Peer-to-peer decentralized energy trading framework for retailers and prosumers

The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 308; s. 118310
Hlavní autoři: Mehdinejad, Mehdi, Shayanfar, Heidarali, Mohammadi-Ivatloo, Behnam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.02.2022
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation. •Designs a competitive market consisting of prosumers and retailers.•A decentralized approach is proposed to clear the fully decentralized energy market.•Local players can bilaterally peer-to-peer interact with each other and retailers.•Market players have flexible generation and consumption.•Peer-to-peer energy trading is among all players.
AbstractList The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation.
The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and thus arisen the need to redesign electricity markets. With the emergence of prosumers as smart agents capable of both producing and consuming energy, the modern electricity markets should be prosumer-centric. In the novel prosumer-centric approach, the prosumers can trade energy with each other in a peer-to-peer (P2P) fashion. In these new markets, the retailers can be thought of as profit-based companies that either generate electrical energy themselves or purchase it at variable prices from the wholesale market or other prosumers in the local market. The retailers then sell the generated or purchased energy to the local consumers, wholesale markets, or other prosumers. Smart grid technology allows the prosumers (the end-users) to purchase their needed power from any producer in the grid and sell their excess energy to any consumer or retailer. This article designs a competitive market consisting of prosumers and retailers such that all prosumers (as buyers and sellers) and retailers conduct peer-to-peer energy trading. A novel decentralized approach called primal–dual sub-gradient algorithm (PDSGA) is used to clear the designed market without third-party involvement or disclosure of players’ private information. The feasibility of the proposed market and the effectiveness of the novel decentralized scheme for market-clearing are demonstrated through numerical implementation. •Designs a competitive market consisting of prosumers and retailers.•A decentralized approach is proposed to clear the fully decentralized energy market.•Local players can bilaterally peer-to-peer interact with each other and retailers.•Market players have flexible generation and consumption.•Peer-to-peer energy trading is among all players.
ArticleNumber 118310
Author Mehdinejad, Mehdi
Mohammadi-Ivatloo, Behnam
Shayanfar, Heidarali
Author_xml – sequence: 1
  givenname: Mehdi
  orcidid: 0000-0003-3268-9941
  surname: Mehdinejad
  fullname: Mehdinejad, Mehdi
  email: m_mehdinejad@elec.iust.ac.ir, m.mehdinejad1369@gmail.com
  organization: Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
– sequence: 2
  givenname: Heidarali
  orcidid: 0000-0002-2330-0546
  surname: Shayanfar
  fullname: Shayanfar, Heidarali
  email: Hashayanfar@iust.ac.ir, Hashayanfar@gmail.com
  organization: Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
– sequence: 3
  givenname: Behnam
  surname: Mohammadi-Ivatloo
  fullname: Mohammadi-Ivatloo, Behnam
  email: bmohammadi@tabrizu.ac.ir
  organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
BookMark eNqFkEtLAzEUhYNUsK3-BcnSzYx5tJkZcKEUX1CoC12HNLkpqfMySZX6600Z3bjp6nLgnHPv_SZo1HYtIHRJSU4JFdfbXPXQgt_sc0YYzSktOSUnaEzLgmVVkiM0JpyIjAlanaFJCFtCkpORMVq9APgsdlmfJjagoY1e1e4bDB5KcdLGtRtsvWrgq_Pv2HYee4jK1eADVq3Bve_CrknqHJ1aVQe4-J1T9PZw_7p4yparx-fF3TLTfDaP2Zoro0pbCctMwQphq8LOleFVIYghBae20gRsyUEYMmemFIZyUSiVIoSuOZ-iq6E3bf7YQYiycUFDXasWul2QTHAxK2nFi2S9Gaw6HRk8WKldVNF1h09dLSmRB45yK_84ygNHOXBMcfEv3nvXKL8_HrwdgpA4fDrwMmgHrQbjPOgoTeeOVfwAhUOUbg
CitedBy_id crossref_primary_10_3390_sym15081561
crossref_primary_10_1016_j_rser_2024_114681
crossref_primary_10_3390_en18071569
crossref_primary_10_1016_j_rser_2024_114969
crossref_primary_10_1016_j_segan_2025_101914
crossref_primary_10_1016_j_heliyon_2024_e29600
crossref_primary_10_1016_j_enbuild_2025_116349
crossref_primary_10_1016_j_apenergy_2022_119162
crossref_primary_10_3390_en16176315
crossref_primary_10_1016_j_apenergy_2024_123518
crossref_primary_10_1016_j_apenergy_2023_120689
crossref_primary_10_1016_j_rser_2022_112908
crossref_primary_10_1007_s11625_024_01493_7
crossref_primary_10_1049_rpg2_12490
crossref_primary_10_1016_j_erss_2023_102997
crossref_primary_10_1109_ACCESS_2022_3151922
crossref_primary_10_3390_su15076165
crossref_primary_10_3390_app142411510
crossref_primary_10_1007_s00202_024_02852_4
crossref_primary_10_1007_s00202_023_02163_0
crossref_primary_10_1109_JIOT_2024_3379746
crossref_primary_10_1109_TSG_2023_3266809
crossref_primary_10_1016_j_engappai_2024_107847
crossref_primary_10_1016_j_engappai_2023_107190
crossref_primary_10_1016_j_apenergy_2023_121148
crossref_primary_10_1109_TIA_2025_3541604
crossref_primary_10_3390_pr11020532
crossref_primary_10_1049_stg2_12104
crossref_primary_10_1016_j_rser_2023_113170
crossref_primary_10_1016_j_energy_2022_124219
crossref_primary_10_3390_en15072404
crossref_primary_10_1016_j_epsr_2023_109158
crossref_primary_10_1002_wene_434
crossref_primary_10_1016_j_jclepro_2024_141598
crossref_primary_10_1049_rpg2_12984
crossref_primary_10_1016_j_compeleceng_2024_109618
crossref_primary_10_3390_en16083464
crossref_primary_10_1016_j_segan_2023_101136
crossref_primary_10_3390_electronics14153155
crossref_primary_10_1016_j_enbuild_2024_114544
crossref_primary_10_1016_j_epsr_2023_109482
crossref_primary_10_1049_gtd2_13257
crossref_primary_10_1016_j_ijepes_2023_109386
crossref_primary_10_1016_j_compeleceng_2025_110259
crossref_primary_10_1016_j_ijepes_2024_110108
crossref_primary_10_1016_j_esr_2025_101673
crossref_primary_10_1016_j_rineng_2024_103804
crossref_primary_10_3390_su151310552
crossref_primary_10_1016_j_apenergy_2022_119799
crossref_primary_10_1016_j_prime_2024_100778
crossref_primary_10_1109_ACCESS_2022_3224936
crossref_primary_10_1049_rpg2_12677
crossref_primary_10_1109_ACCESS_2024_3395920
crossref_primary_10_1016_j_apenergy_2025_126379
crossref_primary_10_1109_TSG_2023_3250321
crossref_primary_10_1016_j_scs_2022_104182
crossref_primary_10_1016_j_segan_2025_101629
crossref_primary_10_1016_j_apenergy_2023_122373
crossref_primary_10_1016_j_apenergy_2022_120061
crossref_primary_10_1016_j_egyr_2024_04_053
crossref_primary_10_1016_j_apenergy_2023_122611
crossref_primary_10_1016_j_energy_2023_129347
crossref_primary_10_1016_j_epsr_2022_108802
crossref_primary_10_1109_ACCESS_2023_3260253
crossref_primary_10_1016_j_ifacol_2022_07_063
crossref_primary_10_3390_en16031182
Cites_doi 10.1109/TPWRS.2014.2359457
10.1109/TSG.2020.2997956
10.1109/TPWRS.2017.2779540
10.1109/TIA.2020.2990585
10.1049/iet-gtd.2019.1233
10.1109/TPWRS.2018.2808961
10.1109/TSG.2020.2986337
10.1016/j.energy.2021.121239
10.1109/TSG.2020.2976130
10.1109/TPWRS.2020.3021474
10.1057/palgrave.jors.2600425
10.1007/s40565-019-0510-0
10.1016/j.apenergy.2021.116766
10.1049/iet-gtd.2018.5309
10.1109/TSG.2020.3048397
10.1109/TPWRS.2018.2872880
10.1109/TSG.2018.2805326
10.1016/j.apenergy.2020.116123
10.1109/TIE.2019.2931229
10.1016/j.apenergy.2019.114436
10.1016/j.egypro.2016.11.264
10.1109/TSG.2015.2409053
10.1016/j.ijepes.2020.106065
10.1016/j.apenergy.2016.11.024
10.1016/j.apenergy.2021.116598
10.1016/j.apenergy.2017.10.106
10.1109/TPWRS.2018.2834472
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.118310
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_118310
S030626192101566X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-b3ada8f96f2d7276f97f5ad39760d0731f9c0ef83e6d052d86d1367aaf9601b33
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769880800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 11:58:05 EDT 2025
Sat Nov 29 07:24:06 EST 2025
Tue Nov 18 21:50:59 EST 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Primal–dual sub-gradient algorithm
Peer to peer
Peer to peer energy trading
Electricity retail market
Bilateral energy trading
Local market
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-b3ada8f96f2d7276f97f5ad39760d0731f9c0ef83e6d052d86d1367aaf9601b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2330-0546
0000-0003-3268-9941
PQID 2636481937
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636481937
crossref_citationtrail_10_1016_j_apenergy_2021_118310
crossref_primary_10_1016_j_apenergy_2021_118310
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_118310
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Esmat, de Vos, Ghiassi-Farrokhfal, Palensky, Epema (b23) 2021; 282
Khorasany, Mishra, Babaki, Ledwich (b35) 2019; 7
Xiao, Wang, Pinson, Wang (b4) 2017; 33
Grainger, Stevenson, Stevenson (b31) 2003
do Prado, Qiao (b27) 2018; 10
Boyd, Parikh, Chu (b32) 2011
Tushar, Saha, Yuen, Azim, Morstyn, Poor, Niyato, Bean (b3) 2020; 261
Ehsan, Yang (b1) 2018; 210
Nedic, Ozdaglar (b34) 2010
Aznavi, Fajri, Shadmand, Khoshkbar-Sadigh (b18) 2020; 56
Nguyen (b15) 2020; 36
Zhu, Martínez (b9) 2011; 57
Guerrero, Sok, Chapman, Verbič (b21) 2021; 287
Elkazaz, Sumner, Thomas (b22) 2021; 291
Khorasany, Mishra, Ledwich (b6) 2018; 12
Deng, Yang, Hou, Chow, Chen (b8) 2014; 30
Hug, Kar, Wu (b11) 2015; 6
Paudel, Sampath, Yang, Gooi (b16) 2020; 11
Khorasany, Paudel, Razzaghi, Siano (b19) 2020; 12
Zhang, Wu, Cheng, Zhou, Long (b12) 2016; 103
Khorasany, Mishra, Ledwich (b7) 2019; 14
Xiao, Wang, Pinson, Wang (b5) 2020; 11
Khorasany, Mishra, Ledwich (b14) 2019; 67
Zhu, Martínez (b28) 2011; 57
Sharifi, Anvari-Moghaddam, Fathi, Vahidinasab (b24) 2020; 121
Nojavan, Zare, Mohammadi-Ivatloo (b25) 2017; 187
Cui, Wang, Shi, Xiao (b17) 2020; 11
Da Silva, Ilić, Karnouskos (b2) 2013; 5
Moret, Pinson (b13) 2018; 34
Aghamohammadloo, Talaeizadeh, Shahanaghi, Aghaei, Shayanfar, Shafie-khah, Catalão (b26) 2021
Morstyn, McCulloch (b10) 2018; 34
Bertsekas (b33) 1997; 48
Sorin, Bobo, Pinson (b20) 2018; 34
Oskouei, Mirzaei, Mohammadi-Ivatloo, Shafiee, Marzband, Anvari-Moghaddam (b29) 2021; 214
Song, Qu (b30) 2014
Aznavi (10.1016/j.apenergy.2021.118310_b18) 2020; 56
Nedic (10.1016/j.apenergy.2021.118310_b34) 2010
Khorasany (10.1016/j.apenergy.2021.118310_b35) 2019; 7
Paudel (10.1016/j.apenergy.2021.118310_b16) 2020; 11
Deng (10.1016/j.apenergy.2021.118310_b8) 2014; 30
Khorasany (10.1016/j.apenergy.2021.118310_b6) 2018; 12
Da Silva (10.1016/j.apenergy.2021.118310_b2) 2013; 5
Ehsan (10.1016/j.apenergy.2021.118310_b1) 2018; 210
Morstyn (10.1016/j.apenergy.2021.118310_b10) 2018; 34
Zhu (10.1016/j.apenergy.2021.118310_b28) 2011; 57
Aghamohammadloo (10.1016/j.apenergy.2021.118310_b26) 2021
Zhu (10.1016/j.apenergy.2021.118310_b9) 2011; 57
Nguyen (10.1016/j.apenergy.2021.118310_b15) 2020; 36
Oskouei (10.1016/j.apenergy.2021.118310_b29) 2021; 214
Guerrero (10.1016/j.apenergy.2021.118310_b21) 2021; 287
Khorasany (10.1016/j.apenergy.2021.118310_b14) 2019; 67
Sorin (10.1016/j.apenergy.2021.118310_b20) 2018; 34
Nojavan (10.1016/j.apenergy.2021.118310_b25) 2017; 187
Zhang (10.1016/j.apenergy.2021.118310_b12) 2016; 103
Khorasany (10.1016/j.apenergy.2021.118310_b7) 2019; 14
Moret (10.1016/j.apenergy.2021.118310_b13) 2018; 34
Cui (10.1016/j.apenergy.2021.118310_b17) 2020; 11
Khorasany (10.1016/j.apenergy.2021.118310_b19) 2020; 12
Hug (10.1016/j.apenergy.2021.118310_b11) 2015; 6
Grainger (10.1016/j.apenergy.2021.118310_b31) 2003
do Prado (10.1016/j.apenergy.2021.118310_b27) 2018; 10
Esmat (10.1016/j.apenergy.2021.118310_b23) 2021; 282
Xiao (10.1016/j.apenergy.2021.118310_b4) 2017; 33
Tushar (10.1016/j.apenergy.2021.118310_b3) 2020; 261
Elkazaz (10.1016/j.apenergy.2021.118310_b22) 2021; 291
Xiao (10.1016/j.apenergy.2021.118310_b5) 2020; 11
Boyd (10.1016/j.apenergy.2021.118310_b32) 2011
Song (10.1016/j.apenergy.2021.118310_b30) 2014
Bertsekas (10.1016/j.apenergy.2021.118310_b33) 1997; 48
Sharifi (10.1016/j.apenergy.2021.118310_b24) 2020; 121
References_xml – volume: 121
  year: 2020
  ident: b24
  article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market
  publication-title: Int J Electr Power Energy Syst
– volume: 7
  start-page: 791
  year: 2019
  end-page: 801
  ident: b35
  article-title: Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method
  publication-title: J Mod Power Syst Clean Energy
– volume: 261
  year: 2020
  ident: b3
  article-title: A coalition formation game framework for peer-to-peer energy trading
  publication-title: Appl Energy
– year: 2003
  ident: b31
  article-title: Power system analysis
– volume: 5
  start-page: 402
  year: 2013
  end-page: 410
  ident: b2
  article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 3817
  year: 2020
  end-page: 3826
  ident: b17
  article-title: A new and fair Peer-to-Peer energy sharing framework for energy buildings
  publication-title: IEEE Trans Smart Grid
– volume: 14
  start-page: 245
  year: 2019
  end-page: 253
  ident: b7
  article-title: Hybrid trading scheme for peer-to-peer energy trading in transactive energy markets
  publication-title: IET Gener Trans Distrib
– year: 2011
  ident: b32
  article-title: Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
– volume: 210
  start-page: 44
  year: 2018
  end-page: 59
  ident: b1
  article-title: Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques
  publication-title: Appl Energy
– volume: 11
  start-page: 3302
  year: 2020
  end-page: 3312
  ident: b5
  article-title: Transactive energy based aggregation of prosumers as a retailer
  publication-title: IEEE Trans Smart Grid
– volume: 187
  start-page: 449
  year: 2017
  end-page: 464
  ident: b25
  article-title: Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program
  publication-title: Appl Energy
– volume: 10
  start-page: 2581
  year: 2018
  end-page: 2592
  ident: b27
  article-title: A stochastic decision-making model for an electricity retailer with intermittent renewable energy and short-term demand response
  publication-title: IEEE Trans Smart Grid
– volume: 30
  start-page: 2364
  year: 2014
  end-page: 2374
  ident: b8
  article-title: Distributed real-time demand response in multiseller–multibuyer smart distribution grid
  publication-title: IEEE Trans Power Syst
– volume: 291
  year: 2021
  ident: b22
  article-title: A hierarchical and decentralized energy management system for peer-to-peer energy trading
  publication-title: Appl Energy
– volume: 6
  start-page: 1893
  year: 2015
  end-page: 1903
  ident: b11
  article-title: Consensus+ innovations approach for distributed multiagent coordination in a microgrid
  publication-title: IEEE Trans Smart Grid
– volume: 103
  start-page: 147
  year: 2016
  end-page: 152
  ident: b12
  article-title: A bidding system for peer-to-peer energy trading in a grid-connected microgrid
  publication-title: Energy Procedia
– volume: 33
  start-page: 3898
  year: 2017
  end-page: 3908
  ident: b4
  article-title: A local energy market for electricity and hydrogen
  publication-title: IEEE Trans Power Syst
– volume: 57
  start-page: 151
  year: 2011
  end-page: 164
  ident: b28
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automat Control
– volume: 214
  year: 2021
  ident: b29
  article-title: A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets
  publication-title: Energy
– volume: 287
  year: 2021
  ident: b21
  article-title: Electrical-distance driven peer-to-peer energy trading in a low-voltage network
  publication-title: Appl Energy
– volume: 12
  start-page: 5899
  year: 2018
  end-page: 5908
  ident: b6
  article-title: Market framework for local energy trading: a review of potential designs and market clearing approaches
  publication-title: IET Gener Trans Distrib
– volume: 34
  start-page: 3994
  year: 2018
  end-page: 4004
  ident: b13
  article-title: Energy collectives: a community and fairness based approach to future electricity markets
  publication-title: IEEE Trans Power Syst
– volume: 67
  start-page: 4646
  year: 2019
  end-page: 4657
  ident: b14
  article-title: A decentralized bilateral energy trading system for peer-to-peer electricity markets
  publication-title: IEEE Trans Ind Electron
– volume: 34
  start-page: 994
  year: 2018
  end-page: 1004
  ident: b20
  article-title: Consensus-based approach to peer-to-peer electricity markets with product differentiation
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 4727
  year: 2020
  end-page: 4737
  ident: b16
  article-title: Peer-to-peer energy trading in smart grid considering power losses and network fees
  publication-title: IEEE Trans Smart Grid
– year: 2010
  ident: b34
  article-title: 10 Cooperative distributed multi-agent
  publication-title: Convex Optimization in Signal Processing and Communications, Vol. 340
– volume: 12
  start-page: 2472
  year: 2020
  end-page: 2483
  ident: b19
  article-title: A new method for peer matching and negotiation of prosumers in peer-to-peer energy markets
  publication-title: IEEE Trans Smart Grid
– volume: 57
  start-page: 151
  year: 2011
  end-page: 164
  ident: b9
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automat Control
– volume: 282
  year: 2021
  ident: b23
  article-title: A novel decentralized platform for peer-to-peer energy trading market with blockchain technology
  publication-title: Appl Energy
– volume: 48
  start-page: 334
  year: 1997
  ident: b33
  article-title: Nonlinear programming
  publication-title: J Oper Res Soc
– volume: 36
  start-page: 1470
  year: 2020
  end-page: 1481
  ident: b15
  article-title: Optimal solution analysis and decentralized mechanisms for peer-to-peer energy markets
  publication-title: IEEE Trans Power Syst
– volume: 56
  start-page: 5848
  year: 2020
  end-page: 5857
  ident: b18
  article-title: Peer-to-peer operation strategy of pv equipped office buildings and charging stations considering electric vehicle energy pricing
  publication-title: IEEE Trans Ind Appl
– start-page: 2509
  year: 2014
  end-page: 2513
  ident: b30
  article-title: An improved real-time pricing algorithm based on utility maximization for smart grid
  publication-title: Proceeding of the 11th World Congress on Intelligent Control and Automation
– volume: 34
  start-page: 4005
  year: 2018
  end-page: 4014
  ident: b10
  article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences
  publication-title: IEEE Trans Power Syst
– year: 2021
  ident: b26
  article-title: Integrated demand response programs and energy hubs retail energy market modelling
  publication-title: Energy
– volume: 30
  start-page: 2364
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2021.118310_b8
  article-title: Distributed real-time demand response in multiseller–multibuyer smart distribution grid
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2359457
– volume: 11
  start-page: 4727
  issue: 6
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b16
  article-title: Peer-to-peer energy trading in smart grid considering power losses and network fees
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2997956
– volume: 33
  start-page: 3898
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.118310_b4
  article-title: A local energy market for electricity and hydrogen
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2779540
– year: 2011
  ident: 10.1016/j.apenergy.2021.118310_b32
– volume: 56
  start-page: 5848
  issue: 5
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b18
  article-title: Peer-to-peer operation strategy of pv equipped office buildings and charging stations considering electric vehicle energy pricing
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2020.2990585
– volume: 14
  start-page: 245
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2021.118310_b7
  article-title: Hybrid trading scheme for peer-to-peer energy trading in transactive energy markets
  publication-title: IET Gener Trans Distrib
  doi: 10.1049/iet-gtd.2019.1233
– volume: 5
  start-page: 402
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2021.118310_b2
  article-title: The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading
  publication-title: IEEE Trans Smart Grid
– volume: 34
  start-page: 3994
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b13
  article-title: Energy collectives: a community and fairness based approach to future electricity markets
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2808961
– volume: 11
  start-page: 3817
  issue: 5
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b17
  article-title: A new and fair Peer-to-Peer energy sharing framework for energy buildings
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2986337
– year: 2021
  ident: 10.1016/j.apenergy.2021.118310_b26
  article-title: Integrated demand response programs and energy hubs retail energy market modelling
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121239
– volume: 57
  start-page: 151
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2021.118310_b28
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automat Control
– start-page: 2509
  year: 2014
  ident: 10.1016/j.apenergy.2021.118310_b30
  article-title: An improved real-time pricing algorithm based on utility maximization for smart grid
– volume: 11
  start-page: 3302
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b5
  article-title: Transactive energy based aggregation of prosumers as a retailer
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2976130
– volume: 36
  start-page: 1470
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b15
  article-title: Optimal solution analysis and decentralized mechanisms for peer-to-peer energy markets
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2020.3021474
– volume: 48
  start-page: 334
  issue: 3
  year: 1997
  ident: 10.1016/j.apenergy.2021.118310_b33
  article-title: Nonlinear programming
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2600425
– volume: 7
  start-page: 791
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.118310_b35
  article-title: Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-019-0510-0
– volume: 57
  start-page: 151
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2021.118310_b9
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automat Control
– volume: 291
  year: 2021
  ident: 10.1016/j.apenergy.2021.118310_b22
  article-title: A hierarchical and decentralized energy management system for peer-to-peer energy trading
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116766
– volume: 12
  start-page: 5899
  issue: 22
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b6
  article-title: Market framework for local energy trading: a review of potential designs and market clearing approaches
  publication-title: IET Gener Trans Distrib
  doi: 10.1049/iet-gtd.2018.5309
– volume: 12
  start-page: 2472
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b19
  article-title: A new method for peer matching and negotiation of prosumers in peer-to-peer energy markets
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.3048397
– year: 2010
  ident: 10.1016/j.apenergy.2021.118310_b34
  article-title: 10 Cooperative distributed multi-agent
– volume: 34
  start-page: 994
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b20
  article-title: Consensus-based approach to peer-to-peer electricity markets with product differentiation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2872880
– volume: 10
  start-page: 2581
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b27
  article-title: A stochastic decision-making model for an electricity retailer with intermittent renewable energy and short-term demand response
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2805326
– volume: 282
  year: 2021
  ident: 10.1016/j.apenergy.2021.118310_b23
  article-title: A novel decentralized platform for peer-to-peer energy trading market with blockchain technology
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116123
– volume: 67
  start-page: 4646
  issue: 6
  year: 2019
  ident: 10.1016/j.apenergy.2021.118310_b14
  article-title: A decentralized bilateral energy trading system for peer-to-peer electricity markets
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2931229
– volume: 261
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b3
  article-title: A coalition formation game framework for peer-to-peer energy trading
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114436
– volume: 103
  start-page: 147
  year: 2016
  ident: 10.1016/j.apenergy.2021.118310_b12
  article-title: A bidding system for peer-to-peer energy trading in a grid-connected microgrid
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.11.264
– volume: 6
  start-page: 1893
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.118310_b11
  article-title: Consensus+ innovations approach for distributed multiagent coordination in a microgrid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2409053
– year: 2003
  ident: 10.1016/j.apenergy.2021.118310_b31
– volume: 121
  year: 2020
  ident: 10.1016/j.apenergy.2021.118310_b24
  article-title: A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106065
– volume: 187
  start-page: 449
  year: 2017
  ident: 10.1016/j.apenergy.2021.118310_b25
  article-title: Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.024
– volume: 287
  year: 2021
  ident: 10.1016/j.apenergy.2021.118310_b21
  article-title: Electrical-distance driven peer-to-peer energy trading in a low-voltage network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116598
– volume: 210
  start-page: 44
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b1
  article-title: Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.106
– volume: 214
  year: 2021
  ident: 10.1016/j.apenergy.2021.118310_b29
  article-title: A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets
  publication-title: Energy
– volume: 34
  start-page: 4005
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2021.118310_b10
  article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2834472
SSID ssj0002120
Score 2.5978577
Snippet The smart grid technology has increased the penetration of distributed energy resources by the development and expansion of communication infrastructures and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118310
SubjectTerms algorithms
Bilateral energy trading
electric power
electrical equipment
electricity
Electricity retail market
energy
Local market
Peer to peer
Peer to peer energy trading
Primal–dual sub-gradient algorithm
wholesale marketing
Title Peer-to-peer decentralized energy trading framework for retailers and prosumers
URI https://dx.doi.org/10.1016/j.apenergy.2021.118310
https://www.proquest.com/docview/2636481937
Volume 308
WOSCitedRecordID wos000769880800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVAoVLRQZiatLEuflY0GLWg6FQ5H2Zjmxre2qm6w2aVX49R0_4k0LtPTAJdpEO5az8-34G3seCH1Ik7iqc02JOZMhKSzApBQ0JbWsZFyXBYtEZJtNFCcn5XTKhhPdzrYTKJqmvLpiy_-qangGyjapsw9QdxgUHsBnUDpcQe1w_SfFf1dqRfqWLJVt_u2jL89-AbNULtEP7m0qix4Cs2ys4coGk5p8Xlc7oLWpmd2YvQ6U1Y0TdKVmMJyaO7DYu7BvMxM_RaNdELcpqSXMVIJgOxOLBcyFHF-K_ry1u7af1KwRi_FmBPixpjVKNrJZ4IEQ45SNDSyNypGJBI-GukjW36y320iYH4ilew9w35P4YC1ws1z2rWUsBBcOcWtzPozDzTjcjfMYbSZFxsAAbh4eT6Zfw7Kd-BqewxuM0sn_PKO_MZlba7olKqdb6Ln3MPChQ8YL9Eg12-jZqO7kNtqZrNMb4avevncv0bcxePAN8GA3NezBgwN4MIAHB_BgAA8O4HmFfnyZnH4-Ir7lBqlpmvWkokKKUrNcJxKYba5ZoTMhDWmNJKwGsWZ1pHRJVS6jLJFlLk3NPyFAJIorSnfQRtM26jXCJYt0mlQ1EERgQEkOjrUw_R8LrRlNdbqLsuHn47WvR2_aopzzuxW4iz4GuaWryHKvBBu0wz2vdHyRA_DulX0_qJOD4TWnaaJR7UXHk5zmKfBpWuw9eEZv0NP1v-ct2uhXF2ofPakv-7Nu9c4j8xp60atJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peer-to-peer+decentralized+energy+trading+framework+for+retailers+and+prosumers&rft.jtitle=Applied+energy&rft.au=Mehdinejad%2C+Mehdi&rft.au=Shayanfar%2C+Heidarali&rft.au=Mohammadi-Ivatloo%2C+Behnam&rft.date=2022-02-15&rft.issn=0306-2619&rft.volume=308&rft.spage=118310&rft_id=info:doi/10.1016%2Fj.apenergy.2021.118310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_118310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon