Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm

•Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8% With the increasing prop...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 306; p. 118018
Main Authors: Zhang, Xizheng, Wang, Zeyu, Lu, Zhangyu
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.01.2022
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8% With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models.
AbstractList With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models.
•Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization algorithm to solve load dispatch.•Ordered charging-discharging strategy reducing cost by 13.4%, load variance by 78.8% With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually increasing. The charging-discharging model of vehicles and the multi-objective optimization model of the load dispatch for the microgrid are established. By combining gravitational search algorithm (GSA) and particle swarm optimization (PSO) algorithm, a hybrid modified GSA-PSO (MGSA-PSO) scheme is proposed to optimize the load dispatch of the microgrid containing electric vehicles. To improve the global search performance of the GSA algorithm, the proposed scheme introduces the global memory capacity of the PSO into the GSA. At the same time, the hybrid algorithm is improved by designing adaptive inertia vector, learning factor and chaotic initialization population. The load dispatch optimization are implemented and analyzed, including the unordered charging strategy, the ordered charging-discharging strategy, and the ordered charging-discharging strategy with distributed generations. The optimization results show that, under the same weight factor, the ordered charging-discharging strategy can reduce 13.38% of the total cost, 78.77% of the microgrid load variance and improve the safety and economy of the grid. In addition, reasonable scheduling of distributed power output power can further reduce the total cost by 14.06% and the load variance by 22.36%. Further, the effectiveness of the proposed scheme is proved by analyzing the influences of different numbers of electric vehicles and different charging models.
ArticleNumber 118018
Author Zhang, Xizheng
Lu, Zhangyu
Wang, Zeyu
Author_xml – sequence: 1
  givenname: Xizheng
  surname: Zhang
  fullname: Zhang, Xizheng
  email: z_x_z2000@163.com
  organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China
– sequence: 2
  givenname: Zeyu
  surname: Wang
  fullname: Wang, Zeyu
  email: ze_yu2020@163.com
  organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China
– sequence: 3
  givenname: Zhangyu
  surname: Lu
  fullname: Lu, Zhangyu
  email: lzy@hnie.edu.cn
  organization: The Innovative Center of Wind Equipments and Energy Conversion, Hunan Institute of Engineering, Xiangtan 411104, China
BookMark eNqFkcFO3DAURa2KSh1of6HysptM7WTGSaQuQAhaJBCbdm292C-ZN3LiYHsGwVfwyfV0YNMNq6cnnXMX956yk8lPyNhXKZZSSPV9u4QZJwzD07IUpVxK2QjZfGAL2dRl0eb3hC1EJVRRKtl-YqcxboXIZCkW7OVu5xIVvtuiSbRH7jxYbinOkMyG9z7wkUzwQyDLHyltOLpMBjJ8jxsyDiPfRZoGPnpLPaHlQ4A9JUjkJ3A8IoQcBJPlM4R0MHh8hDByPyca6fkfyMENPuT48TP72IOL-OX1nrE_11e_L38Vt_c_by4vbgtTrdapMAIqJUyvwFa1QGxlW6s1mA6qtemNMFiJXknZyVaatbF1B6tSYdV0srZdqaoz9u2YOwf_sMOY9EjRoHMwod9FnRG1quu6aTOqjmjuIcaAvZ4DjRCetBT6MIHe6rcJ9GECfZwgiz_-E81rMSkAuff186OOuYc9YdDREE4GLYW8gbae3ov4CwIQrkc
CitedBy_id crossref_primary_10_1109_TSG_2024_3366943
crossref_primary_10_1016_j_nucengdes_2023_112423
crossref_primary_10_3389_fenrg_2022_847495
crossref_primary_10_1007_s00500_023_09223_4
crossref_primary_10_1016_j_heliyon_2024_e24993
crossref_primary_10_1007_s11276_023_03560_w
crossref_primary_10_1038_s41598_024_58481_1
crossref_primary_10_1016_j_jclepro_2024_142067
crossref_primary_10_1038_s41598_024_55380_3
crossref_primary_10_1016_j_eswa_2023_121712
crossref_primary_10_46632_jeae_4_1_10
crossref_primary_10_1007_s42835_024_02057_6
crossref_primary_10_1002_ente_202500419
crossref_primary_10_1002_ente_202401696
crossref_primary_10_1155_2023_9381915
crossref_primary_10_1016_j_egyr_2022_06_064
crossref_primary_10_1080_15567036_2025_2505956
crossref_primary_10_1016_j_compeleceng_2024_109903
crossref_primary_10_1109_TSTE_2022_3189089
crossref_primary_10_1016_j_enconman_2022_116639
crossref_primary_10_1016_j_egyr_2024_02_046
crossref_primary_10_3390_en17020422
crossref_primary_10_1016_j_apenergy_2025_125948
crossref_primary_10_1016_j_engappai_2023_106469
crossref_primary_10_1016_j_epsr_2025_111838
crossref_primary_10_1016_j_enconman_2022_116057
crossref_primary_10_1016_j_rineng_2025_104306
crossref_primary_10_1049_rpg2_12946
crossref_primary_10_3390_electronics12041062
crossref_primary_10_1016_j_energy_2024_131807
crossref_primary_10_1016_j_jclepro_2023_135906
crossref_primary_10_3390_en15030833
crossref_primary_10_3390_su162310663
crossref_primary_10_3390_batteries8090119
crossref_primary_10_1016_j_scs_2022_103970
crossref_primary_10_1002_er_7727
crossref_primary_10_1016_j_heliyon_2024_e31280
crossref_primary_10_1109_ACCESS_2024_3356598
crossref_primary_10_1016_j_eswa_2023_119863
crossref_primary_10_1109_TTE_2023_3296964
crossref_primary_10_1007_s11276_023_03578_0
crossref_primary_10_1109_ACCESS_2024_3401253
crossref_primary_10_1049_cth2_12626
crossref_primary_10_1016_j_renene_2024_120823
crossref_primary_10_3390_su16010057
crossref_primary_10_3390_en17184707
crossref_primary_10_1080_15435075_2024_2397020
crossref_primary_10_1007_s11356_023_28886_y
crossref_primary_10_1016_j_jclepro_2022_135312
crossref_primary_10_3389_fenrg_2024_1453711
crossref_primary_10_1007_s11276_024_03733_1
crossref_primary_10_1088_2631_8695_addc39
crossref_primary_10_1007_s42835_023_01656_z
crossref_primary_10_1016_j_renene_2024_121927
crossref_primary_10_3390_electronics13081437
crossref_primary_10_3390_pr11102820
crossref_primary_10_1016_j_epsr_2022_109089
crossref_primary_10_1016_j_apenergy_2022_120326
crossref_primary_10_1049_rpg2_12973
crossref_primary_10_3390_en17071562
crossref_primary_10_1007_s10723_024_09747_5
crossref_primary_10_1016_j_renene_2022_09_125
crossref_primary_10_1016_j_energy_2024_132426
crossref_primary_10_1155_2024_6611240
crossref_primary_10_2516_stet_2024040
crossref_primary_10_3389_fenrg_2024_1322047
crossref_primary_10_1038_s41598_024_54181_y
crossref_primary_10_1016_j_scs_2023_104826
crossref_primary_10_1038_s41598_024_58024_8
crossref_primary_10_3390_su16052156
crossref_primary_10_1016_j_apenergy_2023_121708
crossref_primary_10_1038_s41598_025_12471_z
crossref_primary_10_1016_j_heliyon_2024_e26516
crossref_primary_10_1038_s41598_024_66644_3
crossref_primary_10_1016_j_est_2025_115534
crossref_primary_10_1016_j_est_2024_114711
crossref_primary_10_1038_s41598_024_81049_y
crossref_primary_10_1016_j_apenergy_2025_125317
crossref_primary_10_3389_fenrg_2024_1404386
crossref_primary_10_1016_j_est_2023_108672
crossref_primary_10_1016_j_asoc_2023_111109
crossref_primary_10_1016_j_egyr_2024_02_038
crossref_primary_10_1007_s43621_025_01522_0
crossref_primary_10_1016_j_egyr_2024_06_019
crossref_primary_10_1016_j_est_2023_109888
crossref_primary_10_1007_s10723_023_09688_5
crossref_primary_10_1007_s11760_024_03638_8
crossref_primary_10_3390_sym15122206
crossref_primary_10_1016_j_est_2025_117165
crossref_primary_10_3390_s23177485
crossref_primary_10_1016_j_compeleceng_2024_109401
crossref_primary_10_1016_j_heliyon_2024_e31525
crossref_primary_10_1007_s11042_023_16517_0
crossref_primary_10_1016_j_rineng_2025_104400
crossref_primary_10_1016_j_compbiomed_2023_107551
crossref_primary_10_3390_axioms12100908
crossref_primary_10_1063_5_0243453
crossref_primary_10_1007_s00500_022_07297_0
crossref_primary_10_1016_j_comcom_2024_06_004
crossref_primary_10_1016_j_ijepes_2023_109766
crossref_primary_10_3390_wevj14120327
crossref_primary_10_1016_j_est_2024_113928
crossref_primary_10_1016_j_est_2025_118420
crossref_primary_10_1155_2024_5097056
crossref_primary_10_1016_j_seta_2024_103656
crossref_primary_10_3390_su152115550
crossref_primary_10_1007_s10723_024_09752_8
crossref_primary_10_3390_en17122861
crossref_primary_10_1007_s00202_023_02108_7
crossref_primary_10_1016_j_est_2024_112151
crossref_primary_10_1016_j_apenergy_2022_119488
crossref_primary_10_1016_j_ijepes_2023_109761
crossref_primary_10_3389_fenrg_2024_1359596
crossref_primary_10_1007_s10723_023_09685_8
crossref_primary_10_1016_j_est_2022_104782
crossref_primary_10_1016_j_energy_2024_133717
crossref_primary_10_1016_j_est_2024_112603
crossref_primary_10_1007_s10723_023_09701_x
crossref_primary_10_3389_fmech_2024_1390341
crossref_primary_10_1016_j_apenergy_2025_126196
crossref_primary_10_1109_ACCESS_2024_3388491
crossref_primary_10_1016_j_apenergy_2023_121185
crossref_primary_10_1016_j_heliyon_2024_e30018
crossref_primary_10_1155_etep_1192925
crossref_primary_10_1016_j_ijepes_2025_110657
crossref_primary_10_1016_j_dajour_2025_100626
crossref_primary_10_1007_s40815_024_01881_2
crossref_primary_10_1016_j_est_2023_108967
crossref_primary_10_3390_electronics11060909
crossref_primary_10_1016_j_apenergy_2022_119703
crossref_primary_10_3390_electronics13101940
crossref_primary_10_1016_j_seta_2022_102581
crossref_primary_10_1038_s41598_024_62690_z
crossref_primary_10_1007_s11356_023_31488_3
crossref_primary_10_1007_s00202_024_02727_8
crossref_primary_10_1007_s00521_025_11652_1
crossref_primary_10_1016_j_epsr_2024_111007
crossref_primary_10_1007_s00170_024_13790_7
crossref_primary_10_1016_j_est_2024_111657
crossref_primary_10_1007_s10723_023_09724_4
crossref_primary_10_1007_s10723_024_09774_2
crossref_primary_10_1016_j_est_2024_112500
crossref_primary_10_1007_s10723_024_09741_x
crossref_primary_10_1038_s41598_024_55988_5
crossref_primary_10_11648_j_ijiis_20251402_12
crossref_primary_10_1109_ACCESS_2023_3258859
crossref_primary_10_1016_j_ecmx_2025_101134
crossref_primary_10_1109_ACCESS_2024_3414169
crossref_primary_10_1080_23080477_2022_2092670
crossref_primary_10_3390_electronics12092041
crossref_primary_10_1016_j_jclepro_2022_130381
crossref_primary_10_1109_TCE_2023_3325827
crossref_primary_10_1002_est2_70254
crossref_primary_10_1109_JETCAS_2023_3283785
crossref_primary_10_1016_j_scs_2023_104535
crossref_primary_10_1063_5_0245954
crossref_primary_10_1016_j_est_2024_112912
crossref_primary_10_1016_j_jnca_2024_103855
crossref_primary_10_3390_su16062487
crossref_primary_10_1016_j_suscom_2023_100920
crossref_primary_10_1016_j_apenergy_2023_121770
crossref_primary_10_32604_ee_2022_021342
crossref_primary_10_1016_j_renene_2023_119739
crossref_primary_10_1016_j_apenergy_2024_124800
crossref_primary_10_3390_electricity3040027
crossref_primary_10_1016_j_jclepro_2023_137346
crossref_primary_10_3390_su16093810
crossref_primary_10_1155_2023_6506144
crossref_primary_10_1016_j_energy_2023_129495
crossref_primary_10_1088_1742_6596_2351_1_012045
crossref_primary_10_1109_ACCESS_2022_3219486
crossref_primary_10_1007_s10723_023_09721_7
crossref_primary_10_3390_en16073248
crossref_primary_10_1007_s00202_023_02065_1
crossref_primary_10_3390_su151712800
crossref_primary_10_1007_s40747_023_01128_x
crossref_primary_10_1155_2024_5754231
crossref_primary_10_1038_s41598_024_56209_9
crossref_primary_10_1016_j_energy_2024_132498
crossref_primary_10_1016_j_ijepes_2025_110939
crossref_primary_10_1016_j_chb_2024_108394
crossref_primary_10_1016_j_apenergy_2025_126366
crossref_primary_10_3390_w17131842
crossref_primary_10_1049_rpg2_12902
crossref_primary_10_1515_auto_2024_0094
crossref_primary_10_1016_j_energy_2024_133109
crossref_primary_10_1016_j_apenergy_2025_126242
crossref_primary_10_3390_en17020415
crossref_primary_10_1080_08839514_2021_2014187
crossref_primary_10_1109_JESTPE_2024_3444776
crossref_primary_10_1016_j_energy_2023_129913
crossref_primary_10_1016_j_engappai_2023_107129
crossref_primary_10_1016_j_seta_2024_103784
crossref_primary_10_1016_j_apenergy_2022_119513
crossref_primary_10_1016_j_rineng_2024_103764
crossref_primary_10_3390_electronics12234876
crossref_primary_10_3390_math12213410
crossref_primary_10_1007_s40996_023_01291_8
crossref_primary_10_3390_wevj14070171
crossref_primary_10_1016_j_apenergy_2024_123922
crossref_primary_10_1088_1361_6501_ad574b
crossref_primary_10_1007_s42452_024_06190_9
crossref_primary_10_1088_1742_6596_2563_1_012007
crossref_primary_10_1038_s41598_024_55426_6
crossref_primary_10_1016_j_egyr_2024_04_016
crossref_primary_10_3390_pr13030680
Cites_doi 10.3390/en9050370
10.1109/ICNN.1995.488968
10.1109/ICCIA.2010.6141614
10.1016/j.epsr.2016.10.062
10.1109/TPWRS.2013.2256937
10.1016/j.jclepro.2013.09.019
10.1109/59.871715
10.1016/j.asoc.2015.01.024
10.1016/j.asoc.2021.107464
10.1016/0270-0255(83)90030-1
10.1016/j.apenergy.2015.02.030
10.3390/su12145813
10.1016/j.ijepes.2014.06.002
10.1016/j.jclepro.2018.05.190
10.1016/j.energy.2018.01.128
10.1016/j.apenergy.2017.03.042
10.1016/j.enconman.2013.11.042
10.1016/j.apenergy.2017.07.007
10.1016/j.apenergy.2016.09.035
10.1016/j.ress.2018.11.013
10.1049/piee.1973.0122
10.1109/TSG.2013.2295514
10.1016/j.enconman.2006.04.010
10.1016/j.asej.2020.10.021
10.1016/j.ins.2009.03.004
10.3390/en12163202
10.1016/j.apenergy.2014.04.056
10.1016/j.apenergy.2021.117689
10.1016/j.energy.2016.01.063
10.1016/j.jclepro.2017.07.221
10.1016/j.energy.2014.10.088
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.118018
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_118018
S0306261921013180
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-c0a360cf6ad370ee919765acba35cfc0ce30f611b191c5cd7ba426e38b17db263
ISICitedReferencesCount 233
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707872600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 16:53:46 EDT 2025
Tue Nov 18 20:29:12 EST 2025
Sat Nov 29 07:21:56 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electric vehicles
Gravitational search algorithm
Multi-objective optimization
Microgrid
Particle swarm optimization
Load dispatch
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-c0a360cf6ad370ee919765acba35cfc0ce30f611b191c5cd7ba426e38b17db263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636477789
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636477789
crossref_primary_10_1016_j_apenergy_2021_118018
crossref_citationtrail_10_1016_j_apenergy_2021_118018
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_118018
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Guo, Wang, Bao, Dai, Ding (b0155) 2015; 39
Liu, Liu, Ling, Zhao, Gao, Huang (b0040) 2021; 303
Escalera, Castronuovo, Prodanović, Roldán-Pérez (b0045) 2019; 12
Nemati, Braun, Tenbohlen (b0115) 2018; 210
Younes, Alhamrouni, Mekhilef, Reyasudin (b0135) 2021; 12
Zakariazadeh, Jadid, Siano (b0090) 2014; 79
Rogers, Whitley (b0185) 1983; 4
Lu, Zhou, Yang (b0060) 2017; 165
Huang, Guo, Ding, Wang, Zhu, Xu (b0070) 2016; 9
Yao, Zhao, Wen, Xue, Ledwich (b0075) 2013; 28
Jian, Zheng, Xiao, Chan (b0080) 2015; 146
Tao, Xiao, Wen, Chen, Zhang (b0160) 2014; 29
Jabr, Coonick, Cory (b0100) 2000; 15
Hou, Xue, Xu, Xiao, Deng, Xu (b0085) 2014; 29
Mortaz, Valenzuela (b0065) 2017; 143
Lu, Zhou, Yang, Liu (b0140) 2018; 195
Ioakimidis, Thomas, Rycerski, Genikomsakis (b0025) 2018; 148
Nabona, Freris (b0110) 1973; 120
Huynh, Do, Lee (b0120) 2021; 107
Yuan, Hesamzadeh (b0095) 2017; 195
Kamankesh, Agelidis, Kavousi-Fard (b0055) 2016; 100
Rashedi, Nezamabadi-pour, Saryazdi (b0180) 2009; 179
Cardenas, Gemoets, Ablanedo Rosas, Sarfi (b0035) 2014; 65
Chen (b0105) 2007; 48
Cui, Li, Zhang, Chen (b0015) 2012; 32
Zhang, Wu, Guo, Wang, Wang, Liu (b0125) 2016; 183
Sun, Wang, Su, Jiang, Xu, He (b0030) 2013; 37
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, IEEE 1995;4:1942–1948.
Barkenbus JN. Prospects for electric vehicles. Sustainability 2020;12:5813.
Mirjalili S, Hashim SZM. A new hybrid PSOGSA algorithm for function optimization. 2010 international conference on computer and information application, IEEE 2010; 374-377.
Jayaprakasam, Rahim, Leow (b0150) 2015; 30
Kavousi-Fard, Abunasri, Zare, Hoseinzadeh (b0170) 2014; 78
Marzband, Ghadimi, Sumper, Domínguez-García (b0130) 2014; 128
Olivares, Mehrizi-Sani, Etemadi, Canizares, Iravani, Kazerani (b0050) 2014; 5
Zeng, Nazir, Khaksar, Nishihara, Tao (b0020) 2021; 33
Wu, Liu, Ding (b0165) 2014; 63
Gandoman, Ahmadi, Bossche, Van Mierlo, Omar, Nezhad (b0005) 2019; 183
Hou (10.1016/j.apenergy.2021.118018_b0085) 2014; 29
Nemati (10.1016/j.apenergy.2021.118018_b0115) 2018; 210
Huang (10.1016/j.apenergy.2021.118018_b0155) 2015; 39
Yao (10.1016/j.apenergy.2021.118018_b0075) 2013; 28
Escalera (10.1016/j.apenergy.2021.118018_b0045) 2019; 12
Marzband (10.1016/j.apenergy.2021.118018_b0130) 2014; 128
Kavousi-Fard (10.1016/j.apenergy.2021.118018_b0170) 2014; 78
Sun (10.1016/j.apenergy.2021.118018_b0030) 2013; 37
Rashedi (10.1016/j.apenergy.2021.118018_b0180) 2009; 179
Olivares (10.1016/j.apenergy.2021.118018_b0050) 2014; 5
Lu (10.1016/j.apenergy.2021.118018_b0060) 2017; 165
Kamankesh (10.1016/j.apenergy.2021.118018_b0055) 2016; 100
Chen (10.1016/j.apenergy.2021.118018_b0105) 2007; 48
10.1016/j.apenergy.2021.118018_b0145
Cui (10.1016/j.apenergy.2021.118018_b0015) 2012; 32
Ioakimidis (10.1016/j.apenergy.2021.118018_b0025) 2018; 148
Jabr (10.1016/j.apenergy.2021.118018_b0100) 2000; 15
Jayaprakasam (10.1016/j.apenergy.2021.118018_b0150) 2015; 30
Mortaz (10.1016/j.apenergy.2021.118018_b0065) 2017; 143
Huynh (10.1016/j.apenergy.2021.118018_b0120) 2021; 107
Liu (10.1016/j.apenergy.2021.118018_b0040) 2021; 303
Nabona (10.1016/j.apenergy.2021.118018_b0110) 1973; 120
Gandoman (10.1016/j.apenergy.2021.118018_b0005) 2019; 183
Zakariazadeh (10.1016/j.apenergy.2021.118018_b0090) 2014; 79
Younes (10.1016/j.apenergy.2021.118018_b0135) 2021; 12
Tao (10.1016/j.apenergy.2021.118018_b0160) 2014; 29
Rogers (10.1016/j.apenergy.2021.118018_b0185) 1983; 4
Huang (10.1016/j.apenergy.2021.118018_b0070) 2016; 9
Zeng (10.1016/j.apenergy.2021.118018_b0020) 2021; 33
Lu (10.1016/j.apenergy.2021.118018_b0140) 2018; 195
10.1016/j.apenergy.2021.118018_b0010
Yuan (10.1016/j.apenergy.2021.118018_b0095) 2017; 195
Wu (10.1016/j.apenergy.2021.118018_b0165) 2014; 63
10.1016/j.apenergy.2021.118018_b0175
Jian (10.1016/j.apenergy.2021.118018_b0080) 2015; 146
Zhang (10.1016/j.apenergy.2021.118018_b0125) 2016; 183
Cardenas (10.1016/j.apenergy.2021.118018_b0035) 2014; 65
References_xml – volume: 33
  start-page: 102021
  year: 2021
  ident: b0020
  article-title: A day-ahead economic scheduling of microgrids equipped with plug-in hybrid electric vehicles using modified shuffled frog leaping algorithm
  publication-title: J Storage Mater
– volume: 146
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0080
  article-title: Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
  publication-title: Appl Energy
– volume: 63
  start-page: 336
  year: 2014
  end-page: 346
  ident: b0165
  article-title: Dynamic economic dispatch of a micro-grid: Mathematical models and solution algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 148
  start-page: 148
  year: 2018
  end-page: 158
  ident: b0025
  article-title: Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot
  publication-title: Energy
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0180
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
– volume: 29
  start-page: 365
  year: 2014
  end-page: 373
  ident: b0085
  article-title: Multi-objective economic dispatch of micro-grid system with electric vehicle
  publication-title: J Electrotech Technol
– volume: 210
  start-page: 944
  year: 2018
  end-page: 963
  ident: b0115
  article-title: Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming
  publication-title: Appl Energy
– volume: 12
  start-page: 1985
  year: 2021
  end-page: 1994
  ident: b0135
  article-title: A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid
  publication-title: Ain Shams Eng J
– volume: 30
  start-page: 229
  year: 2015
  end-page: 237
  ident: b0150
  article-title: PSOGSA-Explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming
  publication-title: Appl Soft Comput
– volume: 183
  start-page: 791
  year: 2016
  end-page: 804
  ident: b0125
  article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints
  publication-title: Appl Energy
– volume: 28
  start-page: 2768
  year: 2013
  end-page: 2778
  ident: b0075
  article-title: A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles
  publication-title: IEEE Trans Power Syst
– volume: 29
  start-page: 11
  year: 2014
  end-page: 19
  ident: b0160
  article-title: Analysis and calculation method of electric vehicle decentralized charging facilities ratio
  publication-title: Trans China Electrotech Soc
– volume: 37
  start-page: 191
  year: 2013
  end-page: 195
  ident: b0030
  article-title: Design of ordered charging control strategy for electric vehicles based on time-sharing electricity price
  publication-title: Power Syst Automat
– volume: 128
  start-page: 164
  year: 2014
  end-page: 174
  ident: b0130
  article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode
  publication-title: Appl Energy
– reference: Mirjalili S, Hashim SZM. A new hybrid PSOGSA algorithm for function optimization. 2010 international conference on computer and information application, IEEE 2010; 374-377.
– volume: 5
  start-page: 1905
  year: 2014
  end-page: 1919
  ident: b0050
  article-title: Trends in microgrid control
  publication-title: IEEE Trans Smart Grid
– volume: 143
  start-page: 554
  year: 2017
  end-page: 562
  ident: b0065
  article-title: Micro-grid energy scheduling using storage from electric vehicles
  publication-title: Electr Power Syst Res
– volume: 195
  start-page: 600
  year: 2017
  end-page: 615
  ident: b0095
  article-title: Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources
  publication-title: Appl Energy
– volume: 120
  start-page: 574
  year: 1973
  end-page: 580
  ident: b0110
  article-title: Optimization of economic dispatch through quadratic and linear programming
  publication-title: Proc Inst Electr Eng
– volume: 195
  start-page: 187
  year: 2018
  end-page: 199
  ident: b0140
  article-title: Multi-objective optimal load dispatch of micro-grid with stochastic access of electric vehicles
  publication-title: J Cleaner Prod
– volume: 15
  start-page: 930
  year: 2000
  end-page: 936
  ident: b0100
  article-title: A homogeneous linear programming algorithm for the security constrained economic dispatch problem
  publication-title: IEEE Trans Power Syst
– volume: 4
  start-page: 9
  year: 1983
  end-page: 25
  ident: b0185
  article-title: Chaos in the cubic mapping
  publication-title: Math Model
– volume: 39
  start-page: 183
  year: 2015
  end-page: 191
  ident: b0155
  article-title: Electric vehicle group scheduling strategy considering user satisfaction
  publication-title: Automat Electr Power Syst
– volume: 100
  start-page: 285
  year: 2016
  end-page: 297
  ident: b0055
  article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand
  publication-title: Energy
– volume: 165
  start-page: 1572
  year: 2017
  end-page: 1581
  ident: b0060
  article-title: Multi-objective optimal dispatch of micro-grid containing electric vehicles
  publication-title: J Cleaner Prod
– volume: 79
  start-page: 43
  year: 2014
  end-page: 53
  ident: b0090
  article-title: Multi-objective scheduling of electric vehicles in smart distribution system
  publication-title: Energy Convers Manage
– volume: 48
  start-page: 219
  year: 2007
  end-page: 225
  ident: b0105
  article-title: Non-convex economic dispatch: a direct search approach
  publication-title: Energy Convers Manage
– volume: 65
  start-page: 202
  year: 2014
  end-page: 216
  ident: b0035
  article-title: A literature survey on smart grid distribution: an analytical approach
  publication-title: J Cleaner Prod
– volume: 78
  start-page: 904
  year: 2014
  end-page: 915
  ident: b0170
  article-title: Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids
  publication-title: Energy
– volume: 12
  start-page: 3202
  year: 2019
  ident: b0045
  article-title: Reliability assessment of distribution networks with optimal coordination of distributed generation, energy storage and demand management
  publication-title: Energies
– reference: Barkenbus JN. Prospects for electric vehicles. Sustainability 2020;12:5813.
– volume: 303
  start-page: 117689
  year: 2021
  ident: b0040
  article-title: Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring
  publication-title: Appl Energy
– reference: Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, IEEE 1995;4:1942–1948.
– volume: 183
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0005
  article-title: Status and future perspectives of reliability assessment for electric vehicles
  publication-title: Reliab Eng Syst Saf
– volume: 32
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0015
  article-title: Impact and utilization of electric vehicle access to power grid
  publication-title: China J Electr Eng
– volume: 9
  start-page: 370
  year: 2016
  ident: b0070
  article-title: A multi-period framework for coordinated dispatch of plug-in electric vehicles
  publication-title: Energies
– volume: 107
  start-page: 107464
  year: 2021
  ident: b0120
  article-title: Q-Learning-based parameter control in differential evolution for structural optimization
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 370
  issue: 5
  year: 2016
  ident: 10.1016/j.apenergy.2021.118018_b0070
  article-title: A multi-period framework for coordinated dispatch of plug-in electric vehicles
  publication-title: Energies
  doi: 10.3390/en9050370
– ident: 10.1016/j.apenergy.2021.118018_b0175
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.apenergy.2021.118018_b0145
  doi: 10.1109/ICCIA.2010.6141614
– volume: 143
  start-page: 554
  year: 2017
  ident: 10.1016/j.apenergy.2021.118018_b0065
  article-title: Micro-grid energy scheduling using storage from electric vehicles
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2016.10.062
– volume: 33
  start-page: 102021
  year: 2021
  ident: 10.1016/j.apenergy.2021.118018_b0020
  article-title: A day-ahead economic scheduling of microgrids equipped with plug-in hybrid electric vehicles using modified shuffled frog leaping algorithm
  publication-title: J Storage Mater
– volume: 28
  start-page: 2768
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2021.118018_b0075
  article-title: A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2256937
– volume: 65
  start-page: 202
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0035
  article-title: A literature survey on smart grid distribution: an analytical approach
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2013.09.019
– volume: 15
  start-page: 930
  issue: 3
  year: 2000
  ident: 10.1016/j.apenergy.2021.118018_b0100
  article-title: A homogeneous linear programming algorithm for the security constrained economic dispatch problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.871715
– volume: 29
  start-page: 365
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0085
  article-title: Multi-objective economic dispatch of micro-grid system with electric vehicle
  publication-title: J Electrotech Technol
– volume: 39
  start-page: 183
  year: 2015
  ident: 10.1016/j.apenergy.2021.118018_b0155
  article-title: Electric vehicle group scheduling strategy considering user satisfaction
  publication-title: Automat Electr Power Syst
– volume: 30
  start-page: 229
  year: 2015
  ident: 10.1016/j.apenergy.2021.118018_b0150
  article-title: PSOGSA-Explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.024
– volume: 107
  start-page: 107464
  year: 2021
  ident: 10.1016/j.apenergy.2021.118018_b0120
  article-title: Q-Learning-based parameter control in differential evolution for structural optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107464
– volume: 4
  start-page: 9
  issue: 1
  year: 1983
  ident: 10.1016/j.apenergy.2021.118018_b0185
  article-title: Chaos in the cubic mapping
  publication-title: Math Model
  doi: 10.1016/0270-0255(83)90030-1
– volume: 146
  start-page: 150
  year: 2015
  ident: 10.1016/j.apenergy.2021.118018_b0080
  article-title: Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.030
– ident: 10.1016/j.apenergy.2021.118018_b0010
  doi: 10.3390/su12145813
– volume: 63
  start-page: 336
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0165
  article-title: Dynamic economic dispatch of a micro-grid: Mathematical models and solution algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.06.002
– volume: 195
  start-page: 187
  year: 2018
  ident: 10.1016/j.apenergy.2021.118018_b0140
  article-title: Multi-objective optimal load dispatch of micro-grid with stochastic access of electric vehicles
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.05.190
– volume: 148
  start-page: 148
  year: 2018
  ident: 10.1016/j.apenergy.2021.118018_b0025
  article-title: Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.128
– volume: 195
  start-page: 600
  year: 2017
  ident: 10.1016/j.apenergy.2021.118018_b0095
  article-title: Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.042
– volume: 79
  start-page: 43
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0090
  article-title: Multi-objective scheduling of electric vehicles in smart distribution system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.11.042
– volume: 210
  start-page: 944
  year: 2018
  ident: 10.1016/j.apenergy.2021.118018_b0115
  article-title: Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.007
– volume: 183
  start-page: 791
  year: 2016
  ident: 10.1016/j.apenergy.2021.118018_b0125
  article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.035
– volume: 183
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.118018_b0005
  article-title: Status and future perspectives of reliability assessment for electric vehicles
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.013
– volume: 120
  start-page: 574
  year: 1973
  ident: 10.1016/j.apenergy.2021.118018_b0110
  article-title: Optimization of economic dispatch through quadratic and linear programming
  publication-title: Proc Inst Electr Eng
  doi: 10.1049/piee.1973.0122
– volume: 5
  start-page: 1905
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0050
  article-title: Trends in microgrid control
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2295514
– volume: 48
  start-page: 219
  issue: 1
  year: 2007
  ident: 10.1016/j.apenergy.2021.118018_b0105
  article-title: Non-convex economic dispatch: a direct search approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2006.04.010
– volume: 12
  start-page: 1985
  issue: 2
  year: 2021
  ident: 10.1016/j.apenergy.2021.118018_b0135
  article-title: A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2020.10.021
– volume: 29
  start-page: 11
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0160
  article-title: Analysis and calculation method of electric vehicle decentralized charging facilities ratio
  publication-title: Trans China Electrotech Soc
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.apenergy.2021.118018_b0180
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 12
  start-page: 3202
  issue: 16
  year: 2019
  ident: 10.1016/j.apenergy.2021.118018_b0045
  article-title: Reliability assessment of distribution networks with optimal coordination of distributed generation, energy storage and demand management
  publication-title: Energies
  doi: 10.3390/en12163202
– volume: 128
  start-page: 164
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0130
  article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.056
– volume: 303
  start-page: 117689
  year: 2021
  ident: 10.1016/j.apenergy.2021.118018_b0040
  article-title: Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117689
– volume: 100
  start-page: 285
  year: 2016
  ident: 10.1016/j.apenergy.2021.118018_b0055
  article-title: Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.063
– volume: 165
  start-page: 1572
  year: 2017
  ident: 10.1016/j.apenergy.2021.118018_b0060
  article-title: Multi-objective optimal dispatch of micro-grid containing electric vehicles
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2017.07.221
– volume: 37
  start-page: 191
  year: 2013
  ident: 10.1016/j.apenergy.2021.118018_b0030
  article-title: Design of ordered charging control strategy for electric vehicles based on time-sharing electricity price
  publication-title: Power Syst Automat
– volume: 32
  start-page: 1
  year: 2012
  ident: 10.1016/j.apenergy.2021.118018_b0015
  article-title: Impact and utilization of electric vehicle access to power grid
  publication-title: China J Electr Eng
– volume: 78
  start-page: 904
  year: 2014
  ident: 10.1016/j.apenergy.2021.118018_b0170
  article-title: Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.088
SSID ssj0002120
Score 2.7039626
Snippet •Multi-objective, multi-constrain optimization model of load dispatch for microgrid.•Modified gravitational search algorithm and particle swarm optimization...
With the increasing proportion of electric vehicles in the automobile market, the negative impact of vehicle’s charging on the power system is gradually...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118018
SubjectTerms algorithms
automobiles
Electric vehicles
energy
Gravitational search algorithm
Load dispatch
markets
memory
Microgrid
Multi-objective optimization
Particle swarm optimization
variance
Title Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.apenergy.2021.118018
https://www.proquest.com/docview/2636477789
Volume 306
WOSCitedRecordID wos000707872600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcECysdnnJSNyiLHHcJPZxhYqAwwqJRaq4RI7jbFs1SdUXC1f-AD-Z8Svt7oIWhLhEkVXbcefLeDyZbwahl7TMWMqyKuSCJuFAChYKopIQbH_OGKGlULbYRHZ6ykYj_qHX--65MJtZ1jTs4oLP_6uooQ2EramzfyHublBogHsQOlxB7HD9I8EbSm3YFlOryoJZK0r9HWYOSndsogprHYR3vpi4wHNbCWcig40amyC5YG0cCHVbTiptoeoSRS6Vt2aXWD-JSTDgpg-WX8SiDlpQP7XjdQZidt4uYPh61_z1Nq8yjMNrTuvR5NtYua3UOPlt82f1dd0FDq1Ni-7hGp3LItaxH6ElbVo_mufSbAOXDH8rSkN9nrM7k1XHLIu1Oma7-pqaFAXXdb91Q0yPxdwuAg7_MTnWKe5c_8t5tT_qCc35keicQyy6hfbiLOGsj_ZO3g1H77sNPXbZPf0D7hDNfz3b72ycK7u9MWHO7qN77uyBT6zQHqCeavbR3Z2MlPvoYLglPsJPneZfPkQ_rsAKa1hhDysMsMIdrLCGFfawwh5W2MAKe1jhS7DCFlYYYIU9rLCBFd6FFe5g9Qh9ejM8e_02dNU8QkkHySqUkaBpJKtUlDSLlOIELOFEyAKUhKxkJBWNqpSQgnAiE1lmhQDrUVFWkKws4pQeoH7TNuoQ4UIkfEDKsiqEGGSUF5zqsgYVjBSB_U2PUOL__1y6heiKK7PcxzROcy-3XMstt3I7Qq-6fnOb7OXGHtyLN3cmqzVFc0DljX1feDzkoNP1hzrRqHa9zGGxmh-eMf74H8Z_gu5sX76nqL9arNUzdFtuVpPl4rkD-U8BYdRy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+load+dispatch+for+microgrid+with+electric+vehicles+using+modified+gravitational+search+and+particle+swarm+optimization+algorithm&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Xizheng&rft.au=Wang%2C+Zeyu&rft.au=Lu%2C+Zhangyu&rft.date=2022-01-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=306&rft_id=info:doi/10.1016%2Fj.apenergy.2021.118018&rft.externalDocID=S0306261921013180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon