Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm
•Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8% With the increasing prop...
Saved in:
| Published in: | Applied energy Vol. 306; p. 118018 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.01.2022
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8%
With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models. |
|---|---|
| AbstractList | With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models. •Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8% With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models. |
| ArticleNumber | 118018 |
| Author | Zhang, Xizheng Lu, Zhangyu Wang, Zeyu |
| Author_xml | – sequence: 1 givenname: Xizheng surname: Zhang fullname: Zhang, Xizheng email: z_x_z2000@163.com organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China – sequence: 2 givenname: Zeyu surname: Wang fullname: Wang, Zeyu email: ze_yu2020@163.com organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China – sequence: 3 givenname: Zhangyu surname: Lu fullname: Lu, Zhangyu email: lzy@hnie.edu.cn organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China |
| BookMark | eNqFkcFO3DAURa2KSh1of6HysptM7WTGSaQuQAhaJBCbdm292C-ZN3LiYHsGwVfwyfV0YNMNq6cnnXMX956yk8lPyNhXKZZSSPV9u4QZJwzD07IUpVxK2QjZfGAL2dRl0eb3hC1EJVRRKtl-YqcxboXIZCkW7OVu5xIVvtuiSbRH7jxYbinOkMyG9z7wkUzwQyDLHyltOLpMBjJ8jxsyDiPfRZoGPnpLPaHlQ4A9JUjkJ3A8IoQcBJPlM4R0MHh8hDByPyca6fkfyMENPuT48TP72IOL-OX1nrE_11e_L38Vt_c_by4vbgtTrdapMAIqJUyvwFa1QGxlW6s1mA6qtemNMFiJXknZyVaatbF1B6tSYdV0srZdqaoz9u2YOwf_sMOY9EjRoHMwod9FnRG1quu6aTOqjmjuIcaAvZ4DjRCetBT6MIHe6rcJ9GECfZwgiz_-E81rMSkAuff186OOuYc9YdDREE4GLYW8gbae3ov4CwIQrkc |
| CitedBy_id | crossref_primary_10_1109_TSG_2024_3366943 crossref_primary_10_1016_j_nucengdes_2023_112423 crossref_primary_10_3389_fenrg_2022_847495 crossref_primary_10_1007_s00500_023_09223_4 crossref_primary_10_1016_j_heliyon_2024_e24993 crossref_primary_10_1007_s11276_023_03560_w crossref_primary_10_1038_s41598_024_58481_1 crossref_primary_10_1016_j_jclepro_2024_142067 crossref_primary_10_1038_s41598_024_55380_3 crossref_primary_10_1016_j_eswa_2023_121712 crossref_primary_10_46632_jeae_4_1_10 crossref_primary_10_1007_s42835_024_02057_6 crossref_primary_10_1002_ente_202500419 crossref_primary_10_1002_ente_202401696 crossref_primary_10_1155_2023_9381915 crossref_primary_10_1016_j_egyr_2022_06_064 crossref_primary_10_1080_15567036_2025_2505956 crossref_primary_10_1016_j_compeleceng_2024_109903 crossref_primary_10_1109_TSTE_2022_3189089 crossref_primary_10_1016_j_enconman_2022_116639 crossref_primary_10_1016_j_egyr_2024_02_046 crossref_primary_10_3390_en17020422 crossref_primary_10_1016_j_apenergy_2025_125948 crossref_primary_10_1016_j_engappai_2023_106469 crossref_primary_10_1016_j_epsr_2025_111838 crossref_primary_10_1016_j_enconman_2022_116057 crossref_primary_10_1016_j_rineng_2025_104306 crossref_primary_10_1049_rpg2_12946 crossref_primary_10_3390_electronics12041062 crossref_primary_10_1016_j_energy_2024_131807 crossref_primary_10_1016_j_jclepro_2023_135906 crossref_primary_10_3390_en15030833 crossref_primary_10_3390_su162310663 crossref_primary_10_3390_batteries8090119 crossref_primary_10_1016_j_scs_2022_103970 crossref_primary_10_1002_er_7727 crossref_primary_10_1016_j_heliyon_2024_e31280 crossref_primary_10_1109_ACCESS_2024_3356598 crossref_primary_10_1016_j_eswa_2023_119863 crossref_primary_10_1109_TTE_2023_3296964 crossref_primary_10_1007_s11276_023_03578_0 crossref_primary_10_1109_ACCESS_2024_3401253 crossref_primary_10_1049_cth2_12626 crossref_primary_10_1016_j_renene_2024_120823 crossref_primary_10_3390_su16010057 crossref_primary_10_3390_en17184707 crossref_primary_10_1080_15435075_2024_2397020 crossref_primary_10_1007_s11356_023_28886_y crossref_primary_10_1016_j_jclepro_2022_135312 crossref_primary_10_3389_fenrg_2024_1453711 crossref_primary_10_1007_s11276_024_03733_1 crossref_primary_10_1088_2631_8695_addc39 crossref_primary_10_1007_s42835_023_01656_z crossref_primary_10_1016_j_renene_2024_121927 crossref_primary_10_3390_electronics13081437 crossref_primary_10_3390_pr11102820 crossref_primary_10_1016_j_epsr_2022_109089 crossref_primary_10_1016_j_apenergy_2022_120326 crossref_primary_10_1049_rpg2_12973 crossref_primary_10_3390_en17071562 crossref_primary_10_1007_s10723_024_09747_5 crossref_primary_10_1016_j_renene_2022_09_125 crossref_primary_10_1016_j_energy_2024_132426 crossref_primary_10_1155_2024_6611240 crossref_primary_10_2516_stet_2024040 crossref_primary_10_3389_fenrg_2024_1322047 crossref_primary_10_1038_s41598_024_54181_y crossref_primary_10_1016_j_scs_2023_104826 crossref_primary_10_1038_s41598_024_58024_8 crossref_primary_10_3390_su16052156 crossref_primary_10_1016_j_apenergy_2023_121708 crossref_primary_10_1038_s41598_025_12471_z crossref_primary_10_1016_j_heliyon_2024_e26516 crossref_primary_10_1038_s41598_024_66644_3 crossref_primary_10_1016_j_est_2025_115534 crossref_primary_10_1016_j_est_2024_114711 crossref_primary_10_1038_s41598_024_81049_y crossref_primary_10_1016_j_apenergy_2025_125317 crossref_primary_10_3389_fenrg_2024_1404386 crossref_primary_10_1016_j_est_2023_108672 crossref_primary_10_1016_j_asoc_2023_111109 crossref_primary_10_1016_j_egyr_2024_02_038 crossref_primary_10_1007_s43621_025_01522_0 crossref_primary_10_1016_j_egyr_2024_06_019 crossref_primary_10_1016_j_est_2023_109888 crossref_primary_10_1007_s10723_023_09688_5 crossref_primary_10_1007_s11760_024_03638_8 crossref_primary_10_3390_sym15122206 crossref_primary_10_1016_j_est_2025_117165 crossref_primary_10_3390_s23177485 crossref_primary_10_1016_j_compeleceng_2024_109401 crossref_primary_10_1016_j_heliyon_2024_e31525 crossref_primary_10_1007_s11042_023_16517_0 crossref_primary_10_1016_j_rineng_2025_104400 crossref_primary_10_1016_j_compbiomed_2023_107551 crossref_primary_10_3390_axioms12100908 crossref_primary_10_1063_5_0243453 crossref_primary_10_1007_s00500_022_07297_0 crossref_primary_10_1016_j_comcom_2024_06_004 crossref_primary_10_1016_j_ijepes_2023_109766 crossref_primary_10_3390_wevj14120327 crossref_primary_10_1016_j_est_2024_113928 crossref_primary_10_1016_j_est_2025_118420 crossref_primary_10_1155_2024_5097056 crossref_primary_10_1016_j_seta_2024_103656 crossref_primary_10_3390_su152115550 crossref_primary_10_1007_s10723_024_09752_8 crossref_primary_10_3390_en17122861 crossref_primary_10_1007_s00202_023_02108_7 crossref_primary_10_1016_j_est_2024_112151 crossref_primary_10_1016_j_apenergy_2022_119488 crossref_primary_10_1016_j_ijepes_2023_109761 crossref_primary_10_3389_fenrg_2024_1359596 crossref_primary_10_1007_s10723_023_09685_8 crossref_primary_10_1016_j_est_2022_104782 crossref_primary_10_1016_j_energy_2024_133717 crossref_primary_10_1016_j_est_2024_112603 crossref_primary_10_1007_s10723_023_09701_x crossref_primary_10_3389_fmech_2024_1390341 crossref_primary_10_1016_j_apenergy_2025_126196 crossref_primary_10_1109_ACCESS_2024_3388491 crossref_primary_10_1016_j_apenergy_2023_121185 crossref_primary_10_1016_j_heliyon_2024_e30018 crossref_primary_10_1155_etep_1192925 crossref_primary_10_1016_j_ijepes_2025_110657 crossref_primary_10_1016_j_dajour_2025_100626 crossref_primary_10_1007_s40815_024_01881_2 crossref_primary_10_1016_j_est_2023_108967 crossref_primary_10_3390_electronics11060909 crossref_primary_10_1016_j_apenergy_2022_119703 crossref_primary_10_3390_electronics13101940 crossref_primary_10_1016_j_seta_2022_102581 crossref_primary_10_1038_s41598_024_62690_z crossref_primary_10_1007_s11356_023_31488_3 crossref_primary_10_1007_s00202_024_02727_8 crossref_primary_10_1007_s00521_025_11652_1 crossref_primary_10_1016_j_epsr_2024_111007 crossref_primary_10_1007_s00170_024_13790_7 crossref_primary_10_1016_j_est_2024_111657 crossref_primary_10_1007_s10723_023_09724_4 crossref_primary_10_1007_s10723_024_09774_2 crossref_primary_10_1016_j_est_2024_112500 crossref_primary_10_1007_s10723_024_09741_x crossref_primary_10_1038_s41598_024_55988_5 crossref_primary_10_11648_j_ijiis_20251402_12 crossref_primary_10_1109_ACCESS_2023_3258859 crossref_primary_10_1016_j_ecmx_2025_101134 crossref_primary_10_1109_ACCESS_2024_3414169 crossref_primary_10_1080_23080477_2022_2092670 crossref_primary_10_3390_electronics12092041 crossref_primary_10_1016_j_jclepro_2022_130381 crossref_primary_10_1109_TCE_2023_3325827 crossref_primary_10_1002_est2_70254 crossref_primary_10_1109_JETCAS_2023_3283785 crossref_primary_10_1016_j_scs_2023_104535 crossref_primary_10_1063_5_0245954 crossref_primary_10_1016_j_est_2024_112912 crossref_primary_10_1016_j_jnca_2024_103855 crossref_primary_10_3390_su16062487 crossref_primary_10_1016_j_suscom_2023_100920 crossref_primary_10_1016_j_apenergy_2023_121770 crossref_primary_10_32604_ee_2022_021342 crossref_primary_10_1016_j_renene_2023_119739 crossref_primary_10_1016_j_apenergy_2024_124800 crossref_primary_10_3390_electricity3040027 crossref_primary_10_1016_j_jclepro_2023_137346 crossref_primary_10_3390_su16093810 crossref_primary_10_1155_2023_6506144 crossref_primary_10_1016_j_energy_2023_129495 crossref_primary_10_1088_1742_6596_2351_1_012045 crossref_primary_10_1109_ACCESS_2022_3219486 crossref_primary_10_1007_s10723_023_09721_7 crossref_primary_10_3390_en16073248 crossref_primary_10_1007_s00202_023_02065_1 crossref_primary_10_3390_su151712800 crossref_primary_10_1007_s40747_023_01128_x crossref_primary_10_1155_2024_5754231 crossref_primary_10_1038_s41598_024_56209_9 crossref_primary_10_1016_j_energy_2024_132498 crossref_primary_10_1016_j_ijepes_2025_110939 crossref_primary_10_1016_j_chb_2024_108394 crossref_primary_10_1016_j_apenergy_2025_126366 crossref_primary_10_3390_w17131842 crossref_primary_10_1049_rpg2_12902 crossref_primary_10_1515_auto_2024_0094 crossref_primary_10_1016_j_energy_2024_133109 crossref_primary_10_1016_j_apenergy_2025_126242 crossref_primary_10_3390_en17020415 crossref_primary_10_1080_08839514_2021_2014187 crossref_primary_10_1109_JESTPE_2024_3444776 crossref_primary_10_1016_j_energy_2023_129913 crossref_primary_10_1016_j_engappai_2023_107129 crossref_primary_10_1016_j_seta_2024_103784 crossref_primary_10_1016_j_apenergy_2022_119513 crossref_primary_10_1016_j_rineng_2024_103764 crossref_primary_10_3390_electronics12234876 crossref_primary_10_3390_math12213410 crossref_primary_10_1007_s40996_023_01291_8 crossref_primary_10_3390_wevj14070171 crossref_primary_10_1016_j_apenergy_2024_123922 crossref_primary_10_1088_1361_6501_ad574b crossref_primary_10_1007_s42452_024_06190_9 crossref_primary_10_1088_1742_6596_2563_1_012007 crossref_primary_10_1038_s41598_024_55426_6 crossref_primary_10_1016_j_egyr_2024_04_016 crossref_primary_10_3390_pr13030680 |
| Cites_doi | 10.3390/en9050370 10.1109/ICNN.1995.488968 10.1109/ICCIA.2010.6141614 10.1016/j.epsr.2016.10.062 10.1109/TPWRS.2013.2256937 10.1016/j.jclepro.2013.09.019 10.1109/59.871715 10.1016/j.asoc.2015.01.024 10.1016/j.asoc.2021.107464 10.1016/0270-0255(83)90030-1 10.1016/j.apenergy.2015.02.030 10.3390/su12145813 10.1016/j.ijepes.2014.06.002 10.1016/j.jclepro.2018.05.190 10.1016/j.energy.2018.01.128 10.1016/j.apenergy.2017.03.042 10.1016/j.enconman.2013.11.042 10.1016/j.apenergy.2017.07.007 10.1016/j.apenergy.2016.09.035 10.1016/j.ress.2018.11.013 10.1049/piee.1973.0122 10.1109/TSG.2013.2295514 10.1016/j.enconman.2006.04.010 10.1016/j.asej.2020.10.021 10.1016/j.ins.2009.03.004 10.3390/en12163202 10.1016/j.apenergy.2014.04.056 10.1016/j.apenergy.2021.117689 10.1016/j.energy.2016.01.063 10.1016/j.jclepro.2017.07.221 10.1016/j.energy.2014.10.088 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.118018 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_118018 S0306261921013180 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-c0a360cf6ad370ee919765acba35cfc0ce30f611b191c5cd7ba426e38b17db263 |
| ISICitedReferencesCount | 233 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707872600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 16:53:46 EDT 2025 Tue Nov 18 20:29:12 EST 2025 Sat Nov 29 07:21:56 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electric vehicles Gravitational search algorithm Multi-objective optimization Microgrid Particle swarm optimization Load dispatch |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-c0a360cf6ad370ee919765acba35cfc0ce30f611b191c5cd7ba426e38b17db263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636477789 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636477789 crossref_primary_10_1016_j_apenergy_2021_118018 crossref_citationtrail_10_1016_j_apenergy_2021_118018 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_118018 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Guo, Wang, Bao, Dai, Ding (b0155) 2015; 39 Liu, Liu, Ling, Zhao, Gao, Huang (b0040) 2021; 303 Escalera, Castronuovo, Prodanović, Roldán-Pérez (b0045) 2019; 12 Nemati, Braun, Tenbohlen (b0115) 2018; 210 Younes, Alhamrouni, Mekhilef, Reyasudin (b0135) 2021; 12 Zakariazadeh, Jadid, Siano (b0090) 2014; 79 Rogers, Whitley (b0185) 1983; 4 Lu, Zhou, Yang (b0060) 2017; 165 Huang, Guo, Ding, Wang, Zhu, Xu (b0070) 2016; 9 Yao, Zhao, Wen, Xue, Ledwich (b0075) 2013; 28 Jian, Zheng, Xiao, Chan (b0080) 2015; 146 Tao, Xiao, Wen, Chen, Zhang (b0160) 2014; 29 Jabr, Coonick, Cory (b0100) 2000; 15 Hou, Xue, Xu, Xiao, Deng, Xu (b0085) 2014; 29 Mortaz, Valenzuela (b0065) 2017; 143 Lu, Zhou, Yang, Liu (b0140) 2018; 195 Ioakimidis, Thomas, Rycerski, Genikomsakis (b0025) 2018; 148 Nabona, Freris (b0110) 1973; 120 Huynh, Do, Lee (b0120) 2021; 107 Yuan, Hesamzadeh (b0095) 2017; 195 Kamankesh, Agelidis, Kavousi-Fard (b0055) 2016; 100 Rashedi, Nezamabadi-pour, Saryazdi (b0180) 2009; 179 Cardenas, Gemoets, Ablanedo Rosas, Sarfi (b0035) 2014; 65 Chen (b0105) 2007; 48 Cui, Li, Zhang, Chen (b0015) 2012; 32 Zhang, Wu, Guo, Wang, Wang, Liu (b0125) 2016; 183 Sun, Wang, Su, Jiang, Xu, He (b0030) 2013; 37 Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, IEEE 1995;4:1942–1948. Barkenbus JN. Prospects for electric vehicles. Sustainability 2020;12:5813. Mirjalili S, Hashim SZM. A new hybrid PSOGSA algorithm for function optimization. 2010 international conference on computer and information application, IEEE 2010; 374-377. Jayaprakasam, Rahim, Leow (b0150) 2015; 30 Kavousi-Fard, Abunasri, Zare, Hoseinzadeh (b0170) 2014; 78 Marzband, Ghadimi, Sumper, Domínguez-García (b0130) 2014; 128 Olivares, Mehrizi-Sani, Etemadi, Canizares, Iravani, Kazerani (b0050) 2014; 5 Zeng, Nazir, Khaksar, Nishihara, Tao (b0020) 2021; 33 Wu, Liu, Ding (b0165) 2014; 63 Gandoman, Ahmadi, Bossche, Van Mierlo, Omar, Nezhad (b0005) 2019; 183 Hou (10.1016/j.apenergy.2021.118018_b0085) 2014; 29 Nemati (10.1016/j.apenergy.2021.118018_b0115) 2018; 210 Huang (10.1016/j.apenergy.2021.118018_b0155) 2015; 39 Yao (10.1016/j.apenergy.2021.118018_b0075) 2013; 28 Escalera (10.1016/j.apenergy.2021.118018_b0045) 2019; 12 Marzband (10.1016/j.apenergy.2021.118018_b0130) 2014; 128 Kavousi-Fard (10.1016/j.apenergy.2021.118018_b0170) 2014; 78 Sun (10.1016/j.apenergy.2021.118018_b0030) 2013; 37 Rashedi (10.1016/j.apenergy.2021.118018_b0180) 2009; 179 Olivares (10.1016/j.apenergy.2021.118018_b0050) 2014; 5 Lu (10.1016/j.apenergy.2021.118018_b0060) 2017; 165 Kamankesh (10.1016/j.apenergy.2021.118018_b0055) 2016; 100 Chen (10.1016/j.apenergy.2021.118018_b0105) 2007; 48 10.1016/j.apenergy.2021.118018_b0145 Cui (10.1016/j.apenergy.2021.118018_b0015) 2012; 32 Ioakimidis (10.1016/j.apenergy.2021.118018_b0025) 2018; 148 Jabr (10.1016/j.apenergy.2021.118018_b0100) 2000; 15 Jayaprakasam (10.1016/j.apenergy.2021.118018_b0150) 2015; 30 Mortaz (10.1016/j.apenergy.2021.118018_b0065) 2017; 143 Huynh (10.1016/j.apenergy.2021.118018_b0120) 2021; 107 Liu (10.1016/j.apenergy.2021.118018_b0040) 2021; 303 Nabona (10.1016/j.apenergy.2021.118018_b0110) 1973; 120 Gandoman (10.1016/j.apenergy.2021.118018_b0005) 2019; 183 Zakariazadeh (10.1016/j.apenergy.2021.118018_b0090) 2014; 79 Younes (10.1016/j.apenergy.2021.118018_b0135) 2021; 12 Tao (10.1016/j.apenergy.2021.118018_b0160) 2014; 29 Rogers (10.1016/j.apenergy.2021.118018_b0185) 1983; 4 Huang (10.1016/j.apenergy.2021.118018_b0070) 2016; 9 Zeng (10.1016/j.apenergy.2021.118018_b0020) 2021; 33 Lu (10.1016/j.apenergy.2021.118018_b0140) 2018; 195 10.1016/j.apenergy.2021.118018_b0010 Yuan (10.1016/j.apenergy.2021.118018_b0095) 2017; 195 Wu (10.1016/j.apenergy.2021.118018_b0165) 2014; 63 10.1016/j.apenergy.2021.118018_b0175 Jian (10.1016/j.apenergy.2021.118018_b0080) 2015; 146 Zhang (10.1016/j.apenergy.2021.118018_b0125) 2016; 183 Cardenas (10.1016/j.apenergy.2021.118018_b0035) 2014; 65 |
| References_xml | – volume: 33 start-page: 102021 year: 2021 ident: b0020 article-title: A day-ahead economic scheduling of microgrids equipped with plug-in hybrid electric vehicles using modified shuffled frog leaping algorithm publication-title: J Storage Mater – volume: 146 start-page: 150 year: 2015 end-page: 161 ident: b0080 article-title: Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid publication-title: Appl Energy – volume: 63 start-page: 336 year: 2014 end-page: 346 ident: b0165 article-title: Dynamic economic dispatch of a micro-grid: Mathematical models and solution algorithm publication-title: Int J Electr Power Energy Syst – volume: 148 start-page: 148 year: 2018 end-page: 158 ident: b0025 article-title: Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot publication-title: Energy – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0180 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci – volume: 29 start-page: 365 year: 2014 end-page: 373 ident: b0085 article-title: Multi-objective economic dispatch of micro-grid system with electric vehicle publication-title: J Electrotech Technol – volume: 210 start-page: 944 year: 2018 end-page: 963 ident: b0115 article-title: Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming publication-title: Appl Energy – volume: 12 start-page: 1985 year: 2021 end-page: 1994 ident: b0135 article-title: A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid publication-title: Ain Shams Eng J – volume: 30 start-page: 229 year: 2015 end-page: 237 ident: b0150 article-title: PSOGSA-Explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming publication-title: Appl Soft Comput – volume: 183 start-page: 791 year: 2016 end-page: 804 ident: b0125 article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints publication-title: Appl Energy – volume: 28 start-page: 2768 year: 2013 end-page: 2778 ident: b0075 article-title: A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles publication-title: IEEE Trans Power Syst – volume: 29 start-page: 11 year: 2014 end-page: 19 ident: b0160 article-title: Analysis and calculation method of electric vehicle decentralized charging facilities ratio publication-title: Trans China Electrotech Soc – volume: 37 start-page: 191 year: 2013 end-page: 195 ident: b0030 article-title: Design of ordered charging control strategy for electric vehicles based on time-sharing electricity price publication-title: Power Syst Automat – volume: 128 start-page: 164 year: 2014 end-page: 174 ident: b0130 article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode publication-title: Appl Energy – reference: Mirjalili S, Hashim SZM. A new hybrid PSOGSA algorithm for function optimization. 2010 international conference on computer and information application, IEEE 2010; 374-377. – volume: 5 start-page: 1905 year: 2014 end-page: 1919 ident: b0050 article-title: Trends in microgrid control publication-title: IEEE Trans Smart Grid – volume: 143 start-page: 554 year: 2017 end-page: 562 ident: b0065 article-title: Micro-grid energy scheduling using storage from electric vehicles publication-title: Electr Power Syst Res – volume: 195 start-page: 600 year: 2017 end-page: 615 ident: b0095 article-title: Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources publication-title: Appl Energy – volume: 120 start-page: 574 year: 1973 end-page: 580 ident: b0110 article-title: Optimization of economic dispatch through quadratic and linear programming publication-title: Proc Inst Electr Eng – volume: 195 start-page: 187 year: 2018 end-page: 199 ident: b0140 article-title: Multi-objective optimal load dispatch of micro-grid with stochastic access of electric vehicles publication-title: J Cleaner Prod – volume: 15 start-page: 930 year: 2000 end-page: 936 ident: b0100 article-title: A homogeneous linear programming algorithm for the security constrained economic dispatch problem publication-title: IEEE Trans Power Syst – volume: 4 start-page: 9 year: 1983 end-page: 25 ident: b0185 article-title: Chaos in the cubic mapping publication-title: Math Model – volume: 39 start-page: 183 year: 2015 end-page: 191 ident: b0155 article-title: Electric vehicle group scheduling strategy considering user satisfaction publication-title: Automat Electr Power Syst – volume: 100 start-page: 285 year: 2016 end-page: 297 ident: b0055 article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand publication-title: Energy – volume: 165 start-page: 1572 year: 2017 end-page: 1581 ident: b0060 article-title: Multi-objective optimal dispatch of micro-grid containing electric vehicles publication-title: J Cleaner Prod – volume: 79 start-page: 43 year: 2014 end-page: 53 ident: b0090 article-title: Multi-objective scheduling of electric vehicles in smart distribution system publication-title: Energy Convers Manage – volume: 48 start-page: 219 year: 2007 end-page: 225 ident: b0105 article-title: Non-convex economic dispatch: a direct search approach publication-title: Energy Convers Manage – volume: 65 start-page: 202 year: 2014 end-page: 216 ident: b0035 article-title: A literature survey on smart grid distribution: an analytical approach publication-title: J Cleaner Prod – volume: 78 start-page: 904 year: 2014 end-page: 915 ident: b0170 article-title: Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids publication-title: Energy – volume: 12 start-page: 3202 year: 2019 ident: b0045 article-title: Reliability assessment of distribution networks with optimal coordination of distributed generation, energy storage and demand management publication-title: Energies – reference: Barkenbus JN. Prospects for electric vehicles. Sustainability 2020;12:5813. – volume: 303 start-page: 117689 year: 2021 ident: b0040 article-title: Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring publication-title: Appl Energy – reference: Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, IEEE 1995;4:1942–1948. – volume: 183 start-page: 1 year: 2019 end-page: 16 ident: b0005 article-title: Status and future perspectives of reliability assessment for electric vehicles publication-title: Reliab Eng Syst Saf – volume: 32 start-page: 1 year: 2012 end-page: 10 ident: b0015 article-title: Impact and utilization of electric vehicle access to power grid publication-title: China J Electr Eng – volume: 9 start-page: 370 year: 2016 ident: b0070 article-title: A multi-period framework for coordinated dispatch of plug-in electric vehicles publication-title: Energies – volume: 107 start-page: 107464 year: 2021 ident: b0120 article-title: Q-Learning-based parameter control in differential evolution for structural optimization publication-title: Appl Soft Comput – volume: 9 start-page: 370 issue: 5 year: 2016 ident: 10.1016/j.apenergy.2021.118018_b0070 article-title: A multi-period framework for coordinated dispatch of plug-in electric vehicles publication-title: Energies doi: 10.3390/en9050370 – ident: 10.1016/j.apenergy.2021.118018_b0175 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.apenergy.2021.118018_b0145 doi: 10.1109/ICCIA.2010.6141614 – volume: 143 start-page: 554 year: 2017 ident: 10.1016/j.apenergy.2021.118018_b0065 article-title: Micro-grid energy scheduling using storage from electric vehicles publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2016.10.062 – volume: 33 start-page: 102021 year: 2021 ident: 10.1016/j.apenergy.2021.118018_b0020 article-title: A day-ahead economic scheduling of microgrids equipped with plug-in hybrid electric vehicles using modified shuffled frog leaping algorithm publication-title: J Storage Mater – volume: 28 start-page: 2768 issue: 3 year: 2013 ident: 10.1016/j.apenergy.2021.118018_b0075 article-title: A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2256937 – volume: 65 start-page: 202 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0035 article-title: A literature survey on smart grid distribution: an analytical approach publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2013.09.019 – volume: 15 start-page: 930 issue: 3 year: 2000 ident: 10.1016/j.apenergy.2021.118018_b0100 article-title: A homogeneous linear programming algorithm for the security constrained economic dispatch problem publication-title: IEEE Trans Power Syst doi: 10.1109/59.871715 – volume: 29 start-page: 365 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0085 article-title: Multi-objective economic dispatch of micro-grid system with electric vehicle publication-title: J Electrotech Technol – volume: 39 start-page: 183 year: 2015 ident: 10.1016/j.apenergy.2021.118018_b0155 article-title: Electric vehicle group scheduling strategy considering user satisfaction publication-title: Automat Electr Power Syst – volume: 30 start-page: 229 year: 2015 ident: 10.1016/j.apenergy.2021.118018_b0150 article-title: PSOGSA-Explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.01.024 – volume: 107 start-page: 107464 year: 2021 ident: 10.1016/j.apenergy.2021.118018_b0120 article-title: Q-Learning-based parameter control in differential evolution for structural optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107464 – volume: 4 start-page: 9 issue: 1 year: 1983 ident: 10.1016/j.apenergy.2021.118018_b0185 article-title: Chaos in the cubic mapping publication-title: Math Model doi: 10.1016/0270-0255(83)90030-1 – volume: 146 start-page: 150 year: 2015 ident: 10.1016/j.apenergy.2021.118018_b0080 article-title: Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.030 – ident: 10.1016/j.apenergy.2021.118018_b0010 doi: 10.3390/su12145813 – volume: 63 start-page: 336 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0165 article-title: Dynamic economic dispatch of a micro-grid: Mathematical models and solution algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.06.002 – volume: 195 start-page: 187 year: 2018 ident: 10.1016/j.apenergy.2021.118018_b0140 article-title: Multi-objective optimal load dispatch of micro-grid with stochastic access of electric vehicles publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.05.190 – volume: 148 start-page: 148 year: 2018 ident: 10.1016/j.apenergy.2021.118018_b0025 article-title: Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot publication-title: Energy doi: 10.1016/j.energy.2018.01.128 – volume: 195 start-page: 600 year: 2017 ident: 10.1016/j.apenergy.2021.118018_b0095 article-title: Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.042 – volume: 79 start-page: 43 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0090 article-title: Multi-objective scheduling of electric vehicles in smart distribution system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.11.042 – volume: 210 start-page: 944 year: 2018 ident: 10.1016/j.apenergy.2021.118018_b0115 article-title: Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.007 – volume: 183 start-page: 791 year: 2016 ident: 10.1016/j.apenergy.2021.118018_b0125 article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.035 – volume: 183 start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.118018_b0005 article-title: Status and future perspectives of reliability assessment for electric vehicles publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.11.013 – volume: 120 start-page: 574 year: 1973 ident: 10.1016/j.apenergy.2021.118018_b0110 article-title: Optimization of economic dispatch through quadratic and linear programming publication-title: Proc Inst Electr Eng doi: 10.1049/piee.1973.0122 – volume: 5 start-page: 1905 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0050 article-title: Trends in microgrid control publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2295514 – volume: 48 start-page: 219 issue: 1 year: 2007 ident: 10.1016/j.apenergy.2021.118018_b0105 article-title: Non-convex economic dispatch: a direct search approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2006.04.010 – volume: 12 start-page: 1985 issue: 2 year: 2021 ident: 10.1016/j.apenergy.2021.118018_b0135 article-title: A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2020.10.021 – volume: 29 start-page: 11 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0160 article-title: Analysis and calculation method of electric vehicle decentralized charging facilities ratio publication-title: Trans China Electrotech Soc – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.apenergy.2021.118018_b0180 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 12 start-page: 3202 issue: 16 year: 2019 ident: 10.1016/j.apenergy.2021.118018_b0045 article-title: Reliability assessment of distribution networks with optimal coordination of distributed generation, energy storage and demand management publication-title: Energies doi: 10.3390/en12163202 – volume: 128 start-page: 164 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0130 article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.056 – volume: 303 start-page: 117689 year: 2021 ident: 10.1016/j.apenergy.2021.118018_b0040 article-title: Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117689 – volume: 100 start-page: 285 year: 2016 ident: 10.1016/j.apenergy.2021.118018_b0055 article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand publication-title: Energy doi: 10.1016/j.energy.2016.01.063 – volume: 165 start-page: 1572 year: 2017 ident: 10.1016/j.apenergy.2021.118018_b0060 article-title: Multi-objective optimal dispatch of micro-grid containing electric vehicles publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2017.07.221 – volume: 37 start-page: 191 year: 2013 ident: 10.1016/j.apenergy.2021.118018_b0030 article-title: Design of ordered charging control strategy for electric vehicles based on time-sharing electricity price publication-title: Power Syst Automat – volume: 32 start-page: 1 year: 2012 ident: 10.1016/j.apenergy.2021.118018_b0015 article-title: Impact and utilization of electric vehicle access to power grid publication-title: China J Electr Eng – volume: 78 start-page: 904 year: 2014 ident: 10.1016/j.apenergy.2021.118018_b0170 article-title: Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids publication-title: Energy doi: 10.1016/j.energy.2014.10.088 |
| SSID | ssj0002120 |
| Score | 2.7039247 |
| Snippet | •Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization... With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118018 |
| SubjectTerms | algorithms automobiles Electric vehicles energy Gravitational search algorithm Load dispatch markets memory Microgrid Multi-objective optimization Particle swarm optimization variance |
| Title | Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.118018 https://www.proquest.com/docview/2636477789 |
| Volume | 306 |
| WOSCitedRecordID | wos000707872600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEBQqykuLxM1ysb1-HisUBAhVHIoUcbHW63XjKLYjJw5t_wT8ZGZfjpsCpQcuVrTKbnYzn2dmZ-ebReiN6-bcyZhve8QvbD-iiR2DoYUXDzQhDWLiUlln9nN0chJPp8mX0eiH4cJsFlFdx-fnyfK_ihraQNiCOnsLcfeDQgN8BqHDE8QOz38SvKTU2k02V6rMWjQ0F-cwS1C6M5lVWIkkvLO21Inn6iacklkbPpNJclYnAwhVk5eF8FDFFUW6lLdgl6g4iSwwoH_eWn2nbWU1oH4qzeu06OKsaWH4auj-Gp-XS8bhtaD1tLyccW1KZZBfNX_jF12fONTJFtFDN-qQhSdyP2xF2jRULSe0xdZtqIaJM1SkojKdUszXdLwKN8yP6FJNFjb5nnu07XC1qPaOsetTEE122zw146RinFSNcwfteVGQxGO0d_xxMv3UG3dPV_o0KxiQzn8_oz_5OzuWX7ozpw_RA70PwcdKgI_QiNf76P6gOuU-OphsSZDwVW0FVo_Rzx2IYQExbCCGAWK4hxgWEMMGYthADEuIYQMxfAViWEEMA8SwgRiWEMNDiOEeYk_Q1_eT03cfbH2zh82IH6xt5lASOqwIaU4ih_PEBa84oCyjJGAFcxgnThG6buYmLgtYHmUUPElO4syN8swLyQEa103NnyLMkyQLwgIUDmE-zQJaFIVXBFycD1Ow5ocoMP9_yvRCxO0ri_TvCDhEb_t-S1X45cYeiRFvqt1X5ZamgNwb-742eEhBv4tDO1rzplulsFjBFY_i5NmtZ_Qc3du-fi_QeN12_CW6yzbrctW-0tD-BXN31Y8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+load+dispatch+for+microgrid+with+electric+vehicles+using+modified+gravitational+search+and+particle+swarm+optimization+algorithm&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Xizheng&rft.au=Wang%2C+Zeyu&rft.au=Lu%2C+Zhangyu&rft.date=2022-01-15&rft.issn=0306-2619&rft.volume=306&rft.spage=118018&rft_id=info:doi/10.1016%2Fj.apenergy.2021.118018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_118018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |