Best response-based individually look-ahead scheduling for natural gas and power systems

The natural gas system and the electric power system are becoming increasingly coupled in consideration of more interdependent components, e.g., natural gas-fired units, in the systems. Energy supplies for these two systems need to be dispatched economically from their own perspectives when these tw...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 304; p. 117673
Main Authors: Wang, Chong, Ju, Ping, Wu, Feng, Lei, Shunbo, Pan, Xueping
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.12.2021
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The natural gas system and the electric power system are becoming increasingly coupled in consideration of more interdependent components, e.g., natural gas-fired units, in the systems. Energy supplies for these two systems need to be dispatched economically from their own perspectives when these two systems belong to different owners. This paper investigates the best response-based individually look-ahead scheduling for the natural gas system and the electric power system. The optimal scheduling strategies for these two systems are the best responses of the opposite sides, and the best response of each side is achieved by an iterative best-response-search approach. Each best-response-search process is established as a bilevel mixed integer linear programming model, in which the upper level aims to minimize each side’s operational cost constrained by on–off states of generators/lines/gas sources, and the lower level aims to minimize the total energy consumption cost constrained by the operational constraints in consideration of the scheduling of generators/lines/gas sources of two systems in the upper level. To deal with solving difficulty caused by binary variables in the lower level, the original bilevel mixed integer linear programming model is converted into a constrained single-level formulation, which is solved by a decomposition algorithm based on an iterative column-and-constraint generation method. Two cases validate the model and the algorithm, and the costs with the best response-based model and the joint optimization-based model are compared. •Best response-based individually look-ahead scheduling of the power system and the natural gas system is presented.•The best response for each side is achieved by an iterative best-response-search approach.•Each best-response-search process is established as a bilevel mixed integer linear programming model.•The bilevel mixed integer linear programming model is converted into a constrained single-level model.•Costs with best response-based and joint optimization-based models are compared.
AbstractList The natural gas system and the electric power system are becoming increasingly coupled in consideration of more interdependent components, e.g., natural gas-fired units, in the systems. Energy supplies for these two systems need to be dispatched economically from their own perspectives when these two systems belong to different owners. This paper investigates the best response-based individually look-ahead scheduling for the natural gas system and the electric power system. The optimal scheduling strategies for these two systems are the best responses of the opposite sides, and the best response of each side is achieved by an iterative best-response-search approach. Each best-response-search process is established as a bilevel mixed integer linear programming model, in which the upper level aims to minimize each side’s operational cost constrained by on–off states of generators/lines/gas sources, and the lower level aims to minimize the total energy consumption cost constrained by the operational constraints in consideration of the scheduling of generators/lines/gas sources of two systems in the upper level. To deal with solving difficulty caused by binary variables in the lower level, the original bilevel mixed integer linear programming model is converted into a constrained single-level formulation, which is solved by a decomposition algorithm based on an iterative column-and-constraint generation method. Two cases validate the model and the algorithm, and the costs with the best response-based model and the joint optimization-based model are compared.
The natural gas system and the electric power system are becoming increasingly coupled in consideration of more interdependent components, e.g., natural gas-fired units, in the systems. Energy supplies for these two systems need to be dispatched economically from their own perspectives when these two systems belong to different owners. This paper investigates the best response-based individually look-ahead scheduling for the natural gas system and the electric power system. The optimal scheduling strategies for these two systems are the best responses of the opposite sides, and the best response of each side is achieved by an iterative best-response-search approach. Each best-response-search process is established as a bilevel mixed integer linear programming model, in which the upper level aims to minimize each side’s operational cost constrained by on–off states of generators/lines/gas sources, and the lower level aims to minimize the total energy consumption cost constrained by the operational constraints in consideration of the scheduling of generators/lines/gas sources of two systems in the upper level. To deal with solving difficulty caused by binary variables in the lower level, the original bilevel mixed integer linear programming model is converted into a constrained single-level formulation, which is solved by a decomposition algorithm based on an iterative column-and-constraint generation method. Two cases validate the model and the algorithm, and the costs with the best response-based model and the joint optimization-based model are compared. •Best response-based individually look-ahead scheduling of the power system and the natural gas system is presented.•The best response for each side is achieved by an iterative best-response-search approach.•Each best-response-search process is established as a bilevel mixed integer linear programming model.•The bilevel mixed integer linear programming model is converted into a constrained single-level model.•Costs with best response-based and joint optimization-based models are compared.
ArticleNumber 117673
Author Pan, Xueping
Wu, Feng
Lei, Shunbo
Wang, Chong
Ju, Ping
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0003-2664-4675
  surname: Wang
  fullname: Wang, Chong
  email: chongwang@hhu.edu.cn
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
– sequence: 2
  givenname: Ping
  surname: Ju
  fullname: Ju, Ping
  email: pju@hhu.edu.cn
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
– sequence: 3
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  email: wufeng@hhu.edu.cn
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
– sequence: 4
  givenname: Shunbo
  surname: Lei
  fullname: Lei, Shunbo
  email: leishunbo@cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
– sequence: 5
  givenname: Xueping
  surname: Pan
  fullname: Pan, Xueping
  email: xueping_pan@hhu.edu.cn
  organization: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
BookMark eNqFkD1vFDEURS0UJDaBv4Bc0szGH7uesUQBRBAiRaIhUjrrjf1m48VrD34zQfvvmWihSZPqFfeeK71zzs5yycjYeynWUkhzuV_DiBnr7rhWQsm1lK1p9Su2kl2rGitld8ZWQgvTKCPtG3ZOtBdiaSqxYvdfkCZekcaSCZseCAOPOcTHGGZI6chTKb8aeEAInPwDhjnFvONDqTzDNFdIfAfEIQc-lj9YOR1pwgO9Za8HSITv_t0Ldvft68-r783tj-ubq8-3jdeb7dT0rQ2t1bqzoH3fW9x0RoEWqu3DZgjKBGtBdEINYQm1EmHbgd72Ctsg-07rC_bhtDvW8ntennGHSB5TgoxlJqeMNmZrdbdZqh9PVV8LUcXB-TjBFEueKsTkpHBPQt3e_RfqnoS6k9AFN8_wscYD1OPL4KcTiIuHx4jVkY-YPYZY0U8ulPjSxF9X95e1
CitedBy_id crossref_primary_10_1016_j_ijepes_2023_109259
crossref_primary_10_1109_TSTE_2021_3112983
crossref_primary_10_3390_mi14061215
crossref_primary_10_1016_j_energy_2025_135491
Cites_doi 10.1016/j.apenergy.2015.03.017
10.1109/TSTE.2019.2927837
10.1016/j.apenergy.2015.10.150
10.1016/j.apenergy.2019.03.053
10.1109/TSTE.2018.2843121
10.1016/j.apenergy.2021.116740
10.1016/j.ijhydene.2006.10.018
10.23919/ACC.2017.7963683
10.1109/TPWRS.2012.2191984
10.1109/JPROC.2020.3005505
10.1109/TSTE.2019.2940624
10.1016/j.apenergy.2020.116201
10.1109/TSG.2019.2945511
10.1016/j.apenergy.2019.113420
10.1109/TPWRS.2017.2759198
10.1109/TSG.2019.2956740
10.1109/TPWRS.2017.2788052
10.1109/TPWRS.2019.2929685
10.1109/TSG.2020.2968178
10.1109/TPWRS.2019.2907170
10.1016/j.apenergy.2016.05.007
10.1109/TSG.2019.2938553
10.1109/TSTE.2019.2951701
10.1109/TSTE.2019.2941418
10.1109/TSTE.2018.2876387
10.1109/TPWRS.2014.2369486
10.1109/TSTE.2019.2952495
10.1109/TPWRS.2014.2372013
10.1109/TSTE.2019.2904404
10.1109/TSTE.2017.2771954
10.1109/TPWRS.2019.2895198
10.1007/978-3-319-44953-1_24
10.1109/TPWRS.2019.2935771
10.1016/j.apenergy.2019.02.038
10.1109/TPWRS.2014.2299714
10.1109/TPWRS.2009.2023262
10.1016/j.apenergy.2018.04.119
10.1016/j.energy.2021.119760
10.1016/j.apenergy.2018.06.001
10.1109/TSG.2019.2918088
10.1016/j.apenergy.2015.09.085
10.1016/j.apenergy.2016.07.077
10.1109/TSG.2018.2856825
10.1109/TSTE.2018.2877586
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117673
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117673
S0306261921010333
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-b79d793389a3cbb9e4862a3027bd4fd26d99a0802fdb9e320d58a35b2e7d1b833
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704347400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 18:50:51 EDT 2025
Sat Nov 29 07:21:02 EST 2025
Tue Nov 18 22:34:35 EST 2025
Fri Feb 23 02:40:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power system
Bilevel mixed integer linear programming
Natural gas system
Iterative best-response-search
Best response-based look-ahead scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-b79d793389a3cbb9e4862a3027bd4fd26d99a0802fdb9e320d58a35b2e7d1b833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2664-4675
PQID 2636659384
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636659384
crossref_citationtrail_10_1016_j_apenergy_2021_117673
crossref_primary_10_1016_j_apenergy_2021_117673
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117673
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haeseldonckx, D’haeseleer (b4) 2007; 32
Nagarajan H, Lu M, Yamangil E, Bent R. Tightening mccormick relaxations for nonlinear programs via dynamic multivariate partitioning, in: International Conference on Principles and Practice of Constraint Programming, 2016, pp. 369–387.
Li, Zhang, Jiang, Chen, Bai, Li (b15) 2017; 194
Zhao, Conejo, Sioshansi (b14) 2018; 33
Ríos-Mercado, Borraz-Sánchez (b10) 2015; 147
Yang, Xu, Sun (b34) 2020; 11
Fang, Cui, Yuan, Tan, Jiang (b48) 2019; 252
Chertkov, Backhaus, Lebedev (b5) 2015; 160
Liu, Zhan, Chung, Li (b22) 2019; 10
Ding, Hu, Bie (b13) 2017; PP
He, Zhang, Liu, Wu (b25) 2019; 34
Lin, Chen, Wang, Bie (b28) 2019; 34
Liu, Bie, Wang (b21) 2019; 10
Wang, Ju, Wu, Lei, Hou (b36) 2021; 220
Badakhshan, Ehsan, Shahidehpour, Hajibandeh, Shafie-Khah, Catalão (b38) 2020; 11
Qi, Shahidehpour, Wen, Li, He, Yan (b42) 2020; 11
Fu, Lin, Song, Li, Song (b26) 2020; 11
Zhang, Shahidehpour, Alabdulwahab, Abusorrah (b12) 2015; 30
Roald, Sundar, Zlotnik, Misra, Andersson (b18) 2020; 108
Correa-Posada, n (b16) 2015; 30
Qu, Shi, Yu, Wang (b43) 2019; 240
.
Nan, Wu, Liu, Liu, He (b6) 2020; 11
Wang, Wei, Wang, Bai, Liang, Bi (b41) 2018; 9
Lewandowska-Bernat, Desideri (b2) 2018; 228
Xiong, Predel, Crespo del Granado, Egging-Bratseth (b46) 2021; 283
Zeng, Ding, Xu, Yang, Dong (b7) 2020; 35
Dai, Yu, Yang, Huang, Lin, Li (b35) 2020; 11
Xiong, Predel, Crespo del Granado, Egging-Bratseth (b8) 2021; 283
Martinez-Mares, Fuerte-Esquivel (b9) 2012; 27
Liu, Li, Yang, Chung (b37) 2019; 34
Sayed, Wang, Bi (b29) 2019; 241
Wang, Ju, Lei, Wang, Wu, Hou (b30) 2020; 11
Qu, Yu, Shi, Chen (b23) 2020; 11
URL
Devlin, Li, Higgins, Foley (b19) 2016; 167
Liu, Shahidehpour, Fu, Li (b11) 2009; 24
Li, Li, Wen, Shahidehpour (b45) 2019; 10
Yang, Zhang, Kang, Xia (b39) 2017; PP
Zhao, Xu, Qadrdan, Wu (b17) 2021; 290
Yang, Xu, Sun, Zhao (b24) 2020; 11
Qi, Shahidehpour, Li, Wen, Shao (b44) 2020; 11
Yao, Wang, Ding, Wang, Wu, Liu (b20) 2019; 10
He, Yan, Shahidehpour, Li, Guo, Wu (b40) 2018; 33
Wu F, Nagarajan H, Zlotnik A, Sioshansi R, Rudkevich AM. Adaptive convex relaxations for gas pipeline network optimization, in: 2017 American Control Conference (ACC), 2017, pp. 4710–4716.
He, Lu, Zhang, Geng, Zhao, Li (b1) 2018; 224
Correa-Posada, n (b31) 2014; 29
Yang, Liu, Chung, Wen (b27) 2020; 11
Cui, Li, Hu, Bai, Fang (b47) 2016; 176
Sayed (10.1016/j.apenergy.2021.117673_b29) 2019; 241
Qu (10.1016/j.apenergy.2021.117673_b23) 2020; 11
Zhao (10.1016/j.apenergy.2021.117673_b14) 2018; 33
Lewandowska-Bernat (10.1016/j.apenergy.2021.117673_b2) 2018; 228
Qu (10.1016/j.apenergy.2021.117673_b43) 2019; 240
Devlin (10.1016/j.apenergy.2021.117673_b19) 2016; 167
10.1016/j.apenergy.2021.117673_b32
Zeng (10.1016/j.apenergy.2021.117673_b7) 2020; 35
10.1016/j.apenergy.2021.117673_b33
Badakhshan (10.1016/j.apenergy.2021.117673_b38) 2020; 11
Correa-Posada (10.1016/j.apenergy.2021.117673_b16) 2015; 30
Liu (10.1016/j.apenergy.2021.117673_b21) 2019; 10
Yang (10.1016/j.apenergy.2021.117673_b34) 2020; 11
He (10.1016/j.apenergy.2021.117673_b25) 2019; 34
Haeseldonckx (10.1016/j.apenergy.2021.117673_b4) 2007; 32
Nan (10.1016/j.apenergy.2021.117673_b6) 2020; 11
He (10.1016/j.apenergy.2021.117673_b40) 2018; 33
Liu (10.1016/j.apenergy.2021.117673_b11) 2009; 24
Correa-Posada (10.1016/j.apenergy.2021.117673_b31) 2014; 29
Chertkov (10.1016/j.apenergy.2021.117673_b5) 2015; 160
Zhao (10.1016/j.apenergy.2021.117673_b17) 2021; 290
Yao (10.1016/j.apenergy.2021.117673_b20) 2019; 10
He (10.1016/j.apenergy.2021.117673_b1) 2018; 224
Yang (10.1016/j.apenergy.2021.117673_b39) 2017; PP
Liu (10.1016/j.apenergy.2021.117673_b37) 2019; 34
Xiong (10.1016/j.apenergy.2021.117673_b8) 2021; 283
Yang (10.1016/j.apenergy.2021.117673_b24) 2020; 11
Fu (10.1016/j.apenergy.2021.117673_b26) 2020; 11
Wang (10.1016/j.apenergy.2021.117673_b36) 2021; 220
Cui (10.1016/j.apenergy.2021.117673_b47) 2016; 176
Martinez-Mares (10.1016/j.apenergy.2021.117673_b9) 2012; 27
Liu (10.1016/j.apenergy.2021.117673_b22) 2019; 10
Li (10.1016/j.apenergy.2021.117673_b15) 2017; 194
Lin (10.1016/j.apenergy.2021.117673_b28) 2019; 34
Wang (10.1016/j.apenergy.2021.117673_b30) 2020; 11
Fang (10.1016/j.apenergy.2021.117673_b48) 2019; 252
Yang (10.1016/j.apenergy.2021.117673_b27) 2020; 11
Xiong (10.1016/j.apenergy.2021.117673_b46) 2021; 283
Ríos-Mercado (10.1016/j.apenergy.2021.117673_b10) 2015; 147
Roald (10.1016/j.apenergy.2021.117673_b18) 2020; 108
Qi (10.1016/j.apenergy.2021.117673_b42) 2020; 11
Dai (10.1016/j.apenergy.2021.117673_b35) 2020; 11
10.1016/j.apenergy.2021.117673_b3
Qi (10.1016/j.apenergy.2021.117673_b44) 2020; 11
Wang (10.1016/j.apenergy.2021.117673_b41) 2018; 9
Li (10.1016/j.apenergy.2021.117673_b45) 2019; 10
Zhang (10.1016/j.apenergy.2021.117673_b12) 2015; 30
Ding (10.1016/j.apenergy.2021.117673_b13) 2017; PP
References_xml – volume: PP
  year: 2017
  ident: b39
  article-title: Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty
  publication-title: IEEE Trans Power Syst
– volume: 34
  start-page: 2755
  year: 2019
  end-page: 2767
  ident: b28
  article-title: A combined repair crew dispatch problem for resilient electric and natural gas system considering reconfiguration and DG islanding
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 4309
  year: 2019
  end-page: 4322
  ident: b20
  article-title: Stochastic day-ahead scheduling of integrated energy distribution network with identifying redundant gas network constraints
  publication-title: IEEE Trans. Smart Grid
– volume: 32
  start-page: 1381
  year: 2007
  end-page: 1386
  ident: b4
  article-title: The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure
  publication-title: Int J Hydrogen Energy
– reference: Wu F, Nagarajan H, Zlotnik A, Sioshansi R, Rudkevich AM. Adaptive convex relaxations for gas pipeline network optimization, in: 2017 American Control Conference (ACC), 2017, pp. 4710–4716.
– volume: 283
  year: 2021
  ident: b46
  article-title: Spatial flexibility in redispatch: Supporting low carbon energy systems with power-to-gas
  publication-title: Appl Energy
– volume: 290
  year: 2021
  ident: b17
  article-title: Optimal operation of compressor units in gas networks to provide flexibility to power systems
  publication-title: Appl Energy
– volume: 224
  start-page: 357
  year: 2018
  end-page: 370
  ident: b1
  article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas
  publication-title: Appl Energy
– volume: 33
  start-page: 4531
  year: 2018
  end-page: 4542
  ident: b40
  article-title: Decentralized optimization of multi-area electricity-natural gas flows based on cone reformulation
  publication-title: IEEE Trans Power Syst
– volume: 220
  year: 2021
  ident: b36
  article-title: Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics
  publication-title: Energy
– volume: 228
  start-page: 57
  year: 2018
  end-page: 67
  ident: b2
  article-title: Opportunities of power-to-gas technology in different energy systems architectures
  publication-title: Appl Energy
– volume: 29
  start-page: 1780
  year: 2014
  end-page: 1787
  ident: b31
  article-title: Security-constrained optimal power and natural-gas flow
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1802
  year: 2020
  end-page: 1804
  ident: b34
  article-title: A dynamic linearization and convex relaxation-based approach for a natural gas optimal operation problem
  publication-title: IEEE Trans. Smart Grid
– volume: 30
  start-page: 2984
  year: 2015
  end-page: 2993
  ident: b12
  article-title: Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1473
  year: 2020
  end-page: 1482
  ident: b35
  article-title: A static equivalent model of natural gas network for electricity–gas co-optimization
  publication-title: IEEE Trans Sustain Energy
– volume: 11
  start-page: 118
  year: 2020
  end-page: 128
  ident: b38
  article-title: Security-constrained unit commitment with natural gas pipeline transient constraints
  publication-title: IEEE Trans. Smart Grid
– reference: Nagarajan H, Lu M, Yamangil E, Bent R. Tightening mccormick relaxations for nonlinear programs via dynamic multivariate partitioning, in: International Conference on Principles and Practice of Constraint Programming, 2016, pp. 369–387.
– volume: 167
  start-page: 294
  year: 2016
  end-page: 304
  ident: b19
  article-title: The importance of gas infrastructure in power systems with high wind power penetrations
  publication-title: Appl Energy
– volume: 11
  start-page: 2230
  year: 2020
  end-page: 2240
  ident: b44
  article-title: A chance-constrained decentralized operation of multi-area integrated electricity–natural gas systems with variable wind and solar energy
  publication-title: IEEE Trans Sustain Energy
– volume: 241
  start-page: 548
  year: 2019
  end-page: 566
  ident: b29
  article-title: Resilient operational strategies for power systems considering the interactions with natural gas systems
  publication-title: Appl Energy
– volume: 24
  start-page: 1523
  year: 2009
  end-page: 1536
  ident: b11
  article-title: Security-constrained unit commitment with natural gas transmission constraints
  publication-title: IEEE Trans Power Syst
– volume: 283
  year: 2021
  ident: b8
  article-title: Spatial flexibility in redispatch: Supporting low carbon energy systems with power-to-gas
  publication-title: Appl Energy
– volume: 27
  start-page: 2156
  year: 2012
  end-page: 2166
  ident: b9
  article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1465
  year: 2020
  end-page: 1475
  ident: b24
  article-title: Two-stage convexification-based optimal electricity-gas flow
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 1927
  year: 2019
  end-page: 1938
  ident: b22
  article-title: Day-ahead optimal operation for multi-energy residential systems with renewables
  publication-title: IEEE Trans Sustain Energy
– volume: 9
  start-page: 1145
  year: 2018
  end-page: 1156
  ident: b41
  article-title: Convex optimization based distributed optimal gas-power flow calculation
  publication-title: IEEE Trans Sustain Energy
– volume: 194
  start-page: 696
  year: 2017
  end-page: 704
  ident: b15
  article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process
  publication-title: Appl Energy
– volume: 33
  start-page: 3064
  year: 2018
  end-page: 3075
  ident: b14
  article-title: Coordinated expansion planning of natural gas and electric power systems
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 3558
  year: 2020
  end-page: 3569
  ident: b6
  article-title: Vulnerability identification and evaluation of interdependent natural gas-electricity systems
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 2141
  year: 2020
  end-page: 2151
  ident: b26
  article-title: Optimal operation of an integrated energy system incorporated with hcng distribution networks
  publication-title: IEEE Trans Sustain Energy
– volume: 30
  start-page: 3347
  year: 2015
  end-page: 3355
  ident: b16
  article-title: Integrated power and natural gas model for energy adequacy in short-term operation
  publication-title: IEEE Trans Power Syst
– volume: 147
  start-page: 536
  year: 2015
  end-page: 555
  ident: b10
  article-title: Optimization problems in natural gas transportation systems: A state-of-the-art review
  publication-title: Appl Energy
– volume: 10
  start-page: 2028
  year: 2019
  end-page: 2038
  ident: b45
  article-title: Privacy-preserving optimal dispatch for an integrated power distribution and natural gas system in networked energy hubs
  publication-title: IEEE Trans Sustain Energy
– volume: 35
  start-page: 571
  year: 2020
  end-page: 583
  ident: b7
  article-title: Reliability evaluation for integrated power-gas systems with power-to-gas and gas storages
  publication-title: IEEE Trans Power Syst
– volume: 34
  start-page: 5076
  year: 2019
  end-page: 5079
  ident: b37
  article-title: Optimal energy flow for integrated energy systems considering gas transients
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 646
  year: 2019
  end-page: 658
  ident: b21
  article-title: Day-ahead dispatch of integrated electricity and natural gas system considering reserve scheduling and renewable uncertainties
  publication-title: IEEE Trans Sustain Energy
– reference: .
– volume: 252
  year: 2019
  ident: b48
  article-title: Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties
  publication-title: Appl Energy
– volume: 108
  start-page: 1518
  year: 2020
  end-page: 1540
  ident: b18
  article-title: An uncertainty management framework for integrated gas-electric energy systems
  publication-title: Proc IEEE
– volume: 11
  start-page: 1785
  year: 2020
  end-page: 1796
  ident: b42
  article-title: Decentralized privacy-preserving operation of multi-area integrated electricity and natural gas systems with renewable energy resources
  publication-title: IEEE Trans Sustain Energy
– volume: 240
  start-page: 630
  year: 2019
  end-page: 645
  ident: b43
  article-title: A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control
  publication-title: Appl Energy
– volume: PP
  year: 2017
  ident: b13
  article-title: Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power and natural gas systems
  publication-title: IEEE Trans Power Syst
– volume: 176
  start-page: 183
  year: 2016
  end-page: 195
  ident: b47
  article-title: Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants
  publication-title: Appl Energy
– volume: 160
  start-page: 541
  year: 2015
  end-page: 551
  ident: b5
  article-title: Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling
  publication-title: Appl Energy
– volume: 11
  start-page: 1807
  year: 2020
  end-page: 1819
  ident: b27
  article-title: Coordinated planning strategy for integrated energy systems in a district energy sector
  publication-title: IEEE Trans Sustain Energy
– volume: 34
  start-page: 3791
  year: 2019
  end-page: 3803
  ident: b25
  article-title: Distributionally robust scheduling of integrated gas-electricity systems with demand response
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 2498
  year: 2020
  end-page: 2510
  ident: b30
  article-title: Markov Decision process-based resilience enhancement for distribution systems: An approximate dynamic programming approach
  publication-title: IEEE Trans Smart Grid
– reference: URL:
– volume: 11
  start-page: 726
  year: 2020
  end-page: 735
  ident: b23
  article-title: Synergetic power-gas flow with space-time diffusion control of air pollutants using a convex multi-objective optimization
  publication-title: IEEE Trans Sustain Energy
– volume: 147
  start-page: 536
  year: 2015
  ident: 10.1016/j.apenergy.2021.117673_b10
  article-title: Optimization problems in natural gas transportation systems: A state-of-the-art review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.017
– volume: 11
  start-page: 1473
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b35
  article-title: A static equivalent model of natural gas network for electricity–gas co-optimization
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2927837
– volume: 167
  start-page: 294
  issn: 0306-2619
  year: 2016
  ident: 10.1016/j.apenergy.2021.117673_b19
  article-title: The importance of gas infrastructure in power systems with high wind power penetrations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.150
– volume: 241
  start-page: 548
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b29
  article-title: Resilient operational strategies for power systems considering the interactions with natural gas systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.053
– volume: 10
  start-page: 646
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b21
  article-title: Day-ahead dispatch of integrated electricity and natural gas system considering reserve scheduling and renewable uncertainties
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2843121
– volume: 290
  issn: 0306-2619
  year: 2021
  ident: 10.1016/j.apenergy.2021.117673_b17
  article-title: Optimal operation of compressor units in gas networks to provide flexibility to power systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116740
– volume: 32
  start-page: 1381
  issue: 10
  year: 2007
  ident: 10.1016/j.apenergy.2021.117673_b4
  article-title: The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.10.018
– ident: 10.1016/j.apenergy.2021.117673_b32
  doi: 10.23919/ACC.2017.7963683
– volume: PP
  issue: 99
  year: 2017
  ident: 10.1016/j.apenergy.2021.117673_b39
  article-title: Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty
  publication-title: IEEE Trans Power Syst
– volume: 27
  start-page: 2156
  issue: 4
  year: 2012
  ident: 10.1016/j.apenergy.2021.117673_b9
  article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2191984
– volume: 108
  start-page: 1518
  issue: 9
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b18
  article-title: An uncertainty management framework for integrated gas-electric energy systems
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3005505
– volume: 11
  start-page: 1785
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b42
  article-title: Decentralized privacy-preserving operation of multi-area integrated electricity and natural gas systems with renewable energy resources
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2940624
– volume: 283
  issn: 0306-2619
  year: 2021
  ident: 10.1016/j.apenergy.2021.117673_b8
  article-title: Spatial flexibility in redispatch: Supporting low carbon energy systems with power-to-gas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116201
– volume: 11
  start-page: 1802
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b34
  article-title: A dynamic linearization and convex relaxation-based approach for a natural gas optimal operation problem
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2945511
– volume: 252
  issn: 0306-2619
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b48
  article-title: Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113420
– volume: 33
  start-page: 3064
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.117673_b14
  article-title: Coordinated expansion planning of natural gas and electric power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2759198
– volume: 11
  start-page: 2498
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b30
  article-title: Markov Decision process-based resilience enhancement for distribution systems: An approximate dynamic programming approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2956740
– volume: 33
  start-page: 4531
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2021.117673_b40
  article-title: Decentralized optimization of multi-area electricity-natural gas flows based on cone reformulation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2788052
– volume: PP
  issue: 99
  year: 2017
  ident: 10.1016/j.apenergy.2021.117673_b13
  article-title: Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power and natural gas systems
  publication-title: IEEE Trans Power Syst
– ident: 10.1016/j.apenergy.2021.117673_b3
– volume: 34
  start-page: 5076
  issue: 6
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b37
  article-title: Optimal energy flow for integrated energy systems considering gas transients
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2929685
– volume: 11
  start-page: 3558
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b6
  article-title: Vulnerability identification and evaluation of interdependent natural gas-electricity systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2968178
– volume: 34
  start-page: 3791
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b25
  article-title: Distributionally robust scheduling of integrated gas-electricity systems with demand response
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2907170
– volume: 176
  start-page: 183
  issn: 0306-2619
  year: 2016
  ident: 10.1016/j.apenergy.2021.117673_b47
  article-title: Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.007
– volume: 11
  start-page: 1465
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b24
  article-title: Two-stage convexification-based optimal electricity-gas flow
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2938553
– volume: 11
  start-page: 2141
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b26
  article-title: Optimal operation of an integrated energy system incorporated with hcng distribution networks
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2951701
– volume: 11
  start-page: 1807
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b27
  article-title: Coordinated planning strategy for integrated energy systems in a district energy sector
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2941418
– volume: 10
  start-page: 1927
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b22
  article-title: Day-ahead optimal operation for multi-energy residential systems with renewables
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2876387
– volume: 30
  start-page: 2984
  issue: 6
  year: 2015
  ident: 10.1016/j.apenergy.2021.117673_b12
  article-title: Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2369486
– volume: 11
  start-page: 2230
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b44
  article-title: A chance-constrained decentralized operation of multi-area integrated electricity–natural gas systems with variable wind and solar energy
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2952495
– volume: 30
  start-page: 3347
  issue: 6
  year: 2015
  ident: 10.1016/j.apenergy.2021.117673_b16
  article-title: Integrated power and natural gas model for energy adequacy in short-term operation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2372013
– volume: 283
  issn: 0306-2619
  year: 2021
  ident: 10.1016/j.apenergy.2021.117673_b46
  article-title: Spatial flexibility in redispatch: Supporting low carbon energy systems with power-to-gas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116201
– volume: 11
  start-page: 726
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b23
  article-title: Synergetic power-gas flow with space-time diffusion control of air pollutants using a convex multi-objective optimization
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2904404
– volume: 9
  start-page: 1145
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.117673_b41
  article-title: Convex optimization based distributed optimal gas-power flow calculation
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2771954
– volume: 34
  start-page: 2755
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b28
  article-title: A combined repair crew dispatch problem for resilient electric and natural gas system considering reconfiguration and DG islanding
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2895198
– ident: 10.1016/j.apenergy.2021.117673_b33
  doi: 10.1007/978-3-319-44953-1_24
– volume: 35
  start-page: 571
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b7
  article-title: Reliability evaluation for integrated power-gas systems with power-to-gas and gas storages
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2935771
– volume: 240
  start-page: 630
  issn: 0306-2619
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b43
  article-title: A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.038
– volume: 29
  start-page: 1780
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2021.117673_b31
  article-title: Security-constrained optimal power and natural-gas flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2299714
– volume: 24
  start-page: 1523
  issn: 0885-8950
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2021.117673_b11
  article-title: Security-constrained unit commitment with natural gas transmission constraints
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2023262
– volume: 224
  start-page: 357
  year: 2018
  ident: 10.1016/j.apenergy.2021.117673_b1
  article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.119
– volume: 220
  year: 2021
  ident: 10.1016/j.apenergy.2021.117673_b36
  article-title: Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119760
– volume: 228
  start-page: 57
  issn: 0306-2619
  year: 2018
  ident: 10.1016/j.apenergy.2021.117673_b2
  article-title: Opportunities of power-to-gas technology in different energy systems architectures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.001
– volume: 11
  start-page: 118
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117673_b38
  article-title: Security-constrained unit commitment with natural gas pipeline transient constraints
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2918088
– volume: 160
  start-page: 541
  year: 2015
  ident: 10.1016/j.apenergy.2021.117673_b5
  article-title: Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.085
– volume: 194
  start-page: 696
  year: 2017
  ident: 10.1016/j.apenergy.2021.117673_b15
  article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.077
– volume: 10
  start-page: 4309
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b20
  article-title: Stochastic day-ahead scheduling of integrated energy distribution network with identifying redundant gas network constraints
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2856825
– volume: 10
  start-page: 2028
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117673_b45
  article-title: Privacy-preserving optimal dispatch for an integrated power distribution and natural gas system in networked energy hubs
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2877586
SSID ssj0002120
Score 2.3861709
Snippet The natural gas system and the electric power system are becoming increasingly coupled in consideration of more interdependent components, e.g., natural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117673
SubjectTerms algorithms
Best response-based look-ahead scheduling
Bilevel mixed integer linear programming
electric power
energy
Iterative best-response-search
model validation
natural gas
Natural gas system
operating costs
Power system
Title Best response-based individually look-ahead scheduling for natural gas and power systems
URI https://dx.doi.org/10.1016/j.apenergy.2021.117673
https://www.proquest.com/docview/2636659384
Volume 304
WOSCitedRecordID wos000704347400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wAHBINpGx8yErfKJbHjJD6OqQgQmpAYojfLjl22qUqrpkXbf89zbCfZ-Bg7cIkit3acvF9-79l5Hwi95oZXCliOmJJbkllhSWnSjGhQ75qrSlTUF5sojo_L6VR8Dm5jTVtOoKjr8uJCLP-rqKENhO1CZ28h7m5QaIBzEDocQexw_CfBvwWeH62866slTku59Eox7Gp-OZqDXU0UkLAZwdIWVM08elO2WT5BZt-Vz9y8dCXUQrLnZmjGRtvVtpGD_aa8J46j00XQh841Z9Maqmd9y7e2BZ5Z1_LJtj4FX043tV4M9yFo6nw6fCRmjL9KcuLWY0NuZUk2YMc0LXJfuOQX4vZ7COdjtfQzH7tLjPsOVzNlX9NgnV9hdFk7l3Ec6caRfpy7aJsWXAB9bx9-mEw_dhqbhvSd8Q4GkeS_n9GfjJhr6ry1UU4eoYdhcYEPPSgeozu23kEPBiknd9DupI9shL8Gam-eoKnDDb6KGzzEDe5xg3vcYMANDrjBgBsMuMEtbnDAzVP09d3k5Og9CWU3SMUyvia6EAZYGyxZxSqthc1g1avc921tspmhuRFCuRDtmYEfGU0MLxXjmtrCpLpkbBdt1Yva7iGsZ7QqOC1zy8pMcaOpVtYlWEpyWokk20c8PkdZhZz0rjTKXP5dkvvoTddv6bOy3NhDRDHJYFt6m1ECAm_s-yrKVQL5ui9qqraLTSNpzvKcC7i5g1vP6Bm6379Gz9HWerWxL9C96sf6rFm9DBD9CbyMrFc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+response-based+individually+look-ahead+scheduling+for+natural+gas+and+power+systems&rft.jtitle=Applied+energy&rft.au=Wang%2C+Chong&rft.au=Ju%2C+Ping&rft.au=Wu%2C+Feng&rft.au=Lei%2C+Shunbo&rft.date=2021-12-15&rft.issn=0306-2619&rft.volume=304&rft.spage=117673&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_117673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon