Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting
•A new meta-learning recommendation system is proposed.•The new system concerned two-stage (subjective and objective) user preferences.•Multi-objective decision making algorithms (MODMA) are used in option optimization.•A new “walking slide method” aimed at some extremely special cases is proposed.•...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 270; S. 115144 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.07.2020
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A new meta-learning recommendation system is proposed.•The new system concerned two-stage (subjective and objective) user preferences.•Multi-objective decision making algorithms (MODMA) are used in option optimization.•A new “walking slide method” aimed at some extremely special cases is proposed.•The new system is validated on real buildings, and its generalizability is proved.
Building data forecasting plays an increasingly important role in building energy savings. However, the one-fits-all model cannot satisfy all the requirements of multiple application scenarios and user preferences. Motivated by the need to bridge the research gap between different user preferences (application scenarios) and energy prediction model recommendation systems, this paper proposes a novel meta-learning strategy based on an artificial neural network recommendation system. This strategy is employed for real-time cooling loads, coefficients of performance prediction and optimal prediction model recommendations. The data set is composed of 40 cases from five factory buildings. After the predictions and recommendations are obtained for all cases, the two-stage user preferences are considered based on multi-objective decision-making algorithms. Then, a new model termed the “walking slide method”, is proposed to predict some special cases. This study shows that the seasonal autoregressive integrated moving average model and random forest model achieve the best prediction accuracy and the minimum computation cost separately for most cases, while the long short-term memory is the best model when considering the two criteria. The variances between the different cases lead to a lower cross-validation score (approximately 65%), but a higher success rate (over 99%) for the recommendation performance. In addition, in the more complex application scenarios, a lower prediction accuracy and recommendation success rate will be obtained. In most cases, the use of a prediction combined with a monitoring system is the best choice. Last, the reliability of the results is verified by application studies. This work provides a scientific basis for energy prediction applications based on user preferences. |
|---|---|
| AbstractList | •A new meta-learning recommendation system is proposed.•The new system concerned two-stage (subjective and objective) user preferences.•Multi-objective decision making algorithms (MODMA) are used in option optimization.•A new “walking slide method” aimed at some extremely special cases is proposed.•The new system is validated on real buildings, and its generalizability is proved.
Building data forecasting plays an increasingly important role in building energy savings. However, the one-fits-all model cannot satisfy all the requirements of multiple application scenarios and user preferences. Motivated by the need to bridge the research gap between different user preferences (application scenarios) and energy prediction model recommendation systems, this paper proposes a novel meta-learning strategy based on an artificial neural network recommendation system. This strategy is employed for real-time cooling loads, coefficients of performance prediction and optimal prediction model recommendations. The data set is composed of 40 cases from five factory buildings. After the predictions and recommendations are obtained for all cases, the two-stage user preferences are considered based on multi-objective decision-making algorithms. Then, a new model termed the “walking slide method”, is proposed to predict some special cases. This study shows that the seasonal autoregressive integrated moving average model and random forest model achieve the best prediction accuracy and the minimum computation cost separately for most cases, while the long short-term memory is the best model when considering the two criteria. The variances between the different cases lead to a lower cross-validation score (approximately 65%), but a higher success rate (over 99%) for the recommendation performance. In addition, in the more complex application scenarios, a lower prediction accuracy and recommendation success rate will be obtained. In most cases, the use of a prediction combined with a monitoring system is the best choice. Last, the reliability of the results is verified by application studies. This work provides a scientific basis for energy prediction applications based on user preferences. Building data forecasting plays an increasingly important role in building energy savings. However, the one-fits-all model cannot satisfy all the requirements of multiple application scenarios and user preferences. Motivated by the need to bridge the research gap between different user preferences (application scenarios) and energy prediction model recommendation systems, this paper proposes a novel meta-learning strategy based on an artificial neural network recommendation system. This strategy is employed for real-time cooling loads, coefficients of performance prediction and optimal prediction model recommendations. The data set is composed of 40 cases from five factory buildings. After the predictions and recommendations are obtained for all cases, the two-stage user preferences are considered based on multi-objective decision-making algorithms. Then, a new model termed the “walking slide method”, is proposed to predict some special cases. This study shows that the seasonal autoregressive integrated moving average model and random forest model achieve the best prediction accuracy and the minimum computation cost separately for most cases, while the long short-term memory is the best model when considering the two criteria. The variances between the different cases lead to a lower cross-validation score (approximately 65%), but a higher success rate (over 99%) for the recommendation performance. In addition, in the more complex application scenarios, a lower prediction accuracy and recommendation success rate will be obtained. In most cases, the use of a prediction combined with a monitoring system is the best choice. Last, the reliability of the results is verified by application studies. This work provides a scientific basis for energy prediction applications based on user preferences. |
| ArticleNumber | 115144 |
| Author | Li, Wenqiang Fan, Houhua Chun, Liang Gong, Guangcai Peng, Pei |
| Author_xml | – sequence: 1 givenname: Wenqiang surname: Li fullname: Li, Wenqiang organization: School of Civil Engineering, Hunan Univ., Changsha 410082, China – sequence: 2 givenname: Guangcai surname: Gong fullname: Gong, Guangcai email: gcgong@hnu.edu.cn organization: School of Civil Engineering, Hunan Univ., Changsha 410082, China – sequence: 3 givenname: Houhua surname: Fan fullname: Fan, Houhua organization: Hunan Tianyu Energy Technology Co., Ltd., Changsha 410082, China – sequence: 4 givenname: Pei surname: Peng fullname: Peng, Pei organization: School of Civil Engineering, Hunan Univ., Changsha 410082, China – sequence: 5 givenname: Liang surname: Chun fullname: Chun, Liang organization: School of Civil Engineering, Hunan Univ., Changsha 410082, China |
| BookMark | eNqFkE1rGzEQhkVJoU7av1B0zGXdGe2HLcghwaQfkJAe2rPQSrOuzK7kSHLA5_7xauPmkktOAzPv88I85-zMB0-MfUZYImD3ZbfUe_IUt8elAFGW2GLTvGMLXK9EJRHXZ2wBNXSV6FB-YOcp7QBAoIAF-3tPWVcj6eid3_KUo860PfJeJ7I8eH5IFPk-0kCRvKHEtbdc80mbP84Tj2TCNJG3OruSTseUaeJDiOWixyq7ibgJYZzLx6DtM755-DlHyOiUy-Ejez_oMdGn__OC_f56-2vzvbp7-PZjc3NXmbppc9VDX5No1xJlX6OQYsC-QZK9AKBe2tVqkLITph9kZ6FuEIyQuu2GAXVLluoLdnnq3cfweKCU1eSSoXHUnsIhKdE0sAJRY12iV6eoiSGl8r0yLj-_WAS5USGo2b3aqRf3anavTu4L3r3C99FNOh7fBq9PIBUPT46iSsbN3q0rurKywb1V8Q_XcKbT |
| CitedBy_id | crossref_primary_10_1016_j_enbuild_2021_111435 crossref_primary_10_1016_j_energy_2021_122809 crossref_primary_10_1016_j_energy_2025_135840 crossref_primary_10_1016_j_enbuild_2023_113513 crossref_primary_10_1016_j_buildenv_2024_111547 crossref_primary_10_1007_s11042_023_17948_5 crossref_primary_10_1016_j_energy_2022_123111 crossref_primary_10_1016_j_apenergy_2021_116991 crossref_primary_10_1016_j_jclepro_2023_139524 crossref_primary_10_1016_j_energy_2023_127518 crossref_primary_10_1016_j_apenergy_2020_116223 crossref_primary_10_1016_j_energy_2020_119208 crossref_primary_10_1016_j_jobe_2024_109657 crossref_primary_10_1109_ACCESS_2022_3161497 crossref_primary_10_1016_j_ijrefrig_2024_07_019 crossref_primary_10_3390_en16124721 crossref_primary_10_1016_j_enbuild_2023_113527 crossref_primary_10_1007_s12273_024_1136_3 crossref_primary_10_1016_j_enbuild_2024_115167 crossref_primary_10_1016_j_ifacol_2022_08_058 crossref_primary_10_1016_j_enbuild_2022_112278 crossref_primary_10_1016_j_enbuild_2022_112498 crossref_primary_10_1016_j_procs_2022_07_092 crossref_primary_10_1016_j_jobe_2022_105028 crossref_primary_10_1016_j_inffus_2024_102559 crossref_primary_10_1016_j_apenergy_2021_117694 |
| Cites_doi | 10.1016/j.enbuild.2019.06.016 10.1016/j.enbuild.2015.01.047 10.1023/A:1019956318069 10.1016/j.apenergy.2019.113759 10.1016/j.renene.2017.10.017 10.1016/j.energy.2017.05.126 10.1016/j.neucom.2005.02.006 10.1198/jasa.2003.s308 10.1016/j.apenergy.2017.03.034 10.1016/j.apenergy.2018.12.042 10.1016/j.energy.2018.01.180 10.1016/S0304-4076(00)00030-0 10.1016/j.cageo.2014.10.004 10.1016/S1364-0321(01)00006-5 10.1016/j.apenergy.2014.02.057 10.1016/j.apenergy.2019.01.055 10.1080/01621459.1970.10481180 10.1016/j.rser.2015.04.065 10.1016/j.apenergy.2014.07.104 10.5772/16004 10.1057/9781137291264_6 10.1007/978-3-319-53480-0_48 10.1016/j.enbuild.2004.01.035 10.1016/j.enbuild.2013.01.008 10.1016/j.buildenv.2018.11.017 10.1016/j.enbuild.2015.12.050 10.1016/j.apenergy.2016.03.112 10.1016/j.buildenv.2018.09.024 10.2139/ssrn.2417910 10.1016/j.enbuild.2017.03.010 10.1016/j.neucom.2009.09.020 10.1016/j.egypro.2012.01.229 10.1016/j.apenergy.2019.114396 10.1162/neco.1997.9.8.1735 10.1016/S0378-7796(01)00138-9 10.1016/j.enconman.2017.09.005 10.1016/j.enbuild.2016.05.084 10.1016/0167-9473(93)E0056-A 10.1109/UPEC.2007.4469121 10.1177/0278364904045481 10.1016/j.enbuild.2016.12.002 10.1016/j.buildenv.2006.06.025 10.1016/j.rser.2014.08.039 10.1016/j.apm.2013.08.016 10.1007/BFb0026683 10.1016/j.apenergy.2018.12.004 10.1109/TPWRS.2005.846054 10.1016/j.radonc.2014.11.015 10.1016/j.buildenv.2018.10.062 10.1016/j.energy.2015.11.037 10.1080/00031305.1990.10475704 10.1007/978-1-4612-0593-7 10.1016/j.apenergy.2017.03.064 10.1016/j.apenergy.2018.10.061 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.115144 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_115144 S0306261920306565 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-b0b3e258919b31292f1b41e9b200eb9d77f9962cbf96d03410c29a56ff1a5ede3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540433000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 10:05:21 EDT 2025 Sat Nov 29 07:18:46 EST 2025 Tue Nov 18 22:29:47 EST 2025 Fri Feb 23 02:47:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial neural network (ANN) User preferences Cooling load prediction Meta-learning Recommendation system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-b0b3e258919b31292f1b41e9b200eb9d77f9962cbf96d03410c29a56ff1a5ede3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2440702313 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2440702313 crossref_citationtrail_10_1016_j_apenergy_2020_115144 crossref_primary_10_1016_j_apenergy_2020_115144 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115144 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-15 |
| PublicationDateYYYYMMDD | 2020-07-15 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kotzur, Markewitz, Robinius, Stolten (b0070) 2018; 117 Lavalle, Branicky (b0305) 2003; 23 Jolliffe (b0255) 2002; 87 Lauritzen SL. The EM algorithm for graphical association models with missing data; 1995. Nie, Liu, Liu, Yong (b0065) 2012; 16 Fan, Xiao, Zhao (b0080) 2017; 195 He, Zhou, Feng, Liu, Yang (b0140) 2019 Paliwal KK, Basu A. A speech enhancement method based on Kalman filtering. In: IEEE international conference on acoustics, speech, & signal processing; 1987. Feng, Xiaozhong (b0130) 2014; 134 Wate, Iglesias, Coors, Robinson (b0150) 2020; 258 Racine (b0260) 2004; 99 Chinese standard. GB/T 50785-2012 Evaluation standard for indoor thermal environment in civil building. Beijing: China Architecture and Building Press; 2012. Wang, Lee, Yuen, Feng (b0165) 2019; 198 May R, Dandy G, Maier H. Review of input variable selection methods for artificial neural networks. Artificial Neural Networks-Methodological Advances and Biomedical Applications; 2011:19–44. Zhoua, Zheng (b0155) 2020; 262 Fu (b0115) 2018; 148 Conejo, Plazas, Espinola, Molina (b0055) 2005; 20 Cai, Pipattanasomporn, Rahman (b0280) 2019; 236 ürge-Vorsatz, Cabeza, Serrano, Barreneche, Petrichenko (b0010) 2015; 41 Chirarattananon Surapong, Taveekun Juntakan. An OTTV-based energy estimation model for commercial buildings in Thailand. Energy Build 2004;36:680–9. Niu (b0240) 1999 Chan PML, Hu YF, Sheriff RE. Implementation of fuzzy multiple objective decision making algorithm in a heterogeneous mobile environment. In: Wireless Communications & networking conference; 2002. Cosma, Simha (b0275) 2019; 148 Picard, Berk (b0285) 1990; 44 Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Proc conference on machine learning; 1998. Xu, Chen, Wang, Guo, Yuan (b0085) 2019; 148 Heidelberg SB. Meta-learning in computational intelligence; 2011. Kalogirou (b0265) 2001; 5 Clark, Hussein, Tsang, Thomas, Nisbet (b0290) 2014; 113 Raza, Khosravi (b0110) 2015; 50 Naji, Keivani, Shamshirband, Alengaram, Jumaat, Mansor (b0095) 2016; 97 Box G. Box and Jenkins: Time Series Analysis, Forecasting and Control; 2013. Fan, Wang, Gang, Li (b0090) 2019; 236 He, Zhou, Mo, Feng, Liu, He (b0145) 2020; 262 Markovic, Grintal, Woelki, Frisch, van Treeck (b0180) 2018; 145 Resnikoff HL, Jr ROW. Wavelet analysis; 1998. Amral N, Ozveren CS, King D. Short term load forecasting using Multiple Linear Regression. In: International universities power engineering conference; 2007. Hochreiter, Schmidhuber (b0330) 1997 Carranza, Laborte (b0295) 2015; 74 Deb, Eang, Yang, Santamouris (b0125) 2016; 121 Cui, Wu, Hu, Weir, Li (b0205) 2016; 172 He, Qin, Wang, Wang, Wang (b0160) 2019; 233 Dahanayake, Chow (b0015) 2017; 138 Chen, Peng, Chu, Li, Wu, Ni (b0100) 2017; 195 Box, Pierce (b0050) 1970; 65 Avci M. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing. Dissertations & Theses – Gradworks; 2013. Kokogiannakis (b0025) 2008; 43 Baky (b0235) 2014; 38 Pankratz A. Forecasting with univariate Box-Jenkins models: concepts and cases; 2008. Vilalta R, Drissi Y. A perspective view and survey of meta-learning; 2002. Wang, Zhang, Peng, Wang, Liu, Jiang (b0005) 2017; 151 Jain, Smith, Culligan, Taylor (b0105) 2014; 123 Li, Liu (b0030) 2017; 142 Krichene E, Masmoudi Y, Alimi AM, Abraham A, Chabchoub H. Forecasting using Elman recurrent neural network; 2016. Zhang, Dong (b0060) 2001; 59 Timmerman ME. Principal component analysis, 2nd ed. In: Jolliffe IT, editor. J Am Stat Assoc, vol. 98; 2003. p. 1082–3. Tarsitano, Amerise (b0215) 2017; 133 Louangrath PI. Correlation coefficient according to data classification. Social Science Electronic Publishing; 2014. He, Zhou, Feng, Liu, Yang (b0135) 2019; 237 Lemke, Gabrys (b0200) 2010; 73 Ludermir T. Using machine learning techniques to combine forecasting methods. In: Australian joint conference on advances in artificial intelligence; 2004. Chen, Bo, Dong (b0325) 2006; 69 Platon, Dehkordi, Martel (b0120) 2015; 92 Alibabaei, Fung, Raahemifar (b0020) 2016; 128 Nguyen HT, Nguyen D, Le LB. Home energy management with generic thermal dynamics and user temperature preference. In: IEEE international conference on smart grid communications; 2013. Neyshabur, Salakhutdinov, Srebro (b0270) 2015 Chen (10.1016/j.apenergy.2020.115144_b0100) 2017; 195 Chen (10.1016/j.apenergy.2020.115144_b0325) 2006; 69 He (10.1016/j.apenergy.2020.115144_b0135) 2019; 237 Markovic (10.1016/j.apenergy.2020.115144_b0180) 2018; 145 Lemke (10.1016/j.apenergy.2020.115144_b0200) 2010; 73 Fan (10.1016/j.apenergy.2020.115144_b0090) 2019; 236 He (10.1016/j.apenergy.2020.115144_b0160) 2019; 233 Li (10.1016/j.apenergy.2020.115144_b0030) 2017; 142 Niu (10.1016/j.apenergy.2020.115144_b0240) 1999 10.1016/j.apenergy.2020.115144_b0185 10.1016/j.apenergy.2020.115144_b0220 10.1016/j.apenergy.2020.115144_b0300 10.1016/j.apenergy.2020.115144_b0225 Wang (10.1016/j.apenergy.2020.115144_b0005) 2017; 151 Jain (10.1016/j.apenergy.2020.115144_b0105) 2014; 123 Lavalle (10.1016/j.apenergy.2020.115144_b0305) 2003; 23 Kotzur (10.1016/j.apenergy.2020.115144_b0070) 2018; 117 10.1016/j.apenergy.2020.115144_b0170 10.1016/j.apenergy.2020.115144_b0250 He (10.1016/j.apenergy.2020.115144_b0145) 2020; 262 10.1016/j.apenergy.2020.115144_b0175 10.1016/j.apenergy.2020.115144_b0210 Jolliffe (10.1016/j.apenergy.2020.115144_b0255) 2002; 87 Wate (10.1016/j.apenergy.2020.115144_b0150) 2020; 258 Racine (10.1016/j.apenergy.2020.115144_b0260) 2004; 99 ürge-Vorsatz (10.1016/j.apenergy.2020.115144_b0010) 2015; 41 10.1016/j.apenergy.2020.115144_b0315 He (10.1016/j.apenergy.2020.115144_b0140) 2019 Xu (10.1016/j.apenergy.2020.115144_b0085) 2019; 148 Neyshabur (10.1016/j.apenergy.2020.115144_b0270) 2015 Naji (10.1016/j.apenergy.2020.115144_b0095) 2016; 97 Alibabaei (10.1016/j.apenergy.2020.115144_b0020) 2016; 128 Box (10.1016/j.apenergy.2020.115144_b0050) 1970; 65 Deb (10.1016/j.apenergy.2020.115144_b0125) 2016; 121 Kokogiannakis (10.1016/j.apenergy.2020.115144_b0025) 2008; 43 Cosma (10.1016/j.apenergy.2020.115144_b0275) 2019; 148 Raza (10.1016/j.apenergy.2020.115144_b0110) 2015; 50 Wang (10.1016/j.apenergy.2020.115144_b0165) 2019; 198 10.1016/j.apenergy.2020.115144_b0040 Cui (10.1016/j.apenergy.2020.115144_b0205) 2016; 172 10.1016/j.apenergy.2020.115144_b0045 10.1016/j.apenergy.2020.115144_b0320 10.1016/j.apenergy.2020.115144_b0245 Conejo (10.1016/j.apenergy.2020.115144_b0055) 2005; 20 Nie (10.1016/j.apenergy.2020.115144_b0065) 2012; 16 Platon (10.1016/j.apenergy.2020.115144_b0120) 2015; 92 Fu (10.1016/j.apenergy.2020.115144_b0115) 2018; 148 Zhoua (10.1016/j.apenergy.2020.115144_b0155) 2020; 262 Picard (10.1016/j.apenergy.2020.115144_b0285) 1990; 44 Fan (10.1016/j.apenergy.2020.115144_b0080) 2017; 195 Kalogirou (10.1016/j.apenergy.2020.115144_b0265) 2001; 5 Hochreiter (10.1016/j.apenergy.2020.115144_b0330) 1997 Tarsitano (10.1016/j.apenergy.2020.115144_b0215) 2017; 133 Feng (10.1016/j.apenergy.2020.115144_b0130) 2014; 134 Clark (10.1016/j.apenergy.2020.115144_b0290) 2014; 113 10.1016/j.apenergy.2020.115144_b0190 Baky (10.1016/j.apenergy.2020.115144_b0235) 2014; 38 Zhang (10.1016/j.apenergy.2020.115144_b0060) 2001; 59 10.1016/j.apenergy.2020.115144_b0195 Carranza (10.1016/j.apenergy.2020.115144_b0295) 2015; 74 Dahanayake (10.1016/j.apenergy.2020.115144_b0015) 2017; 138 10.1016/j.apenergy.2020.115144_b0230 10.1016/j.apenergy.2020.115144_b0075 Cai (10.1016/j.apenergy.2020.115144_b0280) 2019; 236 10.1016/j.apenergy.2020.115144_b0035 10.1016/j.apenergy.2020.115144_b0310 |
| References_xml | – volume: 38 start-page: 1417 year: 2014 end-page: 1433 ident: b0235 article-title: Interactive TOPSIS algorithms for solving multi-level non-linear multi-objective decision-making problems publication-title: Appl Math Model – reference: Ludermir T. Using machine learning techniques to combine forecasting methods. In: Australian joint conference on advances in artificial intelligence; 2004. – reference: Pankratz A. Forecasting with univariate Box-Jenkins models: concepts and cases; 2008. – volume: 142 start-page: 56 year: 2017 end-page: 61 ident: b0030 article-title: Improved particle filter based soft sensing of room cooling load publication-title: Energy Build – volume: 87 start-page: 513 year: 2002 ident: b0255 article-title: Principal component analysis publication-title: J Marketing Res – volume: 99 start-page: 39 year: 2004 end-page: 61 ident: b0260 article-title: Consistent cross-validatory model-selection for dependent data: hv -block cross-validation publication-title: J Economet – reference: Vilalta R, Drissi Y. A perspective view and survey of meta-learning; 2002. – volume: 44 start-page: 140 year: 1990 end-page: 147 ident: b0285 article-title: Data splitting publication-title: Am Stat – volume: 233 start-page: 565 year: 2019 end-page: 575 ident: b0160 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network publication-title: Appl Energy – volume: 123 start-page: 168 year: 2014 end-page: 178 ident: b0105 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy – volume: 121 start-page: 284 year: 2016 end-page: 297 ident: b0125 article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks publication-title: Energy Build – volume: 43 start-page: 601 year: 2008 end-page: 609 ident: b0025 article-title: History and development of validation with the ESP-r simulation program publication-title: Build Enviro – year: 2015 ident: b0270 article-title: Path-SGD: path-normalized optimization in deep neural Networks publication-title: International conference on neural information processing systems – reference: Chinese standard. GB/T 50785-2012 Evaluation standard for indoor thermal environment in civil building. Beijing: China Architecture and Building Press; 2012. – reference: Box G. Box and Jenkins: Time Series Analysis, Forecasting and Control; 2013. – volume: 236 start-page: 700 year: 2019 end-page: 710 ident: b0090 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl Energy – reference: May R, Dandy G, Maier H. Review of input variable selection methods for artificial neural networks. Artificial Neural Networks-Methodological Advances and Biomedical Applications; 2011:19–44. – start-page: 89 year: 1999 end-page: 92 ident: b0240 article-title: A study on wavelet neural network prediction model of time series publication-title: Syst Eng-Theory Practice – volume: 262 year: 2020 ident: b0145 article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest publication-title: Appl Energy – reference: Resnikoff HL, Jr ROW. Wavelet analysis; 1998. – volume: 50 start-page: 1352 year: 2015 end-page: 1372 ident: b0110 article-title: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings publication-title: Renew Sust Energy Rev – volume: 198 start-page: 261 year: 2019 end-page: 274 ident: b0165 article-title: Cooling load forecasting-based predictive optimisation for chiller plants publication-title: Energy Build – reference: Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Proc conference on machine learning; 1998. – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: b0265 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sust Energy Rev – volume: 74 start-page: 60 year: 2015 end-page: 70 ident: b0295 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Comput Geosci – reference: Lauritzen SL. The EM algorithm for graphical association models with missing data; 1995. – volume: 151 start-page: 524 year: 2017 end-page: 537 ident: b0005 article-title: GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system publication-title: Energy Convers Manag – volume: 138 start-page: 47 year: 2017 end-page: 59 ident: b0015 article-title: Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program publication-title: Energy Build – reference: Louangrath PI. Correlation coefficient according to data classification. Social Science Electronic Publishing; 2014. – reference: Avci M. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing. Dissertations & Theses – Gradworks; 2013. – volume: 148 start-page: 128 year: 2019 end-page: 135 ident: b0085 article-title: Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method publication-title: Build Enviro – volume: 195 start-page: 659 year: 2017 end-page: 670 ident: b0100 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl Energy – volume: 133 start-page: 108 year: 2017 end-page: 114 ident: b0215 article-title: Short-term load forecasting using a two-stage sarimax model publication-title: Energy – reference: Chan PML, Hu YF, Sheriff RE. Implementation of fuzzy multiple objective decision making algorithm in a heterogeneous mobile environment. In: Wireless Communications & networking conference; 2002. – volume: 236 start-page: 1078 year: 2019 end-page: 1088 ident: b0280 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl Energy – reference: Chirarattananon Surapong, Taveekun Juntakan. An OTTV-based energy estimation model for commercial buildings in Thailand. Energy Build 2004;36:680–9. – volume: 41 start-page: 85 year: 2015 end-page: 98 ident: b0010 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew Sust Energy Rev – volume: 65 start-page: 1509 year: 1970 end-page: 1526 ident: b0050 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: Publ Am Stat Assoc – reference: Amral N, Ozveren CS, King D. Short term load forecasting using Multiple Linear Regression. In: International universities power engineering conference; 2007. – reference: Paliwal KK, Basu A. A speech enhancement method based on Kalman filtering. In: IEEE international conference on acoustics, speech, & signal processing; 1987. – volume: 145 start-page: 319 year: 2018 end-page: 329 ident: b0180 article-title: Window opening model using deep learning methods publication-title: Build Enviro – volume: 97 start-page: 506 year: 2016 end-page: 516 ident: b0095 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy – volume: 69 start-page: 449 year: 2006 end-page: 465 ident: b0325 article-title: Time-series prediction using a local linear wavelet neural network publication-title: Neurocomputing – volume: 117 start-page: 474 year: 2018 end-page: 487 ident: b0070 article-title: Impact of different time series aggregation methods on optimal energy system design publication-title: Renew Energ – volume: 113 year: 2014 ident: b0290 article-title: A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy publication-title: Radiother Oncol – volume: 172 start-page: 251 year: 2016 end-page: 263 ident: b0205 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy – volume: 59 start-page: 121 year: 2001 end-page: 129 ident: b0060 article-title: An adaptive neural-wavelet model for short term load forecasting publication-title: Electr Pow Syst Res – volume: 148 start-page: 372 year: 2019 end-page: 383 ident: b0275 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build Enviro – volume: 20 start-page: 1035 year: 2005 end-page: 1042 ident: b0055 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE T Power Syst – volume: 195 start-page: 222 year: 2017 end-page: 233 ident: b0080 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy – year: 2019 ident: b0140 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl Energy – volume: 16 start-page: 1455 year: 2012 end-page: 1460 ident: b0065 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Procedia – volume: 92 start-page: 10 year: 2015 end-page: 18 ident: b0120 article-title: Hourly prediction of a building's electricity consumption using case-based reasoning, artificial neural networks and principal component analysis publication-title: Energy Build – volume: 262 year: 2020 ident: b0155 article-title: Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities publication-title: Appl Energy – volume: 258 year: 2020 ident: b0150 article-title: Framework for emulation and uncertainty quantification of a stochastic building performance simulator publication-title: Appl Energy – volume: 148 year: 2018 ident: b0115 article-title: Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system publication-title: Energy – reference: Krichene E, Masmoudi Y, Alimi AM, Abraham A, Chabchoub H. Forecasting using Elman recurrent neural network; 2016. – reference: Timmerman ME. Principal component analysis, 2nd ed. In: Jolliffe IT, editor. J Am Stat Assoc, vol. 98; 2003. p. 1082–3. – start-page: 1735 year: 1997 end-page: 1780 ident: b0330 article-title: Long short-term memory publication-title: Neural Comput – volume: 134 start-page: 102 year: 2014 end-page: 113 ident: b0130 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl Energy – reference: Heidelberg SB. Meta-learning in computational intelligence; 2011. – reference: Nguyen HT, Nguyen D, Le LB. Home energy management with generic thermal dynamics and user temperature preference. In: IEEE international conference on smart grid communications; 2013. – volume: 237 start-page: 103 year: 2019 end-page: 116 ident: b0135 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl Energy – volume: 23 start-page: 673 year: 2003 end-page: 692 ident: b0305 article-title: On the relationship between classical grid search and probabilistic roadmaps publication-title: Int J Robot Res – volume: 128 start-page: 81 year: 2016 end-page: 98 ident: b0020 article-title: Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house HVAC system publication-title: Energy Build – volume: 73 start-page: 2006 year: 2010 end-page: 2016 ident: b0200 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing – volume: 198 start-page: 261 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0165 article-title: Cooling load forecasting-based predictive optimisation for chiller plants publication-title: Energy Build doi: 10.1016/j.enbuild.2019.06.016 – volume: 92 start-page: 10 year: 2015 ident: 10.1016/j.apenergy.2020.115144_b0120 article-title: Hourly prediction of a building's electricity consumption using case-based reasoning, artificial neural networks and principal component analysis publication-title: Energy Build doi: 10.1016/j.enbuild.2015.01.047 – ident: 10.1016/j.apenergy.2020.115144_b0195 doi: 10.1023/A:1019956318069 – volume: 258 year: 2020 ident: 10.1016/j.apenergy.2020.115144_b0150 article-title: Framework for emulation and uncertainty quantification of a stochastic building performance simulator publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113759 – volume: 117 start-page: 474 year: 2018 ident: 10.1016/j.apenergy.2020.115144_b0070 article-title: Impact of different time series aggregation methods on optimal energy system design publication-title: Renew Energ doi: 10.1016/j.renene.2017.10.017 – volume: 133 start-page: 108 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0215 article-title: Short-term load forecasting using a two-stage sarimax model publication-title: Energy doi: 10.1016/j.energy.2017.05.126 – volume: 69 start-page: 449 year: 2006 ident: 10.1016/j.apenergy.2020.115144_b0325 article-title: Time-series prediction using a local linear wavelet neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.02.006 – start-page: 89 year: 1999 ident: 10.1016/j.apenergy.2020.115144_b0240 article-title: A study on wavelet neural network prediction model of time series publication-title: Syst Eng-Theory Practice – ident: 10.1016/j.apenergy.2020.115144_b0175 doi: 10.1198/jasa.2003.s308 – volume: 195 start-page: 659 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0100 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 236 start-page: 1078 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0280 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.042 – volume: 148 year: 2018 ident: 10.1016/j.apenergy.2020.115144_b0115 article-title: Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system publication-title: Energy doi: 10.1016/j.energy.2018.01.180 – volume: 99 start-page: 39 year: 2004 ident: 10.1016/j.apenergy.2020.115144_b0260 article-title: Consistent cross-validatory model-selection for dependent data: hv -block cross-validation publication-title: J Economet doi: 10.1016/S0304-4076(00)00030-0 – ident: 10.1016/j.apenergy.2020.115144_b0185 – year: 2015 ident: 10.1016/j.apenergy.2020.115144_b0270 article-title: Path-SGD: path-normalized optimization in deep neural Networks – volume: 74 start-page: 60 year: 2015 ident: 10.1016/j.apenergy.2020.115144_b0295 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Comput Geosci doi: 10.1016/j.cageo.2014.10.004 – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.apenergy.2020.115144_b0265 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sust Energy Rev doi: 10.1016/S1364-0321(01)00006-5 – volume: 123 start-page: 168 year: 2014 ident: 10.1016/j.apenergy.2020.115144_b0105 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.057 – year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0140 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.055 – volume: 65 start-page: 1509 year: 1970 ident: 10.1016/j.apenergy.2020.115144_b0050 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: Publ Am Stat Assoc doi: 10.1080/01621459.1970.10481180 – volume: 50 start-page: 1352 year: 2015 ident: 10.1016/j.apenergy.2020.115144_b0110 article-title: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2015.04.065 – volume: 134 start-page: 102 year: 2014 ident: 10.1016/j.apenergy.2020.115144_b0130 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.104 – ident: 10.1016/j.apenergy.2020.115144_b0310 – ident: 10.1016/j.apenergy.2020.115144_b0170 doi: 10.5772/16004 – ident: 10.1016/j.apenergy.2020.115144_b0075 doi: 10.1057/9781137291264_6 – ident: 10.1016/j.apenergy.2020.115144_b0245 doi: 10.1007/978-3-319-53480-0_48 – ident: 10.1016/j.apenergy.2020.115144_b0210 doi: 10.1016/j.enbuild.2004.01.035 – ident: 10.1016/j.apenergy.2020.115144_b0220 doi: 10.1016/j.enbuild.2013.01.008 – volume: 148 start-page: 372 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0275 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build Enviro doi: 10.1016/j.buildenv.2018.11.017 – volume: 121 start-page: 284 year: 2016 ident: 10.1016/j.apenergy.2020.115144_b0125 article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks publication-title: Energy Build doi: 10.1016/j.enbuild.2015.12.050 – volume: 172 start-page: 251 year: 2016 ident: 10.1016/j.apenergy.2020.115144_b0205 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.112 – volume: 145 start-page: 319 year: 2018 ident: 10.1016/j.apenergy.2020.115144_b0180 article-title: Window opening model using deep learning methods publication-title: Build Enviro doi: 10.1016/j.buildenv.2018.09.024 – volume: 262 year: 2020 ident: 10.1016/j.apenergy.2020.115144_b0155 article-title: Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities publication-title: Appl Energy – ident: 10.1016/j.apenergy.2020.115144_b0250 doi: 10.2139/ssrn.2417910 – volume: 142 start-page: 56 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0030 article-title: Improved particle filter based soft sensing of room cooling load publication-title: Energy Build doi: 10.1016/j.enbuild.2017.03.010 – volume: 73 start-page: 2006 year: 2010 ident: 10.1016/j.apenergy.2020.115144_b0200 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.09.020 – volume: 16 start-page: 1455 year: 2012 ident: 10.1016/j.apenergy.2020.115144_b0065 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.01.229 – volume: 262 year: 2020 ident: 10.1016/j.apenergy.2020.115144_b0145 article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114396 – start-page: 1735 year: 1997 ident: 10.1016/j.apenergy.2020.115144_b0330 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 59 start-page: 121 year: 2001 ident: 10.1016/j.apenergy.2020.115144_b0060 article-title: An adaptive neural-wavelet model for short term load forecasting publication-title: Electr Pow Syst Res doi: 10.1016/S0378-7796(01)00138-9 – volume: 151 start-page: 524 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0005 article-title: GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.09.005 – volume: 128 start-page: 81 year: 2016 ident: 10.1016/j.apenergy.2020.115144_b0020 article-title: Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house HVAC system publication-title: Energy Build doi: 10.1016/j.enbuild.2016.05.084 – ident: 10.1016/j.apenergy.2020.115144_b0300 doi: 10.1016/0167-9473(93)E0056-A – ident: 10.1016/j.apenergy.2020.115144_b0035 doi: 10.1109/UPEC.2007.4469121 – volume: 23 start-page: 673 year: 2003 ident: 10.1016/j.apenergy.2020.115144_b0305 article-title: On the relationship between classical grid search and probabilistic roadmaps publication-title: Int J Robot Res doi: 10.1177/0278364904045481 – ident: 10.1016/j.apenergy.2020.115144_b0045 – volume: 138 start-page: 47 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0015 article-title: Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program publication-title: Energy Build doi: 10.1016/j.enbuild.2016.12.002 – volume: 43 start-page: 601 year: 2008 ident: 10.1016/j.apenergy.2020.115144_b0025 article-title: History and development of validation with the ESP-r simulation program publication-title: Build Enviro doi: 10.1016/j.buildenv.2006.06.025 – volume: 41 start-page: 85 year: 2015 ident: 10.1016/j.apenergy.2020.115144_b0010 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2014.08.039 – volume: 38 start-page: 1417 year: 2014 ident: 10.1016/j.apenergy.2020.115144_b0235 article-title: Interactive TOPSIS algorithms for solving multi-level non-linear multi-objective decision-making problems publication-title: Appl Math Model doi: 10.1016/j.apm.2013.08.016 – ident: 10.1016/j.apenergy.2020.115144_b0315 doi: 10.1007/BFb0026683 – volume: 236 start-page: 700 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0090 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.004 – ident: 10.1016/j.apenergy.2020.115144_b0225 – ident: 10.1016/j.apenergy.2020.115144_b0190 – volume: 87 start-page: 513 year: 2002 ident: 10.1016/j.apenergy.2020.115144_b0255 article-title: Principal component analysis publication-title: J Marketing Res – volume: 20 start-page: 1035 year: 2005 ident: 10.1016/j.apenergy.2020.115144_b0055 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE T Power Syst doi: 10.1109/TPWRS.2005.846054 – volume: 113 year: 2014 ident: 10.1016/j.apenergy.2020.115144_b0290 article-title: A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.11.015 – volume: 237 start-page: 103 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0135 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.055 – volume: 148 start-page: 128 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0085 article-title: Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method publication-title: Build Enviro doi: 10.1016/j.buildenv.2018.10.062 – volume: 97 start-page: 506 year: 2016 ident: 10.1016/j.apenergy.2020.115144_b0095 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy doi: 10.1016/j.energy.2015.11.037 – ident: 10.1016/j.apenergy.2020.115144_b0230 – volume: 44 start-page: 140 year: 1990 ident: 10.1016/j.apenergy.2020.115144_b0285 article-title: Data splitting publication-title: Am Stat doi: 10.1080/00031305.1990.10475704 – ident: 10.1016/j.apenergy.2020.115144_b0320 doi: 10.1007/978-1-4612-0593-7 – ident: 10.1016/j.apenergy.2020.115144_b0040 – volume: 195 start-page: 222 year: 2017 ident: 10.1016/j.apenergy.2020.115144_b0080 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.064 – volume: 233 start-page: 565 year: 2019 ident: 10.1016/j.apenergy.2020.115144_b0160 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.10.061 |
| SSID | ssj0002120 |
| Score | 2.4548025 |
| Snippet | •A new meta-learning recommendation system is proposed.•The new system concerned two-stage (subjective and objective) user preferences.•Multi-objective... Building data forecasting plays an increasingly important role in building energy savings. However, the one-fits-all model cannot satisfy all the requirements... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115144 |
| SubjectTerms | algorithms Artificial neural network (ANN) buildings cooling Cooling load prediction data collection energy energy conservation Meta-learning monitoring neural networks prediction Recommendation system User preferences |
| Title | Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.115144 https://www.proquest.com/docview/2440702313 |
| Volume | 270 |
| WOSCitedRecordID | wos000540433000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IBhMbFxkJN4ql-bipn6cpqKBYPRhiL5FjuOMTplTlnTanvkR_F2Ob2k6LmMPqFJURbHr9Hw5_uyc8x2EXvO4gA8NyDgG-hZLkRMgRzFhGWcTKWheWEt_SI6OJvM5m_V6P3wuzEWZKDW5vGTL_2pqOAfG1qmztzB32ymcgO9gdDiC2eH4T4b_KBtOSr_jUVv12auBnq5y_WpAb0toaQCX6Gc1mvngzERV6iIqMKgz6WotOaVnE4wI9LIkuhb9QFSVyWIvK26UXgcHn2b6Eil43fi50EvbOporTZJhG_9jggi-SPUN4HnSBgG5-GDArToRfNGCy-7SHlarryu-dub24plcdLcuYJ2qBSlpx8PBeoXoJVzXHYe2kIhzqEBYAysQ-Yuvt9sOp0O-tHcw1D8xXDfYFNe-Num1oYg-yu009f2kup_U9nMHbYUJZZM-2tp_N52_byf50Cl--jvoJJ__fkR_4j3XGIChNccP0QO3HsH7FkePUE-qbXS_o1K5jXam62RIuNTNBvVj9H0DathDDRuo4UphDTXcgRoGrGCOHdTwJtSwhRoGHOEWathBDWuomeYANdyB2hP0-e30-OCQuKIeREQxbUg2yiIZ6lqWLIuAbIYFuIZAsgyeYZmxPEkKWIKHIivYOB8BxxqJkHE6LoqAU5nLaAf1VaXkU4R5FLE84AlPhH7dnzE6ioskiLKIMl5Qvouo_8tT4RTvdeGVMv270XfRm7bd0mq-3NiCeYumjrlaRpoCWG9s-8pDIAXXrt_XcSWrVZ0C84YJGRZg0d6tR_QM3Vs_cc9RvzlfyRforrhoFvX5S4fmnxQczkI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-learning+strategy+based+on+user+preferences+and+a+machine+recommendation+system+for+real-time+cooling+load+and+COP+forecasting&rft.jtitle=Applied+energy&rft.au=Li%2C+Wenqiang&rft.au=Gong%2C+Guangcai&rft.au=Fan%2C+Houhua&rft.au=Peng%2C+Pei&rft.date=2020-07-15&rft.issn=0306-2619&rft.volume=270&rft.spage=115144&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_115144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |