Heterogeneous Face Recognition Using Kernel Prototype Similarities
Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery datab...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 35; číslo 6; s. 1410 - 1422 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.06.2013
IEEE Computer Society |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph. |
|---|---|
| AbstractList | Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph. Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph. |
| Author | Jain, Anil K. Klare, Brendan F. |
| Author_xml | – sequence: 1 givenname: Brendan F. surname: Klare fullname: Klare, Brendan F. organization: Noblis, Falls Church – sequence: 2 givenname: Anil K. surname: Jain fullname: Jain, Anil K. organization: Michigan State University, East Lansing and Korea University, Seoul |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27369006$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23599055$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctLAzEQxoMoWh9XL4LsRfDSOkl2081RRW1RUbQ9hzQ7KZHtpibbg_-96UtB8DJzmN83r--Q7Da-QUJOKfQoBXk1er1-HvYYUNZjTO6QDqMCupJJtks6QAXrliUrD8hhjB8ANC-A75MDxgspoSg65GaALQY_xQb9Imb32mD2hsZPG9c632Tj6Jpp9oihwTp7Db717dccs3c3c7UOicF4TPasriOebPIRGd_fjW4H3aeXh-Ht9VPX8LxoU9TlxBR0wkQurDE5Qt-CsJWuRCpY4GXFSyFoVdmULFbaGsuNBJScTQQ_IpfrvvPgPxcYWzVz0WBd69XuinKePgK0zxJ6vkEXkxlWah7cTIcvtb07ARcbQEejaxt0Y1z85fpcSIDlzHzNmeBjDGiVca1efqYN2tWKglraoFY2qKUNKtmQZL0_sm3nfwVna4FDxB9YcA5S9Pk3teySIQ |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1007_s10489_019_01545_x crossref_primary_10_1080_02533839_2016_1259020 crossref_primary_10_1145_3607143 crossref_primary_10_1016_j_imavis_2023_104858 crossref_primary_10_1109_LSP_2019_2963001 crossref_primary_10_1109_TSMC_2017_2724761 crossref_primary_10_1016_j_knosys_2018_02_008 crossref_primary_10_1049_iet_cvi_2014_0084 crossref_primary_10_1016_j_sigpro_2018_10_015 crossref_primary_10_1109_TPAMI_2021_3052549 crossref_primary_10_1016_j_patcog_2019_01_041 crossref_primary_10_1016_j_knosys_2016_05_058 crossref_primary_10_1109_TIFS_2015_2390414 crossref_primary_10_1109_TPAMI_2023_3332875 crossref_primary_10_1016_j_cosrev_2016_05_003 crossref_primary_10_1049_iet_ipr_2019_0199 crossref_primary_10_1177_1550147719845276 crossref_primary_10_1007_s11263_019_01175_3 crossref_primary_10_1016_j_imavis_2018_01_004 crossref_primary_10_1016_j_neucom_2016_05_094 crossref_primary_10_1109_TPAMI_2017_2679002 crossref_primary_10_1016_j_imavis_2016_03_019 crossref_primary_10_1016_j_neucom_2014_11_004 crossref_primary_10_1016_j_ins_2016_04_021 crossref_primary_10_1109_TCYB_2014_2361770 crossref_primary_10_1007_s11042_020_08628_9 crossref_primary_10_1109_ACCESS_2022_3188796 crossref_primary_10_1016_j_patrec_2017_09_029 crossref_primary_10_1049_iet_ipr_2016_0058 crossref_primary_10_1007_s11045_016_0401_8 crossref_primary_10_1016_j_inffus_2015_09_005 crossref_primary_10_1016_j_patrec_2019_03_028 crossref_primary_10_1109_TCSVT_2023_3255999 crossref_primary_10_1109_TIFS_2020_3013186 crossref_primary_10_1016_j_patcog_2016_01_023 crossref_primary_10_1016_j_patcog_2016_08_032 crossref_primary_10_1007_s11042_016_3635_4 crossref_primary_10_1007_s00371_020_01976_5 crossref_primary_10_1109_TIFS_2016_2530043 crossref_primary_10_3390_s21248178 crossref_primary_10_3390_s24092785 crossref_primary_10_1007_s11270_016_3011_z crossref_primary_10_1109_TIFS_2022_3177960 crossref_primary_10_1007_s00521_023_08801_9 crossref_primary_10_1016_j_patcog_2014_06_004 crossref_primary_10_3390_s25134076 crossref_primary_10_1016_j_inffus_2016_04_003 crossref_primary_10_1109_ACCESS_2019_2939071 crossref_primary_10_1109_LSP_2017_2749266 crossref_primary_10_1109_TIFS_2020_3005314 crossref_primary_10_1016_j_jvcir_2017_12_010 crossref_primary_10_1049_ipr2_12350 crossref_primary_10_1007_s12652_017_0576_3 crossref_primary_10_1109_TIP_2014_2315920 crossref_primary_10_1016_j_ins_2017_10_042 crossref_primary_10_1007_s11220_020_00325_z crossref_primary_10_1109_TMM_2016_2646180 crossref_primary_10_1109_TIP_2015_2409988 crossref_primary_10_1109_TIP_2019_2912360 crossref_primary_10_1109_TNNLS_2015_2464681 crossref_primary_10_1109_TMM_2019_2938685 crossref_primary_10_1016_j_engappai_2016_11_004 crossref_primary_10_1109_ACCESS_2019_2897599 crossref_primary_10_1109_TPAMI_2018_2842770 crossref_primary_10_1016_j_imavis_2021_104245 crossref_primary_10_1016_j_ins_2021_10_059 crossref_primary_10_1016_j_cviu_2019_04_003 crossref_primary_10_1109_ACCESS_2020_3037451 crossref_primary_10_1016_j_robot_2015_09_002 crossref_primary_10_1371_journal_pone_0308566 crossref_primary_10_1109_TIFS_2020_3013209 crossref_primary_10_1109_TIFS_2017_2788002 crossref_primary_10_1109_LSENS_2021_3066399 crossref_primary_10_1109_TIFS_2018_2868173 crossref_primary_10_1007_s11042_017_4579_z crossref_primary_10_1109_TIFS_2016_2601060 crossref_primary_10_1007_s11263_016_0933_2 crossref_primary_10_1016_j_patcog_2020_107632 crossref_primary_10_1016_j_patrec_2021_01_028 crossref_primary_10_1007_s00521_019_04242_5 crossref_primary_10_1109_TNNLS_2018_2872675 crossref_primary_10_3233_JIFS_169646 crossref_primary_10_1016_j_imavis_2019_103861 crossref_primary_10_1016_j_neucom_2015_11_137 crossref_primary_10_1016_j_patcog_2021_107815 crossref_primary_10_3390_fi17080371 crossref_primary_10_1109_TIFS_2014_2360825 crossref_primary_10_9717_kmms_2016_19_5_848 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1109_TCSVT_2021_3081514 crossref_primary_10_1109_TIP_2019_2928126 crossref_primary_10_1007_s11042_018_6542_z crossref_primary_10_1016_j_patrec_2015_06_021 crossref_primary_10_1109_TIP_2022_3226413 crossref_primary_10_1109_ACCESS_2020_2980047 crossref_primary_10_1145_2807705 crossref_primary_10_1109_TCSVT_2021_3105411 crossref_primary_10_1109_TIP_2016_2570571 crossref_primary_10_1109_TPAMI_2016_2542816 crossref_primary_10_1016_j_imavis_2016_04_013 crossref_primary_10_1016_j_neucom_2016_02_083 crossref_primary_10_1016_j_neucom_2018_03_042 crossref_primary_10_1016_j_neucom_2024_128626 crossref_primary_10_1109_TIP_2019_2894272 crossref_primary_10_1109_TPAMI_2019_2961900 crossref_primary_10_1016_j_imavis_2016_09_001 crossref_primary_10_1109_TIFS_2018_2885284 crossref_primary_10_1109_TIFS_2022_3217738 crossref_primary_10_1038_s41598_018_22207_x crossref_primary_10_3390_s22239500 crossref_primary_10_1109_ACCESS_2017_2712159 crossref_primary_10_1016_j_patcog_2014_05_004 crossref_primary_10_1007_s11063_019_10100_1 crossref_primary_10_1007_s11045_023_00871_1 crossref_primary_10_1016_j_patrec_2015_10_018 crossref_primary_10_1007_s11263_021_01432_4 crossref_primary_10_1007_s11042_020_09246_1 crossref_primary_10_1109_ACCESS_2020_3009744 crossref_primary_10_1109_TIFS_2021_3122072 crossref_primary_10_1016_j_eswa_2019_112990 crossref_primary_10_1109_TCYB_2017_2715660 crossref_primary_10_1109_TNNLS_2021_3071119 crossref_primary_10_1016_j_patcog_2020_107579 crossref_primary_10_1016_j_neucom_2014_09_009 crossref_primary_10_1109_TPAMI_2022_3227180 crossref_primary_10_1109_TCYB_2018_2876591 crossref_primary_10_1109_TNNLS_2016_2517014 crossref_primary_10_1051_matecconf_202133606007 crossref_primary_10_1109_TIFS_2022_3160612 crossref_primary_10_1109_TMM_2020_2980201 crossref_primary_10_1016_j_imavis_2016_08_012 crossref_primary_10_1109_JSEN_2020_2986098 crossref_primary_10_1109_TIP_2017_2651380 crossref_primary_10_1109_TCYB_2018_2874219 crossref_primary_10_1109_TIP_2015_2462023 crossref_primary_10_1109_TPAMI_2018_2884458 crossref_primary_10_1007_s10044_023_01139_x crossref_primary_10_1002_int_22690 crossref_primary_10_1109_TCSVT_2017_2657328 crossref_primary_10_1007_s00521_018_3475_4 crossref_primary_10_1016_j_patcog_2016_12_029 crossref_primary_10_3390_s17040873 crossref_primary_10_1007_s00138_017_0855_1 crossref_primary_10_1109_TIFS_2020_3015552 crossref_primary_10_1007_s10462_022_10240_2 crossref_primary_10_1109_ACCESS_2019_2920855 crossref_primary_10_1109_TIFS_2023_3327666 crossref_primary_10_1007_s13735_018_0160_4 crossref_primary_10_1016_j_jvcir_2019_102660 crossref_primary_10_3390_s21072322 crossref_primary_10_1007_s11042_015_2650_1 crossref_primary_10_1016_j_asoc_2015_12_006 crossref_primary_10_1109_TIP_2020_3016502 crossref_primary_10_1016_j_sigpro_2015_08_013 crossref_primary_10_1109_TIP_2017_2651375 crossref_primary_10_1109_TNNLS_2021_3105143 crossref_primary_10_1016_j_patcog_2018_07_014 crossref_primary_10_1016_j_eswa_2014_11_054 crossref_primary_10_1016_j_imavis_2025_105424 crossref_primary_10_1109_ACCESS_2018_2855208 crossref_primary_10_1109_TNNLS_2019_2957285 |
| Cites_doi | 10.1109/TPAMI.2007.1014 10.1109/34.598228 10.1007/s11263-006-8098-z 10.1109/ICIP.2008.4711792 10.1007/s10994-006-7550-1 10.1109/TPAMI.2002.1017623 10.1109/TIP.2010.2042645 10.1109/CVPR.2011.5995324 10.1023/B:VISI.0000029664.99615.94 10.1016/S0031-3203(00)00162-X 10.1109/TCSVT.2003.818352 10.1109/CVPR.1997.609311 10.1007/3-540-45014-9_1 10.1109/34.75512 10.1007/BF00058655 10.1109/TIP.2002.999679 10.1109/TPAMI.2006.244 10.1109/BTAS.2010.5634533 10.1109/TNN.2002.806629 10.1109/CVPR.2008.4587637 10.1117/12.849821 10.1109/TPAMI.2010.180 10.1109/TPAMI.2008.222 10.1016/j.patrec.2004.09.014 10.1007/978-3-642-01793-3_75 10.1109/BTAS.2010.5634507 10.1109/TCSVT.2008.918770 10.1109/TIFS.2011.2172429 10.1109/97.991133 10.1109/34.709601 10.1007/978-0-387-73003-5 10.1007/s11263-007-0058-8 10.1109/ICPR.2010.374 10.1109/TCSVT.2003.818353 10.1007/978-3-642-01793-3_22 10.1038/14819 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TPAMI.2012.229 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Mathematics Applied Sciences Statistics |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1422 |
| ExternalDocumentID | 23599055 27369006 10_1109_TPAMI_2012_229 6330967 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c345t-c3a8bc51b2646fcc4e07f06fdad68bcf038d38661ddf866fedafcf3c90e932b63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317857900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Mon Sep 29 06:20:11 EDT 2025 Mon Jul 21 06:04:28 EDT 2025 Wed Apr 02 07:49:43 EDT 2025 Sat Nov 29 05:15:55 EST 2025 Tue Nov 18 21:42:10 EST 2025 Tue Aug 26 16:41:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Prototype Random sampling Similarity Sample size Image processing prototypes local descriptors Vector space Image matching Near infrared spectrum Imaging Facies forensic sketch random subspaces Database Monitoring Infrared thermography Computer vision Discriminant analysis Probabilistic approach Forensic science Face recognition Image retrieval infrared image Computational geometry Surveillance thermal image Heterogeneous face recognition Thermal imaging nonlinear similarity |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-c3a8bc51b2646fcc4e07f06fdad68bcf038d38661ddf866fedafcf3c90e932b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23599055 |
| PQID | 1331090172 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_6330967 proquest_miscellaneous_1331090172 crossref_primary_10_1109_TPAMI_2012_229 crossref_citationtrail_10_1109_TPAMI_2012_229 pascalfrancis_primary_27369006 pubmed_primary_23599055 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-01 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2013 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref35 ref13 ref36 ref14 klare (ref25) 2010 ref31 yi (ref15) 2009 ref30 ref33 ref11 gibson (ref45) 2008 ref32 ref10 lin (ref18) 2006 wang (ref34) 2004 ref1 ref17 ref38 ref16 ref19 martinez (ref43) 1998 riesenhuber (ref26) 1999; 2 lei (ref12) 2009 ref24 ref23 gao (ref6) 2008; 18 ref47 ref20 ref42 ref22 (ref28) 2012 liu (ref4) 2005 messer (ref44) 1999 taylor (ref46) 2001 ref27 zhang (ref7) 2010 ref29 ho (ref39) 1998; 20 kim (ref21) 2002; 9 grother (ref2) 2010; 7709 jie (ref37) 2001; 34 ref9 ref3 ref5 ref40 liao (ref8) 2009 dietterich (ref41) 2000; 1857 |
| References_xml | – ident: ref32 doi: 10.1109/TPAMI.2007.1014 – year: 2010 ident: ref7 article-title: Lighting and Pose Robust Face Sketch Synthesis publication-title: Proc European Conf Computer Vision – year: 1999 ident: ref44 article-title: XM2VTSDB: The Extended M2VTS Database publication-title: Proc Audio and Video-Based Biometric Person Authentication – ident: ref33 doi: 10.1109/34.598228 – ident: ref42 doi: 10.1007/s11263-006-8098-z – year: 2001 ident: ref46 publication-title: Forensic Art and Illustration – ident: ref17 doi: 10.1109/ICIP.2008.4711792 – ident: ref19 doi: 10.1007/s10994-006-7550-1 – ident: ref13 doi: 10.1109/TPAMI.2002.1017623 – start-page: 1123 year: 2009 ident: ref12 article-title: Coupled Spectral Regression for Matching Heterogeneous Faces publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref29 doi: 10.1109/TIP.2010.2042645 – year: 1998 ident: ref43 article-title: The AR Face Database publication-title: Technical Report 24 CVC – ident: ref16 doi: 10.1109/CVPR.2011.5995324 – ident: ref14 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 34 start-page: 2067 year: 2001 ident: ref37 article-title: A Direct LDA Algorithm for High-Dimensional Data-with Application to Face Recognition publication-title: Pattern Recognition doi: 10.1016/S0031-3203(00)00162-X – ident: ref22 doi: 10.1109/TCSVT.2003.818352 – ident: ref47 doi: 10.1109/CVPR.1997.609311 – volume: 1857 start-page: 1 year: 2000 ident: ref41 article-title: Ensemble Methods in Machine Learning publication-title: Multiple Classifier Systems doi: 10.1007/3-540-45014-9_1 – year: 2006 ident: ref18 article-title: Inter-Modality Face Recognition publication-title: Proc European Conf Computer Vision – year: 2008 ident: ref45 publication-title: Forensic Art Essentials – ident: ref36 doi: 10.1109/34.75512 – year: 2004 ident: ref34 article-title: Dual-Space Linear Discriminant Analysis for Face Recognition publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref40 doi: 10.1007/BF00058655 – year: 2012 ident: ref28 publication-title: FaceVACS Software Developer Kit Cognitec Systems GmbH – ident: ref35 doi: 10.1109/TIP.2002.999679 – ident: ref31 doi: 10.1109/TPAMI.2006.244 – ident: ref27 doi: 10.1109/BTAS.2010.5634533 – ident: ref23 doi: 10.1109/TNN.2002.806629 – ident: ref20 doi: 10.1109/CVPR.2008.4587637 – year: 2010 ident: ref25 article-title: Sketch to Photo Matching: A Feature-Based Approach publication-title: Proc SPIE Conf Biometric Technology for Human Identification doi: 10.1117/12.849821 – ident: ref9 doi: 10.1109/TPAMI.2010.180 – ident: ref5 doi: 10.1109/TPAMI.2008.222 – ident: ref38 doi: 10.1016/j.patrec.2004.09.014 – start-page: 733 year: 2009 ident: ref15 article-title: Partial Face Matching between Near Infrared and Visual Images in MBGC Portal Challenge publication-title: Proc Third Int'l Conf Advances in Biometrics doi: 10.1007/978-3-642-01793-3_75 – ident: ref11 doi: 10.1109/BTAS.2010.5634507 – volume: 18 start-page: 487 year: 2008 ident: ref6 article-title: Face Sketch Synthesis Algorithm Based on E-HMM and Selective Ensemble publication-title: IEEE Trans Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2008.918770 – volume: 7709 year: 2010 ident: ref2 article-title: MBE 2010: Report on the Evaluation of 2D Still-Image Face Recognition Algorithms publication-title: Nat'l Inst of Standards and Technology – ident: ref24 doi: 10.1109/TIFS.2011.2172429 – volume: 9 start-page: 40 year: 2002 ident: ref21 article-title: Face Recognition Using Kernel Principal Component Analysis publication-title: IEEE Signal Processing Letters doi: 10.1109/97.991133 – volume: 20 start-page: 832 year: 1998 ident: ref39 article-title: The Random Subspace Method for Constructing Decision Forests publication-title: IEEE Trans Pattern Analysis and Machine Intelligence doi: 10.1109/34.709601 – ident: ref1 doi: 10.1007/978-0-387-73003-5 – ident: ref30 doi: 10.1007/s11263-007-0058-8 – start-page: 1005 year: 2005 ident: ref4 article-title: A Nonlinear Approach for Face Sketch Synthesis and Recognition publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref10 doi: 10.1109/ICPR.2010.374 – ident: ref3 doi: 10.1109/TCSVT.2003.818353 – year: 2009 ident: ref8 article-title: Heterogeneous Face Recognition from Local Structures of Normalized Appearance publication-title: Proc Third Int'l Conf Advances in Biometrics doi: 10.1007/978-3-642-01793-3_22 – volume: 2 start-page: 1019 year: 1999 ident: ref26 article-title: Hierarchical Models of Object Recognition in Cortex publication-title: Nature Neuroscience doi: 10.1038/14819 |
| SSID | ssj0014503 |
| Score | 2.5725822 |
| Snippet | Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1410 |
| SubjectTerms | Applied sciences Artificial intelligence Biometric Identification - methods Computer science; control theory; systems Data processing. List processing. Character string processing discriminant analysis Exact sciences and technology Face Face recognition forensic sketch Forensics Heterogeneous face recognition Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods infrared image Kernel local descriptors Mathematics Memory organisation. Data processing nonlinear similarity Pattern recognition. Digital image processing. Computational geometry Probability and statistics Probes Prototypes random subspaces Sampling theory, sample surveys Sciences and techniques of general use Software Statistics thermal image Training |
| Title | Heterogeneous Face Recognition Using Kernel Prototype Similarities |
| URI | https://ieeexplore.ieee.org/document/6330967 https://www.ncbi.nlm.nih.gov/pubmed/23599055 https://www.proquest.com/docview/1331090172 |
| Volume | 35 |
| WOSCitedRecordID | wos000317857900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oeNCDy7jVZYggeLHaabokRxWHERcGN-ZW0iwwoK3M4u_3Je1UBT14aQtJaXlL8n3Jy3sAR5yJNIyS2OeRUr4lEL4ItPARi_M8ZCJnrsbSy216f88GA96fg5PmLIzW2gWf6VP76PbyVSmndqnsLEHyzZN0HubTNK3OajU7BlHsqiAjgkEPRxpRJ2jsBPzsqX9-d22juMLTMLRpQkMa4yBsT_d9m4tccRUbGinGKB1TlbX4G3e6-ae7-r8_X4OVGmeS88ow1mFOFy1YndVwILVLt2D5W0LCDbjo2eiYEo1Kl9Mx6QqpycMsxKgsiAswIDd6VOhX0h-Vk9Iu4ZLH4dsQGbJLzroJz92rp8ueX1dZ8CWN4gleBctl3MkRGiVGykgHqQkSo4RKsMEElCnKcBpXyuDNaCWMNFTyQCP2yxO6BQtFWegdIIZ2opwh0Q0VskyKrp8jG6PS4JdormIP_Jm8M1mnILeVMF4zR0UCnjlVZVZVGarKg-Om_3uVfOPPnhtW6E2vWt4etH-os2lH0JZwHHA8OJzpN0O_spslwkk4Q-5uY1YR33mwXSn-6-3afnZ__-oeLIVV0Qw_6OzDwmQ01QewKD8mw_GojcY7YG1nvJ8AOemY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD7iMonxsI7LILCBkZD2skBiJ2n8CBNVEaWqRpn6Fjm-SJUgQW3K7-fYSTOQxgMvSSQ7SnQu9vns4_MBnPJUdGmUxD6PlPItgPBFoIWPsTjPaSry1HEs_R10h8N0MuGjFfjVnoXRWrvkM31mH91evirlwi6VnScIvnnSXYX1OIpoWJ_WavcMotjxIGMMgz6OQKIp0RgG_Hw8uri9tnlc9IxSWyiUshiHYXu-79Vs5OhVbHKkmKN8TE1s8X7k6WagXudj__4VvjSRJrmoTWMLVnSxDZ0liwNpnHobNl-VJNyBy77NjynRrHS5mJOekJr8WSYZlQVxKQbkRs8K_UBGs7Iq7SIuuZs-ThEju_Ksu3Dfuxr_7vsNz4IvWRRXeBVpLuMwx-AoMVJGOuiaIDFKqAQbTMBSxVKcyJUyeDNaCSMNkzzQGP3lCfsGa0VZ6H0ghoVRniLUpQpxJkPnzxGPMWnwSyxXsQf-Ut6ZbIqQWy6Mh8yBkYBnTlWZVVWGqvLgZ9v_qS6_8W7PHSv0tlcjbw-O3qizbcewLeE45HhwstRvhp5lt0uEk3CG6N1mrWKE58Ferfh_bzf2c_D_rx7DRn98O8gG18ObQ_hMawoNPwi_w1o1W-gf8Ek-V9P57MiZ8AvIv-v3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Face+Recognition+Using+Kernel+Prototype+Similarities&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Klare%2C+Brendan+F.&rft.au=Jain%2C+Anil+K.&rft.date=2013-06-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=35&rft.issue=6&rft.spage=1410&rft.epage=1422&rft_id=info:doi/10.1109%2FTPAMI.2012.229&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2012_229 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |