Delay-tolerant hierarchical distributed control for DC microgrid clusters considering microgrid autonomy
A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distribut...
Uloženo v:
| Vydáno v: | Applied energy Ročník 378; s. 124905 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.01.2025
|
| Témata: | |
| ISSN: | 0306-2619 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations
•A novel hierarchical distributed control method for DC MGCs is proposed.•The proposed control allows MGs to join in cooperation or operate autonomously.•How to identify the key control link determining the time delay margin is studied.•The scattering transformation approach is introduced to improve system stability.•A new system model integrating node and edge variables is established for stability analysis. |
|---|---|
| AbstractList | A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations •A novel hierarchical distributed control method for DC MGCs is proposed.•The proposed control allows MGs to join in cooperation or operate autonomously.•How to identify the key control link determining the time delay margin is studied.•The scattering transformation approach is introduced to improve system stability.•A new system model integrating node and edge variables is established for stability analysis. |
| ArticleNumber | 124905 |
| Author | Wan, Keting Zhao, Jinghan Yu, Miao Chen, Yongpan |
| Author_xml | – sequence: 1 givenname: Yongpan surname: Chen fullname: Chen, Yongpan email: chenyongpan@zju.edu.cn – sequence: 2 givenname: Jinghan surname: Zhao fullname: Zhao, Jinghan email: zhaojinghan12@zju.edu.cn – sequence: 3 givenname: Keting surname: Wan fullname: Wan, Keting email: wkt@zju.edu.cn – sequence: 4 givenname: Miao surname: Yu fullname: Yu, Miao email: zjuyumiao@zju.edu.cn |
| BookMark | eNqFkMtKAzEUhrOoYKu-gszSzdQkk6Qz4EJpvUHBTfchk5xpU9KkJhmhb--UKoibrv7Ff-Gcb4JGPnhA6JbgKcFE3G-nag8e4vowpZiyKaGswXyExrjCoqSCNJdoktIWY0wJxWO0WYBThzIHB1H5XGzsoFFvrFauMDblaNs-gyl08DkGV3QhFot5sbM6hnW0g-H6lCGmYyJZA9H69R9b9Tn4sDtco4tOuQQ3P3qFVi_Pq_lbufx4fZ8_LUtdMZ5LXUMHBs9MA0xpgqtWqFZQqBuocc0Yx1QAN5QRUzXQcqyUEKYaAjNuWF1dobvT7D6Gzx5SljubNDinPIQ-yYpwRhklnA_Rh1N0ODWlCJ3UNqtsj48q6yTB8shUbuUvU3lkKk9Mh7r4V99Hu1PxcL74eCrCgOFr4C2TtuA1GBtBZ2mCPTfxDTyunFE |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2025_125348 crossref_primary_10_1016_j_ecmx_2025_101243 |
| Cites_doi | 10.1109/TSTE.2021.3076483 10.1109/TPWRS.2022.3169821 10.1109/TEC.2019.2934905 10.1109/TSG.2022.3141395 10.1109/TSG.2019.2956515 10.1109/COMST.2020.3023963 10.1109/TSG.2019.2946173 10.1109/TIE.2010.2066533 10.1109/TCYB.2024.3372616 10.1109/TSG.2020.2975752 10.1109/TPEL.2022.3160483 10.1109/TIE.2017.2779414 10.1109/TPEL.2020.2980882 10.1109/TPWRS.2018.2878769 10.1109/TSG.2020.2979983 10.1109/TPWRS.2015.2472977 10.1016/j.ijepes.2021.106792 10.1016/j.apenergy.2018.06.026 10.1016/j.apenergy.2021.118102 10.1109/TPWRS.2013.2296696 10.1109/TTE.2015.2427312 10.1109/TPWRS.2023.3323790 10.1016/j.ijepes.2023.109636 10.1109/TPEL.2015.2424672 10.1109/TIE.2020.2978719 10.1109/TEC.2014.2362191 10.1109/TSG.2020.3041378 10.1109/TIE.2014.2367456 10.1109/TSG.2021.3052303 10.1109/TPEL.2017.2761438 10.1109/TPWRS.2021.3092717 10.1109/TSG.2022.3229486 10.1016/j.ijepes.2021.106889 10.1016/j.apenergy.2021.118425 10.1109/TPEL.2014.2324579 10.1016/j.energy.2018.12.167 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2024.124905 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | 10_1016_j_apenergy_2024_124905 S0306261924022888 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-c8efed07d9e4ac103b6ab62e89e808445026e5d241d39eb50aa66d32e875d483 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360102800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 09:29:14 EDT 2025 Sat Nov 29 06:10:04 EST 2025 Tue Nov 18 21:18:58 EST 2025 Sat Dec 14 16:15:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DC microgrid cluster Mode switching Scattering transformation Hierarchical distributed control Time delay Padé approximation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-c8efed07d9e4ac103b6ab62e89e808445026e5d241d39eb50aa66d32e875d483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3154242155 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3154242155 crossref_citationtrail_10_1016_j_apenergy_2024_124905 crossref_primary_10_1016_j_apenergy_2024_124905 elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_124905 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Moayedi, Davoudi (bb0160) 2016; 31 Gao, Zheng, Bozhko, Hill, Asher (bb0190) 2015; 1 Dragičević, Lu, Vasquez, Guerrero (bb0005) 2016; 31 Du, Lu, Tang (bb0100) 2022; 13 Li, Gao, Lin, Chen, Chen (bb0055) 2019; 171 Xu, Guo, Wang, Sun (bb0170) 2021; 12 Mudaliyar, Duggal, Mishra (bb0165) 2020; 35 Li, Dong, Liu, Yang (bb0040) 2019; 34 Dong, Gao, Xiao, Yu, Pekar, Jia (bb0075) 2018; 228 Fridman (bb0175) 2014 Ge, Chen, Teng (bb0050) 2023; 14 Shafiee, Dragicevic, Vasquez, Guerrero (bb0045) 2014; 29 Liu, Wang, Liu (bb0130) 2015; 62 Shi, Chen, Zhou, Chen, Wen, He (bb0145) 2020; 11 Yao, Wang, Xu, Deng, Wu (bb0135) 2022; 37 Li, Sun, Chow, Sun (bb0125) 2011; 58 Milano (bb0180) 2016; 31 Yao, Wang, Xu, Lin, Qi, Wu (bb0070) 2021; 129 Yao, Wang, Xu, Dong (bb0140) 2023; 38 Huang, Liu, Yu, Hu (bb0155) 2024; 54 Nasirian, Moayedi, Davoudi, Lewis (bb0010) 2015; 30 Xia, Xu, Wang, Yao, Mondal, Dasgupta (bb0150) 2024; 39 Shyam, Anand, Sahoo (bb0115) 2021; 68 Zhou, Shi, Chen, Chen, Wen, He (bb0085) 2020; 11 Xu, Guo, He, Jia, Sun (bb0120) 2022; 306 Nguyen, Lee (bb0105) 2022; 37 Sahoo, Mishra, Fazeli, Li, Dragicevic (bb0060) 2019; 34 Xing, Mishra, Guo, Lin, Yang, Ledwich (bb0020) 2020; 11 Chen, Shi, Sun, Li, He (bb0025) 2018; 65 Tan, Xie, Guerrero, Vasquez (bb0080) 2022; 310 Zhou, Shahidehpour, Paaso, Bahramirad, Alabdulwahab, Abusorrah (bb0035) 2020; 22 Zaery, Wang, Wang, Xu (bb0065) 2021; 129 Li, Zhang, Dragičević, Rodriguez (bb0015) 2021; 12 Pourmousavi, Nehrir (bb0185) 2014; 29 Du, Tu, Yu, Lukic (bb0095) 2020; 11 Yuan, Wang, Liu, Lei (bb0090) 2021; 12 Han, Zhang, Li, Coelho, Guerrero (bb0030) 2018; 33 Chen, Wan, Zhao, Yu (bb0110) 2024; 155 Xia (10.1016/j.apenergy.2024.124905_bb0150) 2024; 39 Fridman (10.1016/j.apenergy.2024.124905_bb0175) 2014 Mudaliyar (10.1016/j.apenergy.2024.124905_bb0165) 2020; 35 Tan (10.1016/j.apenergy.2024.124905_bb0080) 2022; 310 Yao (10.1016/j.apenergy.2024.124905_bb0135) 2022; 37 Yuan (10.1016/j.apenergy.2024.124905_bb0090) 2021; 12 Li (10.1016/j.apenergy.2024.124905_bb0040) 2019; 34 Gao (10.1016/j.apenergy.2024.124905_bb0190) 2015; 1 Li (10.1016/j.apenergy.2024.124905_bb0055) 2019; 171 Dragičević (10.1016/j.apenergy.2024.124905_bb0005) 2016; 31 Shyam (10.1016/j.apenergy.2024.124905_bb0115) 2021; 68 Zhou (10.1016/j.apenergy.2024.124905_bb0035) 2020; 22 Shafiee (10.1016/j.apenergy.2024.124905_bb0045) 2014; 29 Li (10.1016/j.apenergy.2024.124905_bb0015) 2021; 12 Xu (10.1016/j.apenergy.2024.124905_bb0120) 2022; 306 Nasirian (10.1016/j.apenergy.2024.124905_bb0010) 2015; 30 Huang (10.1016/j.apenergy.2024.124905_bb0155) 2024; 54 Li (10.1016/j.apenergy.2024.124905_bb0125) 2011; 58 Sahoo (10.1016/j.apenergy.2024.124905_bb0060) 2019; 34 Ge (10.1016/j.apenergy.2024.124905_bb0050) 2023; 14 Zhou (10.1016/j.apenergy.2024.124905_bb0085) 2020; 11 Shi (10.1016/j.apenergy.2024.124905_bb0145) 2020; 11 Han (10.1016/j.apenergy.2024.124905_bb0030) 2018; 33 Du (10.1016/j.apenergy.2024.124905_bb0095) 2020; 11 Du (10.1016/j.apenergy.2024.124905_bb0100) 2022; 13 Liu (10.1016/j.apenergy.2024.124905_bb0130) 2015; 62 Xu (10.1016/j.apenergy.2024.124905_bb0170) 2021; 12 Zaery (10.1016/j.apenergy.2024.124905_bb0065) 2021; 129 Yao (10.1016/j.apenergy.2024.124905_bb0070) 2021; 129 Yao (10.1016/j.apenergy.2024.124905_bb0140) 2023; 38 Dong (10.1016/j.apenergy.2024.124905_bb0075) 2018; 228 Chen (10.1016/j.apenergy.2024.124905_bb0025) 2018; 65 Nguyen (10.1016/j.apenergy.2024.124905_bb0105) 2022; 37 Chen (10.1016/j.apenergy.2024.124905_bb0110) 2024; 155 Xing (10.1016/j.apenergy.2024.124905_bb0020) 2020; 11 Pourmousavi (10.1016/j.apenergy.2024.124905_bb0185) 2014; 29 Moayedi (10.1016/j.apenergy.2024.124905_bb0160) 2016; 31 Milano (10.1016/j.apenergy.2024.124905_bb0180) 2016; 31 |
| References_xml | – volume: 14 start-page: 3114 year: 2023 end-page: 3124 ident: bb0050 article-title: Cyber-resilient self-triggered distributed control of networked microgrids against multi-layer DoS attacks publication-title: IEEE Trans Smart Grid – volume: 58 start-page: 2465 year: 2011 end-page: 2472 ident: bb0125 article-title: Gain-scheduling-based state feedback integral control for networked control systems publication-title: IEEE Trans Ind Electron – volume: 39 start-page: 5036 year: 2024 end-page: 5049 ident: bb0150 article-title: A data-driven method for online gain scheduling of distributed secondary controller in time-delayed microgrids publication-title: IEEE Trans Power Syst – volume: 62 start-page: 2021 year: 2015 end-page: 2031 ident: bb0130 article-title: Impact of communication delays on secondary frequency control in an islanded microgrid publication-title: IEEE Trans Ind Electron – volume: 306 year: 2022 ident: bb0120 article-title: Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control publication-title: Appl Energy – volume: 31 start-page: 4876 year: 2016 end-page: 4891 ident: bb0005 article-title: DC microgrids—part I: a review of control strategies and stabilization techniques publication-title: IEEE Trans Power Electron – volume: 35 start-page: 11250 year: 2020 end-page: 11266 ident: bb0165 article-title: Distributed tie-line power flow control of autonomous DC microgrid clusters publication-title: IEEE Trans Power Electron – volume: 22 start-page: 2586 year: 2020 end-page: 2633 ident: bb0035 article-title: Distributed control and communication strategies in networked microgrids publication-title: IEEE Commun Surv Tutor – volume: 171 start-page: 284 year: 2019 end-page: 295 ident: bb0055 article-title: MAS-based distributed control method for multi-microgrids with high-penetration renewable energy publication-title: Energy – volume: 34 start-page: 2205 year: 2019 end-page: 2215 ident: bb0040 article-title: A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids publication-title: IEEE Trans Power Syst – volume: 54 start-page: 4998 year: 2024 end-page: 5011 ident: bb0155 article-title: Data-driven distributed predictive control for voltage regulation and current sharing in DC microgrids with communication constraints publication-title: IEEE Trans Cybern – volume: 1 start-page: 65 year: 2015 end-page: 76 ident: bb0190 article-title: Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity publication-title: IEEE Trans Transp Electrification – volume: 37 start-page: 11244 year: 2022 end-page: 11257 ident: bb0105 article-title: Accurate power sharing and voltage restoration in DC microgrids with heterogeneous communication time delays publication-title: IEEE Trans Power Electron – volume: 11 start-page: 2487 year: 2020 end-page: 2497 ident: bb0020 article-title: Distributed secondary control for current sharing and voltage restoration in DC microgrid publication-title: IEEE Trans Smart Grid – volume: 12 start-page: 1880 year: 2021 end-page: 1892 ident: bb0015 article-title: A unified distributed cooperative control of DC microgrids using consensus protocol publication-title: IEEE Trans Smart Grid – volume: 68 start-page: 3202 year: 2021 end-page: 3212 ident: bb0115 article-title: Effect of communication delay on consensus-based secondary controllers in DC microgrid publication-title: IEEE Trans Ind Electron – volume: 11 start-page: 2918 year: 2020 end-page: 2928 ident: bb0095 article-title: Accurate consensus-based distributed averaging with variable time delay in support of distributed secondary control algorithms publication-title: IEEE Trans Smart Grid – volume: 310 year: 2022 ident: bb0080 article-title: False data injection cyber-attacks detection for multiple DC microgrid clusters publication-title: Appl Energy – volume: 11 start-page: 2033 year: 2020 end-page: 2042 ident: bb0145 article-title: Distributed optimal control of energy storages in a DC microgrid with communication delay publication-title: IEEE Trans Smart Grid – volume: 129 year: 2021 ident: bb0070 article-title: Distributed layered control and stability analysis of islanded networked-microgrids publication-title: Int J Electr Power Energy Syst – volume: 11 start-page: 3716 year: 2020 end-page: 3725 ident: bb0085 article-title: A novel secondary optimal control for multiple battery energy storages in a DC microgrid publication-title: IEEE Trans Smart Grid – volume: 29 start-page: 922 year: 2014 end-page: 933 ident: bb0045 article-title: Hierarchical control for multiple DC-microgrids clusters publication-title: IEEE Trans Energy Convers – volume: 12 start-page: 3425 year: 2021 end-page: 3437 ident: bb0170 article-title: Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis publication-title: IEEE Trans Smart Grid – volume: 31 start-page: 1717 year: 2016 end-page: 1733 ident: bb0160 article-title: Distributed tertiary control of DC microgrid clusters publication-title: IEEE Trans Power Electron – volume: 228 start-page: 189 year: 2018 end-page: 204 ident: bb0075 article-title: Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework publication-title: Appl Energy – volume: 155 year: 2024 ident: bb0110 article-title: Accurate consensus-based distributed secondary control with tolerance of communication delays for DC microgrids publication-title: Int J Electr Power Energy Syst – volume: 34 start-page: 1997 year: 2019 end-page: 2007 ident: bb0060 article-title: A distributed fixed-time secondary controller for DC microgrid clusters publication-title: IEEE Trans Energy Convers – volume: 37 start-page: 330 year: 2022 end-page: 342 ident: bb0135 article-title: Distributed weight-average-prediction control and stability analysis for an islanded microgrid with communication time delay publication-title: IEEE Trans Power Syst – volume: 12 start-page: 2008 year: 2021 end-page: 2018 ident: bb0090 article-title: Distributed fixed-time secondary control for DC microgrid via dynamic average consensus publication-title: IEEE Trans Sustain Energy – volume: 29 start-page: 1562 year: 2014 end-page: 1572 ident: bb0185 article-title: Introducing dynamic demand response in the LFC model publication-title: IEEE Trans Power Syst – volume: 13 start-page: 1709 year: 2022 end-page: 1719 ident: bb0100 article-title: Accurate distributed secondary control for DC microgrids considering communication delays: a surplus consensus-based approach publication-title: IEEE Trans Smart Grid – volume: 30 start-page: 2288 year: 2015 end-page: 2303 ident: bb0010 article-title: Distributed cooperative control of DC microgrids publication-title: IEEE Trans Power Electron – volume: 65 start-page: 5611 year: 2018 end-page: 5622 ident: bb0025 article-title: Distributed cooperative control and stability analysis of multiple DC Electric Springs in a DC microgrid publication-title: IEEE Trans Ind Electron – year: 2014 ident: bb0175 article-title: Introduction to time-delay systems: Analysis and control – volume: 38 start-page: 921 year: 2023 end-page: 933 ident: bb0140 article-title: Small-signal stability analysis and Lead-lag compensation control for DC networked-microgrid under multiple time delays publication-title: IEEE Trans Power Syst – volume: 129 year: 2021 ident: bb0065 article-title: A novel fully distributed fixed-time optimal dispatch of DC multi-microgrids publication-title: Int J Electr Power Energy Syst – volume: 33 start-page: 6488 year: 2018 end-page: 6508 ident: bb0030 article-title: MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview publication-title: IEEE Trans Power Electron – volume: 31 start-page: 3257 year: 2016 end-page: 3266 ident: bb0180 article-title: Small-signal stability analysis of large power systems with inclusion of multiple delays publication-title: IEEE Trans Power Syst – volume: 12 start-page: 2008 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0090 article-title: Distributed fixed-time secondary control for DC microgrid via dynamic average consensus publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2021.3076483 – volume: 38 start-page: 921 year: 2023 ident: 10.1016/j.apenergy.2024.124905_bb0140 article-title: Small-signal stability analysis and Lead-lag compensation control for DC networked-microgrid under multiple time delays publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2022.3169821 – volume: 34 start-page: 1997 year: 2019 ident: 10.1016/j.apenergy.2024.124905_bb0060 article-title: A distributed fixed-time secondary controller for DC microgrid clusters publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2019.2934905 – volume: 13 start-page: 1709 year: 2022 ident: 10.1016/j.apenergy.2024.124905_bb0100 article-title: Accurate distributed secondary control for DC microgrids considering communication delays: a surplus consensus-based approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2022.3141395 – volume: 11 start-page: 2487 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0020 article-title: Distributed secondary control for current sharing and voltage restoration in DC microgrid publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2956515 – volume: 22 start-page: 2586 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0035 article-title: Distributed control and communication strategies in networked microgrids publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2020.3023963 – volume: 11 start-page: 2033 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0145 article-title: Distributed optimal control of energy storages in a DC microgrid with communication delay publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2946173 – volume: 58 start-page: 2465 year: 2011 ident: 10.1016/j.apenergy.2024.124905_bb0125 article-title: Gain-scheduling-based state feedback integral control for networked control systems publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2010.2066533 – volume: 54 start-page: 4998 year: 2024 ident: 10.1016/j.apenergy.2024.124905_bb0155 article-title: Data-driven distributed predictive control for voltage regulation and current sharing in DC microgrids with communication constraints publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2024.3372616 – volume: 11 start-page: 2918 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0095 article-title: Accurate consensus-based distributed averaging with variable time delay in support of distributed secondary control algorithms publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2975752 – volume: 37 start-page: 11244 year: 2022 ident: 10.1016/j.apenergy.2024.124905_bb0105 article-title: Accurate power sharing and voltage restoration in DC microgrids with heterogeneous communication time delays publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2022.3160483 – volume: 65 start-page: 5611 year: 2018 ident: 10.1016/j.apenergy.2024.124905_bb0025 article-title: Distributed cooperative control and stability analysis of multiple DC Electric Springs in a DC microgrid publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2779414 – volume: 35 start-page: 11250 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0165 article-title: Distributed tie-line power flow control of autonomous DC microgrid clusters publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2020.2980882 – year: 2014 ident: 10.1016/j.apenergy.2024.124905_bb0175 – volume: 34 start-page: 2205 year: 2019 ident: 10.1016/j.apenergy.2024.124905_bb0040 article-title: A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2878769 – volume: 31 start-page: 4876 year: 2016 ident: 10.1016/j.apenergy.2024.124905_bb0005 article-title: DC microgrids—part I: a review of control strategies and stabilization techniques publication-title: IEEE Trans Power Electron – volume: 11 start-page: 3716 year: 2020 ident: 10.1016/j.apenergy.2024.124905_bb0085 article-title: A novel secondary optimal control for multiple battery energy storages in a DC microgrid publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2979983 – volume: 31 start-page: 3257 year: 2016 ident: 10.1016/j.apenergy.2024.124905_bb0180 article-title: Small-signal stability analysis of large power systems with inclusion of multiple delays publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2472977 – volume: 129 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0065 article-title: A novel fully distributed fixed-time optimal dispatch of DC multi-microgrids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106792 – volume: 228 start-page: 189 year: 2018 ident: 10.1016/j.apenergy.2024.124905_bb0075 article-title: Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.026 – volume: 306 year: 2022 ident: 10.1016/j.apenergy.2024.124905_bb0120 article-title: Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118102 – volume: 29 start-page: 1562 year: 2014 ident: 10.1016/j.apenergy.2024.124905_bb0185 article-title: Introducing dynamic demand response in the LFC model publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2296696 – volume: 1 start-page: 65 year: 2015 ident: 10.1016/j.apenergy.2024.124905_bb0190 article-title: Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity publication-title: IEEE Trans Transp Electrification doi: 10.1109/TTE.2015.2427312 – volume: 39 start-page: 5036 year: 2024 ident: 10.1016/j.apenergy.2024.124905_bb0150 article-title: A data-driven method for online gain scheduling of distributed secondary controller in time-delayed microgrids publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2023.3323790 – volume: 155 year: 2024 ident: 10.1016/j.apenergy.2024.124905_bb0110 article-title: Accurate consensus-based distributed secondary control with tolerance of communication delays for DC microgrids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2023.109636 – volume: 31 start-page: 1717 year: 2016 ident: 10.1016/j.apenergy.2024.124905_bb0160 article-title: Distributed tertiary control of DC microgrid clusters publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2015.2424672 – volume: 68 start-page: 3202 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0115 article-title: Effect of communication delay on consensus-based secondary controllers in DC microgrid publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.2978719 – volume: 29 start-page: 922 year: 2014 ident: 10.1016/j.apenergy.2024.124905_bb0045 article-title: Hierarchical control for multiple DC-microgrids clusters publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2014.2362191 – volume: 12 start-page: 1880 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0015 article-title: A unified distributed cooperative control of DC microgrids using consensus protocol publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.3041378 – volume: 62 start-page: 2021 year: 2015 ident: 10.1016/j.apenergy.2024.124905_bb0130 article-title: Impact of communication delays on secondary frequency control in an islanded microgrid publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2367456 – volume: 12 start-page: 3425 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0170 article-title: Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3052303 – volume: 33 start-page: 6488 year: 2018 ident: 10.1016/j.apenergy.2024.124905_bb0030 article-title: MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2017.2761438 – volume: 37 start-page: 330 year: 2022 ident: 10.1016/j.apenergy.2024.124905_bb0135 article-title: Distributed weight-average-prediction control and stability analysis for an islanded microgrid with communication time delay publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2021.3092717 – volume: 14 start-page: 3114 year: 2023 ident: 10.1016/j.apenergy.2024.124905_bb0050 article-title: Cyber-resilient self-triggered distributed control of networked microgrids against multi-layer DoS attacks publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2022.3229486 – volume: 129 year: 2021 ident: 10.1016/j.apenergy.2024.124905_bb0070 article-title: Distributed layered control and stability analysis of islanded networked-microgrids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106889 – volume: 310 year: 2022 ident: 10.1016/j.apenergy.2024.124905_bb0080 article-title: False data injection cyber-attacks detection for multiple DC microgrid clusters publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118425 – volume: 30 start-page: 2288 year: 2015 ident: 10.1016/j.apenergy.2024.124905_bb0010 article-title: Distributed cooperative control of DC microgrids publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2014.2324579 – volume: 171 start-page: 284 year: 2019 ident: 10.1016/j.apenergy.2024.124905_bb0055 article-title: MAS-based distributed control method for multi-microgrids with high-penetration renewable energy publication-title: Energy doi: 10.1016/j.energy.2018.12.167 |
| SSID | ssj0002120 |
| Score | 2.468064 |
| Snippet | A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124905 |
| SubjectTerms | algorithms control methods DC microgrid cluster electric potential difference Hierarchical distributed control Mode switching Padé approximation Scattering transformation Time delay |
| Title | Delay-tolerant hierarchical distributed control for DC microgrid clusters considering microgrid autonomy |
| URI | https://dx.doi.org/10.1016/j.apenergy.2024.124905 https://www.proquest.com/docview/3154242155 |
| Volume | 378 |
| WOSCitedRecordID | wos001360102800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002120 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOCAbTxktG4jZlpLGd2MepLeIhTRwqUbhEbuyum0JStck0xD_P59hOsvEYO3CJIr-U5Pvle9jfA6HXiyXRIAhYoPSIBlRni0COhAgYUSCAwkSO2LIpNpGcnPD5XHwaDH74WJiLPCkKfnkp1v-V1NAGxDahs7cgd7soNMA9EB2uQHa4_hPhJzqX34OqzDWIoerQ1LpuTgvccYytcKVV66Ru_Awn48NvxjPvdHMGHXltsidszYimmKfZTei6ZV11gRA-f63TZXUTSdi5DFie9qUsTtcdCr-upD3ugXVXXfNnuxX7sYnBbplRbX37ZdnfnoiMJ2BgAzR9WFYYB8ZM67NcYsv2OKZp6l83sde_8nO7tXB-JNf2BcCgj-hRN-FqAu1rgq11N_SebOepXyc166R2nTtoJ0qY4EO0c_x-Ov_QCvLIZfX0b9ALMP_9E_1Jt7km5RvVZfYQPXA2Bz62WHmEBrrYRfd7mSh30d60C3iEoY7jbx-j1VU44T6ccA9O2MEJA5zwZIxbvGAPJ9yDU6_bw-kJmr2dzsbvAledI8gIZVWQcb3UKkyU0FRmo5AsYrmII82F5iGnlIF1r5kCDVERoRcslDKOFYEBCVOUkz00LMpC7yPMiUkpJUjGEkWjUEmhNFWSEuOwxTN1gJj_rGnmMtebAip5-nfCHqA37by1zd1y4wzhqZY6DdRqlikA8sa5rzyZU2DR5txNFrqstykBM8V4XjD29NZP9Azd6_6q52hYbWr9At3NLqqz7ealQ-xPSsS8PA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-tolerant+hierarchical+distributed+control+for+DC+microgrid+clusters+considering+microgrid+autonomy&rft.jtitle=Applied+energy&rft.au=Chen%2C+Yongpan&rft.au=Zhao%2C+Jinghan&rft.au=Wan%2C+Keting&rft.au=Yu%2C+Miao&rft.date=2025-01-15&rft.issn=0306-2619&rft.volume=378&rft.spage=124905&rft_id=info:doi/10.1016%2Fj.apenergy.2024.124905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_124905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |