Peer-to-peer decentralized energy trading framework for retailers and prosumers
The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming...
Uloženo v:
| Vydáno v: | Applied energy Ročník 308; s. 118310 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.02.2022
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation.
•Designs a competitive market consisting of prosumers and retailers.•A decentralized approach is proposed to clear the fully decentralized energy market.•Local players can bilaterally peer-to-peer interact with each other and retailers.•Market players have flexible generation and consumption.•Peer-to-peer energy trading is among all players. |
|---|---|
| AbstractList | The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation. The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation. •Designs a competitive market consisting of prosumers and retailers.•A decentralized approach is proposed to clear the fully decentralized energy market.•Local players can bilaterally peer-to-peer interact with each other and retailers.•Market players have flexible generation and consumption.•Peer-to-peer energy trading is among all players. |
| ArticleNumber | 118310 |
| Author | Mehdinejad, Mehdi Mohammadi-Ivatloo, Behnam Shayanfar, Heidarali |
| Author_xml | – sequence: 1 givenname: Mehdi orcidid: 0000-0003-3268-9941 surname: Mehdinejad fullname: Mehdinejad, Mehdi email: m_mehdinejad@elec.iust.ac.ir, m.mehdinejad1369@gmail.com organization: Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran – sequence: 2 givenname: Heidarali orcidid: 0000-0002-2330-0546 surname: Shayanfar fullname: Shayanfar, Heidarali email: Hashayanfar@iust.ac.ir, Hashayanfar@gmail.com organization: Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran – sequence: 3 givenname: Behnam surname: Mohammadi-Ivatloo fullname: Mohammadi-Ivatloo, Behnam email: bmohammadi@tabrizu.ac.ir organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran |
| BookMark | eNqFkEtLAzEUhYNUsK3-BcnSzYx5tJkZcKEUX1CoC12HNLkpqfMySZX6600Z3bjp6nLgnHPv_SZo1HYtIHRJSU4JFdfbXPXQgt_sc0YYzSktOSUnaEzLgmVVkiM0JpyIjAlanaFJCFtCkpORMVq9APgsdlmfJjagoY1e1e4bDB5KcdLGtRtsvWrgq_Pv2HYee4jK1eADVq3Bve_CrknqHJ1aVQe4-J1T9PZw_7p4yparx-fF3TLTfDaP2Zoro0pbCctMwQphq8LOleFVIYghBae20gRsyUEYMmemFIZyUSiVIoSuOZ-iq6E3bf7YQYiycUFDXasWul2QTHAxK2nFi2S9Gaw6HRk8WKldVNF1h09dLSmRB45yK_84ygNHOXBMcfEv3nvXKL8_HrwdgpA4fDrwMmgHrQbjPOgoTeeOVfwAhUOUbg |
| CitedBy_id | crossref_primary_10_3390_sym15081561 crossref_primary_10_1016_j_rser_2024_114681 crossref_primary_10_3390_en18071569 crossref_primary_10_1016_j_rser_2024_114969 crossref_primary_10_1016_j_segan_2025_101914 crossref_primary_10_1016_j_heliyon_2024_e29600 crossref_primary_10_1016_j_enbuild_2025_116349 crossref_primary_10_1016_j_apenergy_2022_119162 crossref_primary_10_3390_en16176315 crossref_primary_10_1016_j_apenergy_2024_123518 crossref_primary_10_1016_j_apenergy_2023_120689 crossref_primary_10_1016_j_rser_2022_112908 crossref_primary_10_1007_s11625_024_01493_7 crossref_primary_10_1049_rpg2_12490 crossref_primary_10_1016_j_erss_2023_102997 crossref_primary_10_1109_ACCESS_2022_3151922 crossref_primary_10_3390_su15076165 crossref_primary_10_3390_app142411510 crossref_primary_10_1007_s00202_024_02852_4 crossref_primary_10_1007_s00202_023_02163_0 crossref_primary_10_1109_JIOT_2024_3379746 crossref_primary_10_1109_TSG_2023_3266809 crossref_primary_10_1016_j_engappai_2024_107847 crossref_primary_10_1016_j_engappai_2023_107190 crossref_primary_10_1016_j_apenergy_2023_121148 crossref_primary_10_1109_TIA_2025_3541604 crossref_primary_10_3390_pr11020532 crossref_primary_10_1049_stg2_12104 crossref_primary_10_1016_j_rser_2023_113170 crossref_primary_10_1016_j_energy_2022_124219 crossref_primary_10_3390_en15072404 crossref_primary_10_1016_j_epsr_2023_109158 crossref_primary_10_1002_wene_434 crossref_primary_10_1016_j_jclepro_2024_141598 crossref_primary_10_1049_rpg2_12984 crossref_primary_10_1016_j_compeleceng_2024_109618 crossref_primary_10_3390_en16083464 crossref_primary_10_1016_j_segan_2023_101136 crossref_primary_10_3390_electronics14153155 crossref_primary_10_1016_j_enbuild_2024_114544 crossref_primary_10_1016_j_epsr_2023_109482 crossref_primary_10_1049_gtd2_13257 crossref_primary_10_1016_j_ijepes_2023_109386 crossref_primary_10_1016_j_compeleceng_2025_110259 crossref_primary_10_1016_j_ijepes_2024_110108 crossref_primary_10_1016_j_esr_2025_101673 crossref_primary_10_1016_j_rineng_2024_103804 crossref_primary_10_3390_su151310552 crossref_primary_10_1016_j_apenergy_2022_119799 crossref_primary_10_1016_j_prime_2024_100778 crossref_primary_10_1109_ACCESS_2022_3224936 crossref_primary_10_1049_rpg2_12677 crossref_primary_10_1109_ACCESS_2024_3395920 crossref_primary_10_1016_j_apenergy_2025_126379 crossref_primary_10_1109_TSG_2023_3250321 crossref_primary_10_1016_j_scs_2022_104182 crossref_primary_10_1016_j_segan_2025_101629 crossref_primary_10_1016_j_apenergy_2023_122373 crossref_primary_10_1016_j_apenergy_2022_120061 crossref_primary_10_1016_j_egyr_2024_04_053 crossref_primary_10_1016_j_apenergy_2023_122611 crossref_primary_10_1016_j_energy_2023_129347 crossref_primary_10_1016_j_epsr_2022_108802 crossref_primary_10_1109_ACCESS_2023_3260253 crossref_primary_10_1016_j_ifacol_2022_07_063 crossref_primary_10_3390_en16031182 |
| Cites_doi | 10.1109/TPWRS.2014.2359457 10.1109/TSG.2020.2997956 10.1109/TPWRS.2017.2779540 10.1109/TIA.2020.2990585 10.1049/iet-gtd.2019.1233 10.1109/TPWRS.2018.2808961 10.1109/TSG.2020.2986337 10.1016/j.energy.2021.121239 10.1109/TSG.2020.2976130 10.1109/TPWRS.2020.3021474 10.1057/palgrave.jors.2600425 10.1007/s40565-019-0510-0 10.1016/j.apenergy.2021.116766 10.1049/iet-gtd.2018.5309 10.1109/TSG.2020.3048397 10.1109/TPWRS.2018.2872880 10.1109/TSG.2018.2805326 10.1016/j.apenergy.2020.116123 10.1109/TIE.2019.2931229 10.1016/j.apenergy.2019.114436 10.1016/j.egypro.2016.11.264 10.1109/TSG.2015.2409053 10.1016/j.ijepes.2020.106065 10.1016/j.apenergy.2016.11.024 10.1016/j.apenergy.2021.116598 10.1016/j.apenergy.2017.10.106 10.1109/TPWRS.2018.2834472 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.118310 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_118310 S030626192101566X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-b3ada8f96f2d7276f97f5ad39760d0731f9c0ef83e6d052d86d1367aaf9601b33 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769880800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Thu Oct 02 11:58:05 EDT 2025 Sat Nov 29 07:24:06 EST 2025 Tue Nov 18 21:50:59 EST 2025 Fri Feb 23 02:40:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Primal–dual sub-gradient algorithm Peer to peer Peer to peer energy trading Electricity retail market Bilateral energy trading Local market |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-b3ada8f96f2d7276f97f5ad39760d0731f9c0ef83e6d052d86d1367aaf9601b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2330-0546 0000-0003-3268-9941 |
| PQID | 2636481937 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636481937 crossref_citationtrail_10_1016_j_apenergy_2021_118310 crossref_primary_10_1016_j_apenergy_2021_118310 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_118310 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-15 |
| PublicationDateYYYYMMDD | 2022-02-15 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Esmat, de Vos, Ghiassi-Farrokhfal, Palensky, Epema (b23) 2021; 282 Khorasany, Mishra, Babaki, Ledwich (b35) 2019; 7 Xiao, Wang, Pinson, Wang (b4) 2017; 33 Grainger, Stevenson, Stevenson (b31) 2003 do Prado, Qiao (b27) 2018; 10 Boyd, Parikh, Chu (b32) 2011 Tushar, Saha, Yuen, Azim, Morstyn, Poor, Niyato, Bean (b3) 2020; 261 Ehsan, Yang (b1) 2018; 210 Nedic, Ozdaglar (b34) 2010 Aznavi, Fajri, Shadmand, Khoshkbar-Sadigh (b18) 2020; 56 Nguyen (b15) 2020; 36 Zhu, Martínez (b9) 2011; 57 Guerrero, Sok, Chapman, Verbič (b21) 2021; 287 Elkazaz, Sumner, Thomas (b22) 2021; 291 Khorasany, Mishra, Ledwich (b6) 2018; 12 Deng, Yang, Hou, Chow, Chen (b8) 2014; 30 Hug, Kar, Wu (b11) 2015; 6 Paudel, Sampath, Yang, Gooi (b16) 2020; 11 Khorasany, Paudel, Razzaghi, Siano (b19) 2020; 12 Zhang, Wu, Cheng, Zhou, Long (b12) 2016; 103 Khorasany, Mishra, Ledwich (b7) 2019; 14 Xiao, Wang, Pinson, Wang (b5) 2020; 11 Khorasany, Mishra, Ledwich (b14) 2019; 67 Zhu, Martínez (b28) 2011; 57 Sharifi, Anvari-Moghaddam, Fathi, Vahidinasab (b24) 2020; 121 Nojavan, Zare, Mohammadi-Ivatloo (b25) 2017; 187 Cui, Wang, Shi, Xiao (b17) 2020; 11 Da Silva, Ilić, Karnouskos (b2) 2013; 5 Moret, Pinson (b13) 2018; 34 Aghamohammadloo, Talaeizadeh, Shahanaghi, Aghaei, Shayanfar, Shafie-khah, Catalão (b26) 2021 Morstyn, McCulloch (b10) 2018; 34 Bertsekas (b33) 1997; 48 Sorin, Bobo, Pinson (b20) 2018; 34 Oskouei, Mirzaei, Mohammadi-Ivatloo, Shafiee, Marzband, Anvari-Moghaddam (b29) 2021; 214 Song, Qu (b30) 2014 Aznavi (10.1016/j.apenergy.2021.118310_b18) 2020; 56 Nedic (10.1016/j.apenergy.2021.118310_b34) 2010 Khorasany (10.1016/j.apenergy.2021.118310_b35) 2019; 7 Paudel (10.1016/j.apenergy.2021.118310_b16) 2020; 11 Deng (10.1016/j.apenergy.2021.118310_b8) 2014; 30 Khorasany (10.1016/j.apenergy.2021.118310_b6) 2018; 12 Da Silva (10.1016/j.apenergy.2021.118310_b2) 2013; 5 Ehsan (10.1016/j.apenergy.2021.118310_b1) 2018; 210 Morstyn (10.1016/j.apenergy.2021.118310_b10) 2018; 34 Zhu (10.1016/j.apenergy.2021.118310_b28) 2011; 57 Aghamohammadloo (10.1016/j.apenergy.2021.118310_b26) 2021 Zhu (10.1016/j.apenergy.2021.118310_b9) 2011; 57 Nguyen (10.1016/j.apenergy.2021.118310_b15) 2020; 36 Oskouei (10.1016/j.apenergy.2021.118310_b29) 2021; 214 Guerrero (10.1016/j.apenergy.2021.118310_b21) 2021; 287 Khorasany (10.1016/j.apenergy.2021.118310_b14) 2019; 67 Sorin (10.1016/j.apenergy.2021.118310_b20) 2018; 34 Nojavan (10.1016/j.apenergy.2021.118310_b25) 2017; 187 Zhang (10.1016/j.apenergy.2021.118310_b12) 2016; 103 Khorasany (10.1016/j.apenergy.2021.118310_b7) 2019; 14 Moret (10.1016/j.apenergy.2021.118310_b13) 2018; 34 Cui (10.1016/j.apenergy.2021.118310_b17) 2020; 11 Khorasany (10.1016/j.apenergy.2021.118310_b19) 2020; 12 Hug (10.1016/j.apenergy.2021.118310_b11) 2015; 6 Grainger (10.1016/j.apenergy.2021.118310_b31) 2003 do Prado (10.1016/j.apenergy.2021.118310_b27) 2018; 10 Esmat (10.1016/j.apenergy.2021.118310_b23) 2021; 282 Xiao (10.1016/j.apenergy.2021.118310_b4) 2017; 33 Tushar (10.1016/j.apenergy.2021.118310_b3) 2020; 261 Elkazaz (10.1016/j.apenergy.2021.118310_b22) 2021; 291 Xiao (10.1016/j.apenergy.2021.118310_b5) 2020; 11 Boyd (10.1016/j.apenergy.2021.118310_b32) 2011 Song (10.1016/j.apenergy.2021.118310_b30) 2014 Bertsekas (10.1016/j.apenergy.2021.118310_b33) 1997; 48 Sharifi (10.1016/j.apenergy.2021.118310_b24) 2020; 121 |
| References_xml | – volume: 121 year: 2020 ident: b24 article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market publication-title: Int J Electr Power Energy Syst – volume: 7 start-page: 791 year: 2019 end-page: 801 ident: b35 article-title: Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method publication-title: J Mod Power Syst Clean Energy – volume: 261 year: 2020 ident: b3 article-title: A coalition formation game framework for peer-to-peer energy trading publication-title: Appl Energy – year: 2003 ident: b31 article-title: Power system analysis – volume: 5 start-page: 402 year: 2013 end-page: 410 ident: b2 article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading publication-title: IEEE Trans Smart Grid – volume: 11 start-page: 3817 year: 2020 end-page: 3826 ident: b17 article-title: A new and fair Peer-to-Peer energy sharing framework for energy buildings publication-title: IEEE Trans Smart Grid – volume: 14 start-page: 245 year: 2019 end-page: 253 ident: b7 article-title: Hybrid trading scheme for peer-to-peer energy trading in transactive energy markets publication-title: IET Gener Trans Distrib – year: 2011 ident: b32 article-title: Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers – volume: 210 start-page: 44 year: 2018 end-page: 59 ident: b1 article-title: Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques publication-title: Appl Energy – volume: 11 start-page: 3302 year: 2020 end-page: 3312 ident: b5 article-title: Transactive energy based aggregation of prosumers as a retailer publication-title: IEEE Trans Smart Grid – volume: 187 start-page: 449 year: 2017 end-page: 464 ident: b25 article-title: Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program publication-title: Appl Energy – volume: 10 start-page: 2581 year: 2018 end-page: 2592 ident: b27 article-title: A stochastic decision-making model for an electricity retailer with intermittent renewable energy and short-term demand response publication-title: IEEE Trans Smart Grid – volume: 30 start-page: 2364 year: 2014 end-page: 2374 ident: b8 article-title: Distributed real-time demand response in multiseller–multibuyer smart distribution grid publication-title: IEEE Trans Power Syst – volume: 291 year: 2021 ident: b22 article-title: A hierarchical and decentralized energy management system for peer-to-peer energy trading publication-title: Appl Energy – volume: 6 start-page: 1893 year: 2015 end-page: 1903 ident: b11 article-title: Consensus+ innovations approach for distributed multiagent coordination in a microgrid publication-title: IEEE Trans Smart Grid – volume: 103 start-page: 147 year: 2016 end-page: 152 ident: b12 article-title: A bidding system for peer-to-peer energy trading in a grid-connected microgrid publication-title: Energy Procedia – volume: 33 start-page: 3898 year: 2017 end-page: 3908 ident: b4 article-title: A local energy market for electricity and hydrogen publication-title: IEEE Trans Power Syst – volume: 57 start-page: 151 year: 2011 end-page: 164 ident: b28 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Automat Control – volume: 214 year: 2021 ident: b29 article-title: A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets publication-title: Energy – volume: 287 year: 2021 ident: b21 article-title: Electrical-distance driven peer-to-peer energy trading in a low-voltage network publication-title: Appl Energy – volume: 12 start-page: 5899 year: 2018 end-page: 5908 ident: b6 article-title: Market framework for local energy trading: a review of potential designs and market clearing approaches publication-title: IET Gener Trans Distrib – volume: 34 start-page: 3994 year: 2018 end-page: 4004 ident: b13 article-title: Energy collectives: a community and fairness based approach to future electricity markets publication-title: IEEE Trans Power Syst – volume: 67 start-page: 4646 year: 2019 end-page: 4657 ident: b14 article-title: A decentralized bilateral energy trading system for peer-to-peer electricity markets publication-title: IEEE Trans Ind Electron – volume: 34 start-page: 994 year: 2018 end-page: 1004 ident: b20 article-title: Consensus-based approach to peer-to-peer electricity markets with product differentiation publication-title: IEEE Trans Power Syst – volume: 11 start-page: 4727 year: 2020 end-page: 4737 ident: b16 article-title: Peer-to-peer energy trading in smart grid considering power losses and network fees publication-title: IEEE Trans Smart Grid – year: 2010 ident: b34 article-title: 10 Cooperative distributed multi-agent publication-title: Convex Optimization in Signal Processing and Communications, Vol. 340 – volume: 12 start-page: 2472 year: 2020 end-page: 2483 ident: b19 article-title: A new method for peer matching and negotiation of prosumers in peer-to-peer energy markets publication-title: IEEE Trans Smart Grid – volume: 57 start-page: 151 year: 2011 end-page: 164 ident: b9 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Automat Control – volume: 282 year: 2021 ident: b23 article-title: A novel decentralized platform for peer-to-peer energy trading market with blockchain technology publication-title: Appl Energy – volume: 48 start-page: 334 year: 1997 ident: b33 article-title: Nonlinear programming publication-title: J Oper Res Soc – volume: 36 start-page: 1470 year: 2020 end-page: 1481 ident: b15 article-title: Optimal solution analysis and decentralized mechanisms for peer-to-peer energy markets publication-title: IEEE Trans Power Syst – volume: 56 start-page: 5848 year: 2020 end-page: 5857 ident: b18 article-title: Peer-to-peer operation strategy of pv equipped office buildings and charging stations considering electric vehicle energy pricing publication-title: IEEE Trans Ind Appl – start-page: 2509 year: 2014 end-page: 2513 ident: b30 article-title: An improved real-time pricing algorithm based on utility maximization for smart grid publication-title: Proceeding of the 11th World Congress on Intelligent Control and Automation – volume: 34 start-page: 4005 year: 2018 end-page: 4014 ident: b10 article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences publication-title: IEEE Trans Power Syst – year: 2021 ident: b26 article-title: Integrated demand response programs and energy hubs retail energy market modelling publication-title: Energy – volume: 30 start-page: 2364 issue: 5 year: 2014 ident: 10.1016/j.apenergy.2021.118310_b8 article-title: Distributed real-time demand response in multiseller–multibuyer smart distribution grid publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2359457 – volume: 11 start-page: 4727 issue: 6 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b16 article-title: Peer-to-peer energy trading in smart grid considering power losses and network fees publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2997956 – volume: 33 start-page: 3898 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2021.118310_b4 article-title: A local energy market for electricity and hydrogen publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2779540 – year: 2011 ident: 10.1016/j.apenergy.2021.118310_b32 – volume: 56 start-page: 5848 issue: 5 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b18 article-title: Peer-to-peer operation strategy of pv equipped office buildings and charging stations considering electric vehicle energy pricing publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.2990585 – volume: 14 start-page: 245 issue: 2 year: 2019 ident: 10.1016/j.apenergy.2021.118310_b7 article-title: Hybrid trading scheme for peer-to-peer energy trading in transactive energy markets publication-title: IET Gener Trans Distrib doi: 10.1049/iet-gtd.2019.1233 – volume: 5 start-page: 402 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2021.118310_b2 article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading publication-title: IEEE Trans Smart Grid – volume: 34 start-page: 3994 issue: 5 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b13 article-title: Energy collectives: a community and fairness based approach to future electricity markets publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2808961 – volume: 11 start-page: 3817 issue: 5 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b17 article-title: A new and fair Peer-to-Peer energy sharing framework for energy buildings publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2986337 – year: 2021 ident: 10.1016/j.apenergy.2021.118310_b26 article-title: Integrated demand response programs and energy hubs retail energy market modelling publication-title: Energy doi: 10.1016/j.energy.2021.121239 – volume: 57 start-page: 151 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2021.118310_b28 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Automat Control – start-page: 2509 year: 2014 ident: 10.1016/j.apenergy.2021.118310_b30 article-title: An improved real-time pricing algorithm based on utility maximization for smart grid – volume: 11 start-page: 3302 issue: 4 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b5 article-title: Transactive energy based aggregation of prosumers as a retailer publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2976130 – volume: 36 start-page: 1470 issue: 2 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b15 article-title: Optimal solution analysis and decentralized mechanisms for peer-to-peer energy markets publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2020.3021474 – volume: 48 start-page: 334 issue: 3 year: 1997 ident: 10.1016/j.apenergy.2021.118310_b33 article-title: Nonlinear programming publication-title: J Oper Res Soc doi: 10.1057/palgrave.jors.2600425 – volume: 7 start-page: 791 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.118310_b35 article-title: Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method publication-title: J Mod Power Syst Clean Energy doi: 10.1007/s40565-019-0510-0 – volume: 57 start-page: 151 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2021.118310_b9 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Automat Control – volume: 291 year: 2021 ident: 10.1016/j.apenergy.2021.118310_b22 article-title: A hierarchical and decentralized energy management system for peer-to-peer energy trading publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116766 – volume: 12 start-page: 5899 issue: 22 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b6 article-title: Market framework for local energy trading: a review of potential designs and market clearing approaches publication-title: IET Gener Trans Distrib doi: 10.1049/iet-gtd.2018.5309 – volume: 12 start-page: 2472 issue: 3 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b19 article-title: A new method for peer matching and negotiation of prosumers in peer-to-peer energy markets publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.3048397 – year: 2010 ident: 10.1016/j.apenergy.2021.118310_b34 article-title: 10 Cooperative distributed multi-agent – volume: 34 start-page: 994 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b20 article-title: Consensus-based approach to peer-to-peer electricity markets with product differentiation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2872880 – volume: 10 start-page: 2581 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b27 article-title: A stochastic decision-making model for an electricity retailer with intermittent renewable energy and short-term demand response publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2805326 – volume: 282 year: 2021 ident: 10.1016/j.apenergy.2021.118310_b23 article-title: A novel decentralized platform for peer-to-peer energy trading market with blockchain technology publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116123 – volume: 67 start-page: 4646 issue: 6 year: 2019 ident: 10.1016/j.apenergy.2021.118310_b14 article-title: A decentralized bilateral energy trading system for peer-to-peer electricity markets publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2931229 – volume: 261 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b3 article-title: A coalition formation game framework for peer-to-peer energy trading publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114436 – volume: 103 start-page: 147 year: 2016 ident: 10.1016/j.apenergy.2021.118310_b12 article-title: A bidding system for peer-to-peer energy trading in a grid-connected microgrid publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.11.264 – volume: 6 start-page: 1893 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.118310_b11 article-title: Consensus+ innovations approach for distributed multiagent coordination in a microgrid publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2409053 – year: 2003 ident: 10.1016/j.apenergy.2021.118310_b31 – volume: 121 year: 2020 ident: 10.1016/j.apenergy.2021.118310_b24 article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106065 – volume: 187 start-page: 449 year: 2017 ident: 10.1016/j.apenergy.2021.118310_b25 article-title: Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.024 – volume: 287 year: 2021 ident: 10.1016/j.apenergy.2021.118310_b21 article-title: Electrical-distance driven peer-to-peer energy trading in a low-voltage network publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116598 – volume: 210 start-page: 44 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b1 article-title: Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.106 – volume: 214 year: 2021 ident: 10.1016/j.apenergy.2021.118310_b29 article-title: A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets publication-title: Energy – volume: 34 start-page: 4005 issue: 5 year: 2018 ident: 10.1016/j.apenergy.2021.118310_b10 article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2834472 |
| SSID | ssj0002120 |
| Score | 2.5978577 |
| Snippet | The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118310 |
| SubjectTerms | algorithms Bilateral energy trading electric power electrical equipment electricity Electricity retail market energy Local market Peer to peer Peer to peer energy trading Primal–dual sub-gradient algorithm wholesale marketing |
| Title | Peer-to-peer decentralized energy trading framework for retailers and prosumers |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.118310 https://www.proquest.com/docview/2636481937 |
| Volume | 308 |
| WOSCitedRecordID | wos000769880800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVAoVLRQZiatLEuflY0GLWg6FQ5H2Zjmxre2qm6w2aVX49R0_4k0LtPTAJdpEO5az8-34G3seCH1Ik7iqc02JOZMhKSzApBQ0JbWsZFyXBYtEZJtNFCcn5XTKhhPdzrYTKJqmvLpiy_-qangGyjapsw9QdxgUHsBnUDpcQe1w_SfFf1dqRfqWLJVt_u2jL89-AbNULtEP7m0qix4Cs2ys4coGk5p8Xlc7oLWpmd2YvQ6U1Y0TdKVmMJyaO7DYu7BvMxM_RaNdELcpqSXMVIJgOxOLBcyFHF-K_ry1u7af1KwRi_FmBPixpjVKNrJZ4IEQ45SNDSyNypGJBI-GukjW36y320iYH4ilew9w35P4YC1ws1z2rWUsBBcOcWtzPozDzTjcjfMYbSZFxsAAbh4eT6Zfw7Kd-BqewxuM0sn_PKO_MZlba7olKqdb6Ln3MPChQ8YL9Eg12-jZqO7kNtqZrNMb4avevncv0bcxePAN8GA3NezBgwN4MIAHB_BgAA8O4HmFfnyZnH4-Ir7lBqlpmvWkokKKUrNcJxKYba5ZoTMhDWmNJKwGsWZ1pHRJVS6jLJFlLk3NPyFAJIorSnfQRtM26jXCJYt0mlQ1EERgQEkOjrUw_R8LrRlNdbqLsuHn47WvR2_aopzzuxW4iz4GuaWryHKvBBu0wz2vdHyRA_DulX0_qJOD4TWnaaJR7UXHk5zmKfBpWuw9eEZv0NP1v-ct2uhXF2ofPakv-7Nu9c4j8xp60atJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peer-to-peer+decentralized+energy+trading+framework+for+retailers+and+prosumers&rft.jtitle=Applied+energy&rft.au=Mehdinejad%2C+Mehdi&rft.au=Shayanfar%2C+Heidarali&rft.au=Mohammadi-Ivatloo%2C+Behnam&rft.date=2022-02-15&rft.issn=0306-2619&rft.volume=308&rft.spage=118310&rft_id=info:doi/10.1016%2Fj.apenergy.2021.118310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_118310 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |