd53iZXnuetfHOUb-75Ocj3iLzs1i1N15lrV2QtDPKGOxtOnAN6r137rMVNDsYF3xiyUlabOgfnATv6DX3_4T_s_4jc7B_gx2RvvdrIJ-RGsV3P6tXT5mH4Dq9eCCE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+short-term+load+forecasting+model+based+on+variational+mode+decomposition+and+long+short-term+memory+networks+considering+relevant+factors+with+Bayesian+optimization+algorithm&rft.jtitle=Applied+energy&rft.au=He%2C+Feifei&rft.au=Zhou%2C+Jianzhong&rft.au=Feng%2C+Zhong-kai&rft.au=Liu%2C+Guangbiao&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=237&rft.spage=103&rft.epage=116&rft_id=info:doi/10.1016%2Fj.apenergy.2019.01.055&rft.externalDocID=S0306261919300571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon