Delay-tolerant hierarchical distributed control for DC microgrid clusters considering microgrid autonomy

A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distribut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 378; s. 124905
Hlavní autoři: Chen, Yongpan, Zhao, Jinghan, Wan, Keting, Yu, Miao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2025
Témata:
ISSN:0306-2619
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations •A novel hierarchical distributed control method for DC MGCs is proposed.•The proposed control allows MGs to join in cooperation or operate autonomously.•How to identify the key control link determining the time delay margin is studied.•The scattering transformation approach is introduced to improve system stability.•A new system model integrating node and edge variables is established for stability analysis.
AbstractList A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations
A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To fulfill the requirements of coordination between MGs while exerting the autonomy ability of each MG, this paper proposes a hierarchical distributed control method for DC MGCs with MG autonomous-cooperative mode switching. The proposed method can not only realize the proportional current sharing between the MGs and the voltage regulation of the common bus but also allow MGs to operate in autonomous or cooperative mode by establishing and disconnecting the inter-MG communication links. In addition, considering that the delay of inter-MG communication links affects multiple control links of the proposed control method, a delay-dependent stability analysis method based on Padé approximation and eigenvalue spectrum comparison is proposed. By stability analysis, the time delay margin (TDM) is determined, and the key link that determines the TDM is identified as the observer based on the proportional-integral (PI) consensus algorithm. On this basis, the scattering transformation (ST) is introduced to improve the stability of the observer under delay and thus enhance the TDM of DC MGCs, which is confirmed by stability analysis based on a new system model integrating node variables and edge variables. Finally, the performance of the proposed control method and stability analysis results are verified by hardware-in-loop (HIL) tests and MATLAB/Simulink simulations •A novel hierarchical distributed control method for DC MGCs is proposed.•The proposed control allows MGs to join in cooperation or operate autonomously.•How to identify the key control link determining the time delay margin is studied.•The scattering transformation approach is introduced to improve system stability.•A new system model integrating node and edge variables is established for stability analysis.
ArticleNumber 124905
Author Wan, Keting
Zhao, Jinghan
Yu, Miao
Chen, Yongpan
Author_xml – sequence: 1
  givenname: Yongpan
  surname: Chen
  fullname: Chen, Yongpan
  email: chenyongpan@zju.edu.cn
– sequence: 2
  givenname: Jinghan
  surname: Zhao
  fullname: Zhao, Jinghan
  email: zhaojinghan12@zju.edu.cn
– sequence: 3
  givenname: Keting
  surname: Wan
  fullname: Wan, Keting
  email: wkt@zju.edu.cn
– sequence: 4
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
  email: zjuyumiao@zju.edu.cn
BookMark eNqFkMtKAzEUhrOoYKu-gszSzdQkk6Qz4EJpvUHBTfchk5xpU9KkJhmhb--UKoibrv7Ff-Gcb4JGPnhA6JbgKcFE3G-nag8e4vowpZiyKaGswXyExrjCoqSCNJdoktIWY0wJxWO0WYBThzIHB1H5XGzsoFFvrFauMDblaNs-gyl08DkGV3QhFot5sbM6hnW0g-H6lCGmYyJZA9H69R9b9Tn4sDtco4tOuQQ3P3qFVi_Pq_lbufx4fZ8_LUtdMZ5LXUMHBs9MA0xpgqtWqFZQqBuocc0Yx1QAN5QRUzXQcqyUEKYaAjNuWF1dobvT7D6Gzx5SljubNDinPIQ-yYpwRhklnA_Rh1N0ODWlCJ3UNqtsj48q6yTB8shUbuUvU3lkKk9Mh7r4V99Hu1PxcL74eCrCgOFr4C2TtuA1GBtBZ2mCPTfxDTyunFE
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_125348
crossref_primary_10_1016_j_ecmx_2025_101243
Cites_doi 10.1109/TSTE.2021.3076483
10.1109/TPWRS.2022.3169821
10.1109/TEC.2019.2934905
10.1109/TSG.2022.3141395
10.1109/TSG.2019.2956515
10.1109/COMST.2020.3023963
10.1109/TSG.2019.2946173
10.1109/TIE.2010.2066533
10.1109/TCYB.2024.3372616
10.1109/TSG.2020.2975752
10.1109/TPEL.2022.3160483
10.1109/TIE.2017.2779414
10.1109/TPEL.2020.2980882
10.1109/TPWRS.2018.2878769
10.1109/TSG.2020.2979983
10.1109/TPWRS.2015.2472977
10.1016/j.ijepes.2021.106792
10.1016/j.apenergy.2018.06.026
10.1016/j.apenergy.2021.118102
10.1109/TPWRS.2013.2296696
10.1109/TTE.2015.2427312
10.1109/TPWRS.2023.3323790
10.1016/j.ijepes.2023.109636
10.1109/TPEL.2015.2424672
10.1109/TIE.2020.2978719
10.1109/TEC.2014.2362191
10.1109/TSG.2020.3041378
10.1109/TIE.2014.2367456
10.1109/TSG.2021.3052303
10.1109/TPEL.2017.2761438
10.1109/TPWRS.2021.3092717
10.1109/TSG.2022.3229486
10.1016/j.ijepes.2021.106889
10.1016/j.apenergy.2021.118425
10.1109/TPEL.2014.2324579
10.1016/j.energy.2018.12.167
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.124905
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2024_124905
S0306261924022888
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-c8efed07d9e4ac103b6ab62e89e808445026e5d241d39eb50aa66d32e875d483
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360102800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 09:29:14 EDT 2025
Sat Nov 29 06:10:04 EST 2025
Tue Nov 18 21:18:58 EST 2025
Sat Dec 14 16:15:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DC microgrid cluster
Mode switching
Scattering transformation
Hierarchical distributed control
Time delay
Padé approximation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-c8efed07d9e4ac103b6ab62e89e808445026e5d241d39eb50aa66d32e875d483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154242155
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154242155
crossref_citationtrail_10_1016_j_apenergy_2024_124905
crossref_primary_10_1016_j_apenergy_2024_124905
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_124905
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Moayedi, Davoudi (bb0160) 2016; 31
Gao, Zheng, Bozhko, Hill, Asher (bb0190) 2015; 1
Dragičević, Lu, Vasquez, Guerrero (bb0005) 2016; 31
Du, Lu, Tang (bb0100) 2022; 13
Li, Gao, Lin, Chen, Chen (bb0055) 2019; 171
Xu, Guo, Wang, Sun (bb0170) 2021; 12
Mudaliyar, Duggal, Mishra (bb0165) 2020; 35
Li, Dong, Liu, Yang (bb0040) 2019; 34
Dong, Gao, Xiao, Yu, Pekar, Jia (bb0075) 2018; 228
Fridman (bb0175) 2014
Ge, Chen, Teng (bb0050) 2023; 14
Shafiee, Dragicevic, Vasquez, Guerrero (bb0045) 2014; 29
Liu, Wang, Liu (bb0130) 2015; 62
Shi, Chen, Zhou, Chen, Wen, He (bb0145) 2020; 11
Yao, Wang, Xu, Deng, Wu (bb0135) 2022; 37
Li, Sun, Chow, Sun (bb0125) 2011; 58
Milano (bb0180) 2016; 31
Yao, Wang, Xu, Lin, Qi, Wu (bb0070) 2021; 129
Yao, Wang, Xu, Dong (bb0140) 2023; 38
Huang, Liu, Yu, Hu (bb0155) 2024; 54
Nasirian, Moayedi, Davoudi, Lewis (bb0010) 2015; 30
Xia, Xu, Wang, Yao, Mondal, Dasgupta (bb0150) 2024; 39
Shyam, Anand, Sahoo (bb0115) 2021; 68
Zhou, Shi, Chen, Chen, Wen, He (bb0085) 2020; 11
Xu, Guo, He, Jia, Sun (bb0120) 2022; 306
Nguyen, Lee (bb0105) 2022; 37
Sahoo, Mishra, Fazeli, Li, Dragicevic (bb0060) 2019; 34
Xing, Mishra, Guo, Lin, Yang, Ledwich (bb0020) 2020; 11
Chen, Shi, Sun, Li, He (bb0025) 2018; 65
Tan, Xie, Guerrero, Vasquez (bb0080) 2022; 310
Zhou, Shahidehpour, Paaso, Bahramirad, Alabdulwahab, Abusorrah (bb0035) 2020; 22
Zaery, Wang, Wang, Xu (bb0065) 2021; 129
Li, Zhang, Dragičević, Rodriguez (bb0015) 2021; 12
Pourmousavi, Nehrir (bb0185) 2014; 29
Du, Tu, Yu, Lukic (bb0095) 2020; 11
Yuan, Wang, Liu, Lei (bb0090) 2021; 12
Han, Zhang, Li, Coelho, Guerrero (bb0030) 2018; 33
Chen, Wan, Zhao, Yu (bb0110) 2024; 155
Xia (10.1016/j.apenergy.2024.124905_bb0150) 2024; 39
Fridman (10.1016/j.apenergy.2024.124905_bb0175) 2014
Mudaliyar (10.1016/j.apenergy.2024.124905_bb0165) 2020; 35
Tan (10.1016/j.apenergy.2024.124905_bb0080) 2022; 310
Yao (10.1016/j.apenergy.2024.124905_bb0135) 2022; 37
Yuan (10.1016/j.apenergy.2024.124905_bb0090) 2021; 12
Li (10.1016/j.apenergy.2024.124905_bb0040) 2019; 34
Gao (10.1016/j.apenergy.2024.124905_bb0190) 2015; 1
Li (10.1016/j.apenergy.2024.124905_bb0055) 2019; 171
Dragičević (10.1016/j.apenergy.2024.124905_bb0005) 2016; 31
Shyam (10.1016/j.apenergy.2024.124905_bb0115) 2021; 68
Zhou (10.1016/j.apenergy.2024.124905_bb0035) 2020; 22
Shafiee (10.1016/j.apenergy.2024.124905_bb0045) 2014; 29
Li (10.1016/j.apenergy.2024.124905_bb0015) 2021; 12
Xu (10.1016/j.apenergy.2024.124905_bb0120) 2022; 306
Nasirian (10.1016/j.apenergy.2024.124905_bb0010) 2015; 30
Huang (10.1016/j.apenergy.2024.124905_bb0155) 2024; 54
Li (10.1016/j.apenergy.2024.124905_bb0125) 2011; 58
Sahoo (10.1016/j.apenergy.2024.124905_bb0060) 2019; 34
Ge (10.1016/j.apenergy.2024.124905_bb0050) 2023; 14
Zhou (10.1016/j.apenergy.2024.124905_bb0085) 2020; 11
Shi (10.1016/j.apenergy.2024.124905_bb0145) 2020; 11
Han (10.1016/j.apenergy.2024.124905_bb0030) 2018; 33
Du (10.1016/j.apenergy.2024.124905_bb0095) 2020; 11
Du (10.1016/j.apenergy.2024.124905_bb0100) 2022; 13
Liu (10.1016/j.apenergy.2024.124905_bb0130) 2015; 62
Xu (10.1016/j.apenergy.2024.124905_bb0170) 2021; 12
Zaery (10.1016/j.apenergy.2024.124905_bb0065) 2021; 129
Yao (10.1016/j.apenergy.2024.124905_bb0070) 2021; 129
Yao (10.1016/j.apenergy.2024.124905_bb0140) 2023; 38
Dong (10.1016/j.apenergy.2024.124905_bb0075) 2018; 228
Chen (10.1016/j.apenergy.2024.124905_bb0025) 2018; 65
Nguyen (10.1016/j.apenergy.2024.124905_bb0105) 2022; 37
Chen (10.1016/j.apenergy.2024.124905_bb0110) 2024; 155
Xing (10.1016/j.apenergy.2024.124905_bb0020) 2020; 11
Pourmousavi (10.1016/j.apenergy.2024.124905_bb0185) 2014; 29
Moayedi (10.1016/j.apenergy.2024.124905_bb0160) 2016; 31
Milano (10.1016/j.apenergy.2024.124905_bb0180) 2016; 31
References_xml – volume: 14
  start-page: 3114
  year: 2023
  end-page: 3124
  ident: bb0050
  article-title: Cyber-resilient self-triggered distributed control of networked microgrids against multi-layer DoS attacks
  publication-title: IEEE Trans Smart Grid
– volume: 58
  start-page: 2465
  year: 2011
  end-page: 2472
  ident: bb0125
  article-title: Gain-scheduling-based state feedback integral control for networked control systems
  publication-title: IEEE Trans Ind Electron
– volume: 39
  start-page: 5036
  year: 2024
  end-page: 5049
  ident: bb0150
  article-title: A data-driven method for online gain scheduling of distributed secondary controller in time-delayed microgrids
  publication-title: IEEE Trans Power Syst
– volume: 62
  start-page: 2021
  year: 2015
  end-page: 2031
  ident: bb0130
  article-title: Impact of communication delays on secondary frequency control in an islanded microgrid
  publication-title: IEEE Trans Ind Electron
– volume: 306
  year: 2022
  ident: bb0120
  article-title: Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control
  publication-title: Appl Energy
– volume: 31
  start-page: 4876
  year: 2016
  end-page: 4891
  ident: bb0005
  article-title: DC microgrids—part I: a review of control strategies and stabilization techniques
  publication-title: IEEE Trans Power Electron
– volume: 35
  start-page: 11250
  year: 2020
  end-page: 11266
  ident: bb0165
  article-title: Distributed tie-line power flow control of autonomous DC microgrid clusters
  publication-title: IEEE Trans Power Electron
– volume: 22
  start-page: 2586
  year: 2020
  end-page: 2633
  ident: bb0035
  article-title: Distributed control and communication strategies in networked microgrids
  publication-title: IEEE Commun Surv Tutor
– volume: 171
  start-page: 284
  year: 2019
  end-page: 295
  ident: bb0055
  article-title: MAS-based distributed control method for multi-microgrids with high-penetration renewable energy
  publication-title: Energy
– volume: 34
  start-page: 2205
  year: 2019
  end-page: 2215
  ident: bb0040
  article-title: A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids
  publication-title: IEEE Trans Power Syst
– volume: 54
  start-page: 4998
  year: 2024
  end-page: 5011
  ident: bb0155
  article-title: Data-driven distributed predictive control for voltage regulation and current sharing in DC microgrids with communication constraints
  publication-title: IEEE Trans Cybern
– volume: 1
  start-page: 65
  year: 2015
  end-page: 76
  ident: bb0190
  article-title: Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity
  publication-title: IEEE Trans Transp Electrification
– volume: 37
  start-page: 11244
  year: 2022
  end-page: 11257
  ident: bb0105
  article-title: Accurate power sharing and voltage restoration in DC microgrids with heterogeneous communication time delays
  publication-title: IEEE Trans Power Electron
– volume: 11
  start-page: 2487
  year: 2020
  end-page: 2497
  ident: bb0020
  article-title: Distributed secondary control for current sharing and voltage restoration in DC microgrid
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 1880
  year: 2021
  end-page: 1892
  ident: bb0015
  article-title: A unified distributed cooperative control of DC microgrids using consensus protocol
  publication-title: IEEE Trans Smart Grid
– volume: 68
  start-page: 3202
  year: 2021
  end-page: 3212
  ident: bb0115
  article-title: Effect of communication delay on consensus-based secondary controllers in DC microgrid
  publication-title: IEEE Trans Ind Electron
– volume: 11
  start-page: 2918
  year: 2020
  end-page: 2928
  ident: bb0095
  article-title: Accurate consensus-based distributed averaging with variable time delay in support of distributed secondary control algorithms
  publication-title: IEEE Trans Smart Grid
– volume: 310
  year: 2022
  ident: bb0080
  article-title: False data injection cyber-attacks detection for multiple DC microgrid clusters
  publication-title: Appl Energy
– volume: 11
  start-page: 2033
  year: 2020
  end-page: 2042
  ident: bb0145
  article-title: Distributed optimal control of energy storages in a DC microgrid with communication delay
  publication-title: IEEE Trans Smart Grid
– volume: 129
  year: 2021
  ident: bb0070
  article-title: Distributed layered control and stability analysis of islanded networked-microgrids
  publication-title: Int J Electr Power Energy Syst
– volume: 11
  start-page: 3716
  year: 2020
  end-page: 3725
  ident: bb0085
  article-title: A novel secondary optimal control for multiple battery energy storages in a DC microgrid
  publication-title: IEEE Trans Smart Grid
– volume: 29
  start-page: 922
  year: 2014
  end-page: 933
  ident: bb0045
  article-title: Hierarchical control for multiple DC-microgrids clusters
  publication-title: IEEE Trans Energy Convers
– volume: 12
  start-page: 3425
  year: 2021
  end-page: 3437
  ident: bb0170
  article-title: Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis
  publication-title: IEEE Trans Smart Grid
– volume: 31
  start-page: 1717
  year: 2016
  end-page: 1733
  ident: bb0160
  article-title: Distributed tertiary control of DC microgrid clusters
  publication-title: IEEE Trans Power Electron
– volume: 228
  start-page: 189
  year: 2018
  end-page: 204
  ident: bb0075
  article-title: Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework
  publication-title: Appl Energy
– volume: 155
  year: 2024
  ident: bb0110
  article-title: Accurate consensus-based distributed secondary control with tolerance of communication delays for DC microgrids
  publication-title: Int J Electr Power Energy Syst
– volume: 34
  start-page: 1997
  year: 2019
  end-page: 2007
  ident: bb0060
  article-title: A distributed fixed-time secondary controller for DC microgrid clusters
  publication-title: IEEE Trans Energy Convers
– volume: 37
  start-page: 330
  year: 2022
  end-page: 342
  ident: bb0135
  article-title: Distributed weight-average-prediction control and stability analysis for an islanded microgrid with communication time delay
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 2008
  year: 2021
  end-page: 2018
  ident: bb0090
  article-title: Distributed fixed-time secondary control for DC microgrid via dynamic average consensus
  publication-title: IEEE Trans Sustain Energy
– volume: 29
  start-page: 1562
  year: 2014
  end-page: 1572
  ident: bb0185
  article-title: Introducing dynamic demand response in the LFC model
  publication-title: IEEE Trans Power Syst
– volume: 13
  start-page: 1709
  year: 2022
  end-page: 1719
  ident: bb0100
  article-title: Accurate distributed secondary control for DC microgrids considering communication delays: a surplus consensus-based approach
  publication-title: IEEE Trans Smart Grid
– volume: 30
  start-page: 2288
  year: 2015
  end-page: 2303
  ident: bb0010
  article-title: Distributed cooperative control of DC microgrids
  publication-title: IEEE Trans Power Electron
– volume: 65
  start-page: 5611
  year: 2018
  end-page: 5622
  ident: bb0025
  article-title: Distributed cooperative control and stability analysis of multiple DC Electric Springs in a DC microgrid
  publication-title: IEEE Trans Ind Electron
– year: 2014
  ident: bb0175
  article-title: Introduction to time-delay systems: Analysis and control
– volume: 38
  start-page: 921
  year: 2023
  end-page: 933
  ident: bb0140
  article-title: Small-signal stability analysis and Lead-lag compensation control for DC networked-microgrid under multiple time delays
  publication-title: IEEE Trans Power Syst
– volume: 129
  year: 2021
  ident: bb0065
  article-title: A novel fully distributed fixed-time optimal dispatch of DC multi-microgrids
  publication-title: Int J Electr Power Energy Syst
– volume: 33
  start-page: 6488
  year: 2018
  end-page: 6508
  ident: bb0030
  article-title: MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview
  publication-title: IEEE Trans Power Electron
– volume: 31
  start-page: 3257
  year: 2016
  end-page: 3266
  ident: bb0180
  article-title: Small-signal stability analysis of large power systems with inclusion of multiple delays
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 2008
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0090
  article-title: Distributed fixed-time secondary control for DC microgrid via dynamic average consensus
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2021.3076483
– volume: 38
  start-page: 921
  year: 2023
  ident: 10.1016/j.apenergy.2024.124905_bb0140
  article-title: Small-signal stability analysis and Lead-lag compensation control for DC networked-microgrid under multiple time delays
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2022.3169821
– volume: 34
  start-page: 1997
  year: 2019
  ident: 10.1016/j.apenergy.2024.124905_bb0060
  article-title: A distributed fixed-time secondary controller for DC microgrid clusters
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2019.2934905
– volume: 13
  start-page: 1709
  year: 2022
  ident: 10.1016/j.apenergy.2024.124905_bb0100
  article-title: Accurate distributed secondary control for DC microgrids considering communication delays: a surplus consensus-based approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2022.3141395
– volume: 11
  start-page: 2487
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0020
  article-title: Distributed secondary control for current sharing and voltage restoration in DC microgrid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2956515
– volume: 22
  start-page: 2586
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0035
  article-title: Distributed control and communication strategies in networked microgrids
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2020.3023963
– volume: 11
  start-page: 2033
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0145
  article-title: Distributed optimal control of energy storages in a DC microgrid with communication delay
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2946173
– volume: 58
  start-page: 2465
  year: 2011
  ident: 10.1016/j.apenergy.2024.124905_bb0125
  article-title: Gain-scheduling-based state feedback integral control for networked control systems
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2010.2066533
– volume: 54
  start-page: 4998
  year: 2024
  ident: 10.1016/j.apenergy.2024.124905_bb0155
  article-title: Data-driven distributed predictive control for voltage regulation and current sharing in DC microgrids with communication constraints
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2024.3372616
– volume: 11
  start-page: 2918
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0095
  article-title: Accurate consensus-based distributed averaging with variable time delay in support of distributed secondary control algorithms
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2975752
– volume: 37
  start-page: 11244
  year: 2022
  ident: 10.1016/j.apenergy.2024.124905_bb0105
  article-title: Accurate power sharing and voltage restoration in DC microgrids with heterogeneous communication time delays
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2022.3160483
– volume: 65
  start-page: 5611
  year: 2018
  ident: 10.1016/j.apenergy.2024.124905_bb0025
  article-title: Distributed cooperative control and stability analysis of multiple DC Electric Springs in a DC microgrid
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2779414
– volume: 35
  start-page: 11250
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0165
  article-title: Distributed tie-line power flow control of autonomous DC microgrid clusters
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2020.2980882
– year: 2014
  ident: 10.1016/j.apenergy.2024.124905_bb0175
– volume: 34
  start-page: 2205
  year: 2019
  ident: 10.1016/j.apenergy.2024.124905_bb0040
  article-title: A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2878769
– volume: 31
  start-page: 4876
  year: 2016
  ident: 10.1016/j.apenergy.2024.124905_bb0005
  article-title: DC microgrids—part I: a review of control strategies and stabilization techniques
  publication-title: IEEE Trans Power Electron
– volume: 11
  start-page: 3716
  year: 2020
  ident: 10.1016/j.apenergy.2024.124905_bb0085
  article-title: A novel secondary optimal control for multiple battery energy storages in a DC microgrid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2979983
– volume: 31
  start-page: 3257
  year: 2016
  ident: 10.1016/j.apenergy.2024.124905_bb0180
  article-title: Small-signal stability analysis of large power systems with inclusion of multiple delays
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2472977
– volume: 129
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0065
  article-title: A novel fully distributed fixed-time optimal dispatch of DC multi-microgrids
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106792
– volume: 228
  start-page: 189
  year: 2018
  ident: 10.1016/j.apenergy.2024.124905_bb0075
  article-title: Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.026
– volume: 306
  year: 2022
  ident: 10.1016/j.apenergy.2024.124905_bb0120
  article-title: Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118102
– volume: 29
  start-page: 1562
  year: 2014
  ident: 10.1016/j.apenergy.2024.124905_bb0185
  article-title: Introducing dynamic demand response in the LFC model
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2296696
– volume: 1
  start-page: 65
  year: 2015
  ident: 10.1016/j.apenergy.2024.124905_bb0190
  article-title: Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity
  publication-title: IEEE Trans Transp Electrification
  doi: 10.1109/TTE.2015.2427312
– volume: 39
  start-page: 5036
  year: 2024
  ident: 10.1016/j.apenergy.2024.124905_bb0150
  article-title: A data-driven method for online gain scheduling of distributed secondary controller in time-delayed microgrids
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2023.3323790
– volume: 155
  year: 2024
  ident: 10.1016/j.apenergy.2024.124905_bb0110
  article-title: Accurate consensus-based distributed secondary control with tolerance of communication delays for DC microgrids
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109636
– volume: 31
  start-page: 1717
  year: 2016
  ident: 10.1016/j.apenergy.2024.124905_bb0160
  article-title: Distributed tertiary control of DC microgrid clusters
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2015.2424672
– volume: 68
  start-page: 3202
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0115
  article-title: Effect of communication delay on consensus-based secondary controllers in DC microgrid
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2978719
– volume: 29
  start-page: 922
  year: 2014
  ident: 10.1016/j.apenergy.2024.124905_bb0045
  article-title: Hierarchical control for multiple DC-microgrids clusters
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2014.2362191
– volume: 12
  start-page: 1880
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0015
  article-title: A unified distributed cooperative control of DC microgrids using consensus protocol
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.3041378
– volume: 62
  start-page: 2021
  year: 2015
  ident: 10.1016/j.apenergy.2024.124905_bb0130
  article-title: Impact of communication delays on secondary frequency control in an islanded microgrid
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2367456
– volume: 12
  start-page: 3425
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0170
  article-title: Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3052303
– volume: 33
  start-page: 6488
  year: 2018
  ident: 10.1016/j.apenergy.2024.124905_bb0030
  article-title: MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2017.2761438
– volume: 37
  start-page: 330
  year: 2022
  ident: 10.1016/j.apenergy.2024.124905_bb0135
  article-title: Distributed weight-average-prediction control and stability analysis for an islanded microgrid with communication time delay
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2021.3092717
– volume: 14
  start-page: 3114
  year: 2023
  ident: 10.1016/j.apenergy.2024.124905_bb0050
  article-title: Cyber-resilient self-triggered distributed control of networked microgrids against multi-layer DoS attacks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2022.3229486
– volume: 129
  year: 2021
  ident: 10.1016/j.apenergy.2024.124905_bb0070
  article-title: Distributed layered control and stability analysis of islanded networked-microgrids
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106889
– volume: 310
  year: 2022
  ident: 10.1016/j.apenergy.2024.124905_bb0080
  article-title: False data injection cyber-attacks detection for multiple DC microgrid clusters
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118425
– volume: 30
  start-page: 2288
  year: 2015
  ident: 10.1016/j.apenergy.2024.124905_bb0010
  article-title: Distributed cooperative control of DC microgrids
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2014.2324579
– volume: 171
  start-page: 284
  year: 2019
  ident: 10.1016/j.apenergy.2024.124905_bb0055
  article-title: MAS-based distributed control method for multi-microgrids with high-penetration renewable energy
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.167
SSID ssj0002120
Score 2.468064
Snippet A microgrid cluster (MGC) is formed by interconnected geographically adjacent microgrids (MGs), which can effectively improve power supply reliability. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124905
SubjectTerms algorithms
control methods
DC microgrid cluster
electric potential difference
Hierarchical distributed control
Mode switching
Padé approximation
Scattering transformation
Time delay
Title Delay-tolerant hierarchical distributed control for DC microgrid clusters considering microgrid autonomy
URI https://dx.doi.org/10.1016/j.apenergy.2024.124905
https://www.proquest.com/docview/3154242155
Volume 378
WOSCitedRecordID wos001360102800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKxwEOCAbTxktG4jZlpLGd2MepLeIhTRwqUbhEbuyum0JStck0xD_P59hOsvEYO3CJIr-U5Pvle9jfA6HXiyXRIAhYoPSIBlRni0COhAgYUSCAwkSO2LIpNpGcnPD5XHwaDH74WJiLPCkKfnkp1v-V1NAGxDahs7cgd7soNMA9EB2uQHa4_hPhJzqX34OqzDWIoerQ1LpuTgvccYytcKVV66Ru_Awn48NvxjPvdHMGHXltsidszYimmKfZTei6ZV11gRA-f63TZXUTSdi5DFie9qUsTtcdCr-upD3ugXVXXfNnuxX7sYnBbplRbX37ZdnfnoiMJ2BgAzR9WFYYB8ZM67NcYsv2OKZp6l83sde_8nO7tXB-JNf2BcCgj-hRN-FqAu1rgq11N_SebOepXyc166R2nTtoJ0qY4EO0c_x-Ov_QCvLIZfX0b9ALMP_9E_1Jt7km5RvVZfYQPXA2Bz62WHmEBrrYRfd7mSh30d60C3iEoY7jbx-j1VU44T6ccA9O2MEJA5zwZIxbvGAPJ9yDU6_bw-kJmr2dzsbvAledI8gIZVWQcb3UKkyU0FRmo5AsYrmII82F5iGnlIF1r5kCDVERoRcslDKOFYEBCVOUkz00LMpC7yPMiUkpJUjGEkWjUEmhNFWSEuOwxTN1gJj_rGnmMtebAip5-nfCHqA37by1zd1y4wzhqZY6DdRqlikA8sa5rzyZU2DR5txNFrqstykBM8V4XjD29NZP9Azd6_6q52hYbWr9At3NLqqz7ealQ-xPSsS8PA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-tolerant+hierarchical+distributed+control+for+DC+microgrid+clusters+considering+microgrid+autonomy&rft.jtitle=Applied+energy&rft.au=Chen%2C+Yongpan&rft.au=Zhao%2C+Jinghan&rft.au=Wan%2C+Keting&rft.au=Yu%2C+Miao&rft.date=2025-01-15&rft.issn=0306-2619&rft.volume=378&rft.spage=124905&rft_id=info:doi/10.1016%2Fj.apenergy.2024.124905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_124905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon