Heterogeneous Face Recognition Using Kernel Prototype Similarities

Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery datab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 35; číslo 6; s. 1410 - 1422
Hlavní autoři: Klare, Brendan F., Jain, Anil K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.06.2013
IEEE Computer Society
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.
AbstractList Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.
Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.
Author Jain, Anil K.
Klare, Brendan F.
Author_xml – sequence: 1
  givenname: Brendan F.
  surname: Klare
  fullname: Klare, Brendan F.
  organization: Noblis, Falls Church
– sequence: 2
  givenname: Anil K.
  surname: Jain
  fullname: Jain, Anil K.
  organization: Michigan State University, East Lansing and Korea University, Seoul
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27369006$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23599055$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLAzEQxoMoWh9XL4LsRfDSOkl2081RRW1RUbQ9hzQ7KZHtpibbg_-96UtB8DJzmN83r--Q7Da-QUJOKfQoBXk1er1-HvYYUNZjTO6QDqMCupJJtks6QAXrliUrD8hhjB8ANC-A75MDxgspoSg65GaALQY_xQb9Imb32mD2hsZPG9c632Tj6Jpp9oihwTp7Db717dccs3c3c7UOicF4TPasriOebPIRGd_fjW4H3aeXh-Ht9VPX8LxoU9TlxBR0wkQurDE5Qt-CsJWuRCpY4GXFSyFoVdmULFbaGsuNBJScTQQ_IpfrvvPgPxcYWzVz0WBd69XuinKePgK0zxJ6vkEXkxlWah7cTIcvtb07ARcbQEejaxt0Y1z85fpcSIDlzHzNmeBjDGiVca1efqYN2tWKglraoFY2qKUNKtmQZL0_sm3nfwVna4FDxB9YcA5S9Pk3teySIQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s10489_019_01545_x
crossref_primary_10_1080_02533839_2016_1259020
crossref_primary_10_1145_3607143
crossref_primary_10_1016_j_imavis_2023_104858
crossref_primary_10_1109_LSP_2019_2963001
crossref_primary_10_1109_TSMC_2017_2724761
crossref_primary_10_1016_j_knosys_2018_02_008
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1016_j_sigpro_2018_10_015
crossref_primary_10_1109_TPAMI_2021_3052549
crossref_primary_10_1016_j_patcog_2019_01_041
crossref_primary_10_1016_j_knosys_2016_05_058
crossref_primary_10_1109_TIFS_2015_2390414
crossref_primary_10_1109_TPAMI_2023_3332875
crossref_primary_10_1016_j_cosrev_2016_05_003
crossref_primary_10_1049_iet_ipr_2019_0199
crossref_primary_10_1177_1550147719845276
crossref_primary_10_1007_s11263_019_01175_3
crossref_primary_10_1016_j_imavis_2018_01_004
crossref_primary_10_1016_j_neucom_2016_05_094
crossref_primary_10_1109_TPAMI_2017_2679002
crossref_primary_10_1016_j_imavis_2016_03_019
crossref_primary_10_1016_j_neucom_2014_11_004
crossref_primary_10_1016_j_ins_2016_04_021
crossref_primary_10_1109_TCYB_2014_2361770
crossref_primary_10_1007_s11042_020_08628_9
crossref_primary_10_1109_ACCESS_2022_3188796
crossref_primary_10_1016_j_patrec_2017_09_029
crossref_primary_10_1049_iet_ipr_2016_0058
crossref_primary_10_1007_s11045_016_0401_8
crossref_primary_10_1016_j_inffus_2015_09_005
crossref_primary_10_1016_j_patrec_2019_03_028
crossref_primary_10_1109_TCSVT_2023_3255999
crossref_primary_10_1109_TIFS_2020_3013186
crossref_primary_10_1016_j_patcog_2016_01_023
crossref_primary_10_1016_j_patcog_2016_08_032
crossref_primary_10_1007_s11042_016_3635_4
crossref_primary_10_1007_s00371_020_01976_5
crossref_primary_10_1109_TIFS_2016_2530043
crossref_primary_10_3390_s21248178
crossref_primary_10_3390_s24092785
crossref_primary_10_1007_s11270_016_3011_z
crossref_primary_10_1109_TIFS_2022_3177960
crossref_primary_10_1007_s00521_023_08801_9
crossref_primary_10_1016_j_patcog_2014_06_004
crossref_primary_10_3390_s25134076
crossref_primary_10_1016_j_inffus_2016_04_003
crossref_primary_10_1109_ACCESS_2019_2939071
crossref_primary_10_1109_LSP_2017_2749266
crossref_primary_10_1109_TIFS_2020_3005314
crossref_primary_10_1016_j_jvcir_2017_12_010
crossref_primary_10_1049_ipr2_12350
crossref_primary_10_1007_s12652_017_0576_3
crossref_primary_10_1109_TIP_2014_2315920
crossref_primary_10_1016_j_ins_2017_10_042
crossref_primary_10_1007_s11220_020_00325_z
crossref_primary_10_1109_TMM_2016_2646180
crossref_primary_10_1109_TIP_2015_2409988
crossref_primary_10_1109_TIP_2019_2912360
crossref_primary_10_1109_TNNLS_2015_2464681
crossref_primary_10_1109_TMM_2019_2938685
crossref_primary_10_1016_j_engappai_2016_11_004
crossref_primary_10_1109_ACCESS_2019_2897599
crossref_primary_10_1109_TPAMI_2018_2842770
crossref_primary_10_1016_j_imavis_2021_104245
crossref_primary_10_1016_j_ins_2021_10_059
crossref_primary_10_1016_j_cviu_2019_04_003
crossref_primary_10_1109_ACCESS_2020_3037451
crossref_primary_10_1016_j_robot_2015_09_002
crossref_primary_10_1371_journal_pone_0308566
crossref_primary_10_1109_TIFS_2020_3013209
crossref_primary_10_1109_TIFS_2017_2788002
crossref_primary_10_1109_LSENS_2021_3066399
crossref_primary_10_1109_TIFS_2018_2868173
crossref_primary_10_1007_s11042_017_4579_z
crossref_primary_10_1109_TIFS_2016_2601060
crossref_primary_10_1007_s11263_016_0933_2
crossref_primary_10_1016_j_patcog_2020_107632
crossref_primary_10_1016_j_patrec_2021_01_028
crossref_primary_10_1007_s00521_019_04242_5
crossref_primary_10_1109_TNNLS_2018_2872675
crossref_primary_10_3233_JIFS_169646
crossref_primary_10_1016_j_imavis_2019_103861
crossref_primary_10_1016_j_neucom_2015_11_137
crossref_primary_10_1016_j_patcog_2021_107815
crossref_primary_10_3390_fi17080371
crossref_primary_10_1109_TIFS_2014_2360825
crossref_primary_10_9717_kmms_2016_19_5_848
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1109_TCSVT_2021_3081514
crossref_primary_10_1109_TIP_2019_2928126
crossref_primary_10_1007_s11042_018_6542_z
crossref_primary_10_1016_j_patrec_2015_06_021
crossref_primary_10_1109_TIP_2022_3226413
crossref_primary_10_1109_ACCESS_2020_2980047
crossref_primary_10_1145_2807705
crossref_primary_10_1109_TCSVT_2021_3105411
crossref_primary_10_1109_TIP_2016_2570571
crossref_primary_10_1109_TPAMI_2016_2542816
crossref_primary_10_1016_j_imavis_2016_04_013
crossref_primary_10_1016_j_neucom_2016_02_083
crossref_primary_10_1016_j_neucom_2018_03_042
crossref_primary_10_1016_j_neucom_2024_128626
crossref_primary_10_1109_TIP_2019_2894272
crossref_primary_10_1109_TPAMI_2019_2961900
crossref_primary_10_1016_j_imavis_2016_09_001
crossref_primary_10_1109_TIFS_2018_2885284
crossref_primary_10_1109_TIFS_2022_3217738
crossref_primary_10_1038_s41598_018_22207_x
crossref_primary_10_3390_s22239500
crossref_primary_10_1109_ACCESS_2017_2712159
crossref_primary_10_1016_j_patcog_2014_05_004
crossref_primary_10_1007_s11063_019_10100_1
crossref_primary_10_1007_s11045_023_00871_1
crossref_primary_10_1016_j_patrec_2015_10_018
crossref_primary_10_1007_s11263_021_01432_4
crossref_primary_10_1007_s11042_020_09246_1
crossref_primary_10_1109_ACCESS_2020_3009744
crossref_primary_10_1109_TIFS_2021_3122072
crossref_primary_10_1016_j_eswa_2019_112990
crossref_primary_10_1109_TCYB_2017_2715660
crossref_primary_10_1109_TNNLS_2021_3071119
crossref_primary_10_1016_j_patcog_2020_107579
crossref_primary_10_1016_j_neucom_2014_09_009
crossref_primary_10_1109_TPAMI_2022_3227180
crossref_primary_10_1109_TCYB_2018_2876591
crossref_primary_10_1109_TNNLS_2016_2517014
crossref_primary_10_1051_matecconf_202133606007
crossref_primary_10_1109_TIFS_2022_3160612
crossref_primary_10_1109_TMM_2020_2980201
crossref_primary_10_1016_j_imavis_2016_08_012
crossref_primary_10_1109_JSEN_2020_2986098
crossref_primary_10_1109_TIP_2017_2651380
crossref_primary_10_1109_TCYB_2018_2874219
crossref_primary_10_1109_TIP_2015_2462023
crossref_primary_10_1109_TPAMI_2018_2884458
crossref_primary_10_1007_s10044_023_01139_x
crossref_primary_10_1002_int_22690
crossref_primary_10_1109_TCSVT_2017_2657328
crossref_primary_10_1007_s00521_018_3475_4
crossref_primary_10_1016_j_patcog_2016_12_029
crossref_primary_10_3390_s17040873
crossref_primary_10_1007_s00138_017_0855_1
crossref_primary_10_1109_TIFS_2020_3015552
crossref_primary_10_1007_s10462_022_10240_2
crossref_primary_10_1109_ACCESS_2019_2920855
crossref_primary_10_1109_TIFS_2023_3327666
crossref_primary_10_1007_s13735_018_0160_4
crossref_primary_10_1016_j_jvcir_2019_102660
crossref_primary_10_3390_s21072322
crossref_primary_10_1007_s11042_015_2650_1
crossref_primary_10_1016_j_asoc_2015_12_006
crossref_primary_10_1109_TIP_2020_3016502
crossref_primary_10_1016_j_sigpro_2015_08_013
crossref_primary_10_1109_TIP_2017_2651375
crossref_primary_10_1109_TNNLS_2021_3105143
crossref_primary_10_1016_j_patcog_2018_07_014
crossref_primary_10_1016_j_eswa_2014_11_054
crossref_primary_10_1016_j_imavis_2025_105424
crossref_primary_10_1109_ACCESS_2018_2855208
crossref_primary_10_1109_TNNLS_2019_2957285
Cites_doi 10.1109/TPAMI.2007.1014
10.1109/34.598228
10.1007/s11263-006-8098-z
10.1109/ICIP.2008.4711792
10.1007/s10994-006-7550-1
10.1109/TPAMI.2002.1017623
10.1109/TIP.2010.2042645
10.1109/CVPR.2011.5995324
10.1023/B:VISI.0000029664.99615.94
10.1016/S0031-3203(00)00162-X
10.1109/TCSVT.2003.818352
10.1109/CVPR.1997.609311
10.1007/3-540-45014-9_1
10.1109/34.75512
10.1007/BF00058655
10.1109/TIP.2002.999679
10.1109/TPAMI.2006.244
10.1109/BTAS.2010.5634533
10.1109/TNN.2002.806629
10.1109/CVPR.2008.4587637
10.1117/12.849821
10.1109/TPAMI.2010.180
10.1109/TPAMI.2008.222
10.1016/j.patrec.2004.09.014
10.1007/978-3-642-01793-3_75
10.1109/BTAS.2010.5634507
10.1109/TCSVT.2008.918770
10.1109/TIFS.2011.2172429
10.1109/97.991133
10.1109/34.709601
10.1007/978-0-387-73003-5
10.1007/s11263-007-0058-8
10.1109/ICPR.2010.374
10.1109/TCSVT.2003.818353
10.1007/978-3-642-01793-3_22
10.1038/14819
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TPAMI.2012.229
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 2160-9292
1939-3539
EndPage 1422
ExternalDocumentID 23599055
27369006
10_1109_TPAMI_2012_229
6330967
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c345t-c3a8bc51b2646fcc4e07f06fdad68bcf038d38661ddf866fedafcf3c90e932b63
IEDL.DBID RIE
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317857900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 06:20:11 EDT 2025
Mon Jul 21 06:04:28 EDT 2025
Wed Apr 02 07:49:43 EDT 2025
Sat Nov 29 05:15:55 EST 2025
Tue Nov 18 21:42:10 EST 2025
Tue Aug 26 16:41:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Prototype
Random sampling
Similarity
Sample size
Image processing
prototypes
local descriptors
Vector space
Image matching
Near infrared spectrum
Imaging
Facies
forensic sketch
random subspaces
Database
Monitoring
Infrared thermography
Computer vision
Discriminant analysis
Probabilistic approach
Forensic science
Face recognition
Image retrieval
infrared image
Computational geometry
Surveillance
thermal image
Heterogeneous face recognition
Thermal imaging
nonlinear similarity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-c3a8bc51b2646fcc4e07f06fdad68bcf038d38661ddf866fedafcf3c90e932b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23599055
PQID 1331090172
PQPubID 23479
PageCount 13
ParticipantIDs ieee_primary_6330967
proquest_miscellaneous_1331090172
crossref_primary_10_1109_TPAMI_2012_229
crossref_citationtrail_10_1109_TPAMI_2012_229
pascalfrancis_primary_27369006
pubmed_primary_23599055
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref35
ref13
ref36
ref14
klare (ref25) 2010
ref31
yi (ref15) 2009
ref30
ref33
ref11
gibson (ref45) 2008
ref32
ref10
lin (ref18) 2006
wang (ref34) 2004
ref1
ref17
ref38
ref16
ref19
martinez (ref43) 1998
riesenhuber (ref26) 1999; 2
lei (ref12) 2009
ref24
ref23
gao (ref6) 2008; 18
ref47
ref20
ref42
ref22
(ref28) 2012
liu (ref4) 2005
messer (ref44) 1999
taylor (ref46) 2001
ref27
zhang (ref7) 2010
ref29
ho (ref39) 1998; 20
kim (ref21) 2002; 9
grother (ref2) 2010; 7709
jie (ref37) 2001; 34
ref9
ref3
ref5
ref40
liao (ref8) 2009
dietterich (ref41) 2000; 1857
References_xml – ident: ref32
  doi: 10.1109/TPAMI.2007.1014
– year: 2010
  ident: ref7
  article-title: Lighting and Pose Robust Face Sketch Synthesis
  publication-title: Proc European Conf Computer Vision
– year: 1999
  ident: ref44
  article-title: XM2VTSDB: The Extended M2VTS Database
  publication-title: Proc Audio and Video-Based Biometric Person Authentication
– ident: ref33
  doi: 10.1109/34.598228
– ident: ref42
  doi: 10.1007/s11263-006-8098-z
– year: 2001
  ident: ref46
  publication-title: Forensic Art and Illustration
– ident: ref17
  doi: 10.1109/ICIP.2008.4711792
– ident: ref19
  doi: 10.1007/s10994-006-7550-1
– ident: ref13
  doi: 10.1109/TPAMI.2002.1017623
– start-page: 1123
  year: 2009
  ident: ref12
  article-title: Coupled Spectral Regression for Matching Heterogeneous Faces
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref29
  doi: 10.1109/TIP.2010.2042645
– year: 1998
  ident: ref43
  article-title: The AR Face Database
  publication-title: Technical Report 24 CVC
– ident: ref16
  doi: 10.1109/CVPR.2011.5995324
– ident: ref14
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 34
  start-page: 2067
  year: 2001
  ident: ref37
  article-title: A Direct LDA Algorithm for High-Dimensional Data-with Application to Face Recognition
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(00)00162-X
– ident: ref22
  doi: 10.1109/TCSVT.2003.818352
– ident: ref47
  doi: 10.1109/CVPR.1997.609311
– volume: 1857
  start-page: 1
  year: 2000
  ident: ref41
  article-title: Ensemble Methods in Machine Learning
  publication-title: Multiple Classifier Systems
  doi: 10.1007/3-540-45014-9_1
– year: 2006
  ident: ref18
  article-title: Inter-Modality Face Recognition
  publication-title: Proc European Conf Computer Vision
– year: 2008
  ident: ref45
  publication-title: Forensic Art Essentials
– ident: ref36
  doi: 10.1109/34.75512
– year: 2004
  ident: ref34
  article-title: Dual-Space Linear Discriminant Analysis for Face Recognition
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref40
  doi: 10.1007/BF00058655
– year: 2012
  ident: ref28
  publication-title: FaceVACS Software Developer Kit Cognitec Systems GmbH
– ident: ref35
  doi: 10.1109/TIP.2002.999679
– ident: ref31
  doi: 10.1109/TPAMI.2006.244
– ident: ref27
  doi: 10.1109/BTAS.2010.5634533
– ident: ref23
  doi: 10.1109/TNN.2002.806629
– ident: ref20
  doi: 10.1109/CVPR.2008.4587637
– year: 2010
  ident: ref25
  article-title: Sketch to Photo Matching: A Feature-Based Approach
  publication-title: Proc SPIE Conf Biometric Technology for Human Identification
  doi: 10.1117/12.849821
– ident: ref9
  doi: 10.1109/TPAMI.2010.180
– ident: ref5
  doi: 10.1109/TPAMI.2008.222
– ident: ref38
  doi: 10.1016/j.patrec.2004.09.014
– start-page: 733
  year: 2009
  ident: ref15
  article-title: Partial Face Matching between Near Infrared and Visual Images in MBGC Portal Challenge
  publication-title: Proc Third Int'l Conf Advances in Biometrics
  doi: 10.1007/978-3-642-01793-3_75
– ident: ref11
  doi: 10.1109/BTAS.2010.5634507
– volume: 18
  start-page: 487
  year: 2008
  ident: ref6
  article-title: Face Sketch Synthesis Algorithm Based on E-HMM and Selective Ensemble
  publication-title: IEEE Trans Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2008.918770
– volume: 7709
  year: 2010
  ident: ref2
  article-title: MBE 2010: Report on the Evaluation of 2D Still-Image Face Recognition Algorithms
  publication-title: Nat'l Inst of Standards and Technology
– ident: ref24
  doi: 10.1109/TIFS.2011.2172429
– volume: 9
  start-page: 40
  year: 2002
  ident: ref21
  article-title: Face Recognition Using Kernel Principal Component Analysis
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/97.991133
– volume: 20
  start-page: 832
  year: 1998
  ident: ref39
  article-title: The Random Subspace Method for Constructing Decision Forests
  publication-title: IEEE Trans Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.709601
– ident: ref1
  doi: 10.1007/978-0-387-73003-5
– ident: ref30
  doi: 10.1007/s11263-007-0058-8
– start-page: 1005
  year: 2005
  ident: ref4
  article-title: A Nonlinear Approach for Face Sketch Synthesis and Recognition
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref10
  doi: 10.1109/ICPR.2010.374
– ident: ref3
  doi: 10.1109/TCSVT.2003.818353
– year: 2009
  ident: ref8
  article-title: Heterogeneous Face Recognition from Local Structures of Normalized Appearance
  publication-title: Proc Third Int'l Conf Advances in Biometrics
  doi: 10.1007/978-3-642-01793-3_22
– volume: 2
  start-page: 1019
  year: 1999
  ident: ref26
  article-title: Hierarchical Models of Object Recognition in Cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/14819
SSID ssj0014503
Score 2.5725822
Snippet Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1410
SubjectTerms Applied sciences
Artificial intelligence
Biometric Identification - methods
Computer science; control theory; systems
Data processing. List processing. Character string processing
discriminant analysis
Exact sciences and technology
Face
Face recognition
forensic sketch
Forensics
Heterogeneous face recognition
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
infrared image
Kernel
local descriptors
Mathematics
Memory organisation. Data processing
nonlinear similarity
Pattern recognition. Digital image processing. Computational geometry
Probability and statistics
Probes
Prototypes
random subspaces
Sampling theory, sample surveys
Sciences and techniques of general use
Software
Statistics
thermal image
Training
Title Heterogeneous Face Recognition Using Kernel Prototype Similarities
URI https://ieeexplore.ieee.org/document/6330967
https://www.ncbi.nlm.nih.gov/pubmed/23599055
https://www.proquest.com/docview/1331090172
Volume 35
WOSCitedRecordID wos000317857900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4lAO0EILgXZlJKReCGTzcOwjrboCVUUroNLeIj_G0kqQoH3w-xk72ZRKcOCSRIrz0Dw8M_bMfAAnvjBAkh2OC6uymGY_jAWSXuVaikQXUiFvwSbK62sxmcjxGpz2tTCIGJLP8Mxfhr1825ilXyo75xR8S16uw3pZlm2tVr9jkBcBBZk8GNJwCiO6Bo3DRJ7fjS_-XPksrvQsTX2b0DQraBL21X0vbFEAV_GpkWpO1HEtrMXbfmewP6Od9_35R9ju_Ex20QrGJ1jDehd2VhgOrFPpXdh60ZBwD35c-uyYhoQKm-WcjZRBdrNKMWpqFhIM2G-c1XjPxrNm0fglXHY7fZhShByas36Gv6Nfdz8v4w5lITZZXizoqIQ2xVCTa8SdMTkmpUu4s8pyuuGSTNhMkBm31tHJoVXOuMzIBMn30zz7Aht1U-MBMKvTkl6hreM2FyiEynFYaCW10inFThHEK3pXpmtB7pEw7qsQiiSyCqyqPKsqYlUE3_vxj23zjTdH7nmi96M6ekcw-I-d_X1y2rikCSeC4xV_K9Irv1miAoUrit19zir5dxHst4z_93QnP4evf_UIPqQtaEacDL_CxmK2xG-waZ4W0_lsQMI7EYMgvM_4qOrC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gmKgPoqBYRVwTEl4o9HNv9xGIlyPA5aJHwluzH7PJJdiS-_Dvd3bbq5jIgy9tk24_Mh87M7sz8wM49IUBkuxwXFqVxzT7YSyQ9KrQUiS6lAp5CzYxGI_F3Z2cbMBxXwuDiCH5DE_8ZdjLt41Z-aWyU07Bt-SDZ7BVFkWWttVa_Z5BUQYcZPJhSMcpkOhaNKaJPJ1Ozm4ufR5XdpJlvlFolpc0Dfv6vkfWKMCr-ORItSD6uBbY4mnPM1ig4fb__fsbeN15muysFY23sIH1DmyvURxYp9Q78OpRS8JdOB_5_JiGxAqb1YINlUH2fZ1k1NQspBiwK5zXeM8m82bZ-EVc9mP2c0YxcmjP-g5uh9-mF6O4w1mITV6USzoqoU2ZanKOuDOmwGTgEu6sspxuuCQXNhdkyK11dHJolTMuNzJB8v40z9_DZt3U-AGY1dmAXqGt47YQKIQqMC21klrpjKKnCOI1vSvTNSH3WBj3VQhGElkFVlWeVRWxKoKjfvxD237jyZG7nuj9qI7eERz8xc7-PrltXNKUE8HXNX8r0iy_XaIChSuK3n3WKnl4Eey1jP_zdCc_H__91S_wYjS9ua6uL8dXn-Bl1kJoxEm6D5vL-Qo_w3PzazlbzA-CCP8Gx9ntIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Face+Recognition+Using+Kernel+Prototype+Similarities&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=KLARE%2C+Brendan+F&rft.au=JAIN%2C+Anil+K&rft.date=2013-06-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=6&rft.spage=1410&rft.epage=1422&rft_id=info:doi/10.1109%2FTPAMI.2012.229&rft.externalDBID=n%2Fa&rft.externalDocID=27369006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon