A parallel multigrid method of the Cahn–Hilliard equation

► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference schem...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science Vol. 71; pp. 89 - 96
Main Authors: Shin, Jaemin, Kim, Sungki, Lee, Dongsun, Kim, Junseok
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.04.2013
Elsevier
Subjects:
ISSN:0927-0256, 1879-0801
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference scheme and its implementation for solving the Cahn–Hilliard equation, which describes the phase separation process. Our numerical algorithm employs an unconditionally gradient stable splitting discretization method. The resulting discrete equations are solved using a parallel multigrid method. This parallel scheme facilitates the solution of large-scale problems. We provide numerical results related to the speed-up, efficiency, and scalability to demonstrate the high performance of our proposed method. We also propose a linearly stabilized splitting scheme for the Cahn–Hilliard equation with logarithmic free energy.
AbstractList ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference scheme and its implementation for solving the Cahn–Hilliard equation, which describes the phase separation process. Our numerical algorithm employs an unconditionally gradient stable splitting discretization method. The resulting discrete equations are solved using a parallel multigrid method. This parallel scheme facilitates the solution of large-scale problems. We provide numerical results related to the speed-up, efficiency, and scalability to demonstrate the high performance of our proposed method. We also propose a linearly stabilized splitting scheme for the Cahn–Hilliard equation with logarithmic free energy.
Author Kim, Junseok
Kim, Sungki
Shin, Jaemin
Lee, Dongsun
Author_xml – sequence: 1
  givenname: Jaemin
  surname: Shin
  fullname: Shin, Jaemin
– sequence: 2
  givenname: Sungki
  surname: Kim
  fullname: Kim, Sungki
– sequence: 3
  givenname: Dongsun
  surname: Lee
  fullname: Lee, Dongsun
– sequence: 4
  givenname: Junseok
  surname: Kim
  fullname: Kim, Junseok
  email: cfdkim@korea.ac.kr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27179507$$DView record in Pascal Francis
BookMark eNqFkLFOwzAURS1UJNrCN5CFMcF2nNoWYqgqoEiVWGC2XPuFunKSYrtIbPwDf8iXkFJgYOn0lnvufTojNGi7FhA6J7ggmEwu14XpmkanaFxBMSkLTAqMxREaEsFljgUmAzTEkvIc02pygkYxrnFPSkGH6GqabXTQ3oPPmq1P7jk4mzWQVp3NujpLK8hmetV-vn_MnfdOB5vBy1Yn17Wn6LjWPsLZzx2jp9ubx9k8Xzzc3c-mi9yUrEq5Bs6YsJJqWtUCaEVZyYSUICxooimXVc0kw3ZZMVrCkiw5p8zQUtZ2yTCUY3Sx793oaLSvg26Ni2oTXKPDm6Kc9BWY97nrfc6ELsYAtTIufX-agnZeEax2xtRa_RlTO2MKE9Ub63n-j_-dOExO9yT0Gl4dBNUnoDVgXQCTlO3cwY4vzYWNoQ
CitedBy_id crossref_primary_10_1016_j_commatsci_2013_08_027
crossref_primary_10_1016_j_enganabound_2017_02_005
crossref_primary_10_1016_j_compfluid_2022_105432
crossref_primary_10_1016_j_physa_2014_04_038
crossref_primary_10_1007_s12572_018_0210_4
crossref_primary_10_1016_j_cnsns_2024_108327
crossref_primary_10_1016_j_cam_2019_06_038
crossref_primary_10_3390_math8010097
crossref_primary_10_1016_j_enganabound_2025_106132
crossref_primary_10_1016_j_camwa_2025_07_012
crossref_primary_10_3390_math8081385
crossref_primary_10_1016_j_ijmecsci_2022_107648
crossref_primary_10_1007_s00366_021_01583_5
crossref_primary_10_1007_s10915_018_0753_3
crossref_primary_10_1016_j_enganabound_2014_10_008
crossref_primary_10_1063_5_0205263
crossref_primary_10_1216_RMJ_2019_49_3_1029
crossref_primary_10_1016_j_ijmecsci_2022_107489
crossref_primary_10_1016_j_jcp_2023_112345
crossref_primary_10_1088_1757_899X_394_3_032089
Cites_doi 10.1016/j.jcp.2004.10.032
10.1063/1.2061852
10.1016/j.jcp.2006.03.010
10.1016/j.mechmat.2011.12.009
10.1093/imamat/38.2.97
10.1016/S0032-3861(03)00606-2
10.1109/TIP.2006.887728
10.1016/j.commatsci.2010.04.005
10.1002/mats.200700038
10.1109/2945.942691
10.1016/j.cma.2008.05.003
10.1016/j.jcp.2011.03.033
10.1002/zamm.201000121
10.1016/j.ijsolstr.2012.03.018
10.1016/j.physa.2004.08.076
10.1007/s00607-007-0243-1
10.1557/PROC-529-39
10.1103/PhysRevE.64.041602
10.1016/j.commatsci.2010.03.030
10.1016/j.jcp.2011.11.006
10.1016/j.jcp.2005.07.004
10.4171/ifb/132
10.1016/j.parco.2003.07.002
10.1016/0001-6160(61)90182-1
10.1016/j.jcp.2003.07.035
10.1063/1.1744102
10.1016/0167-2789(95)00173-5
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.commatsci.2013.01.008
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0801
EndPage 96
ExternalDocumentID 27179507
10_1016_j_commatsci_2013_01_008
S0927025613000128
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c345t-ae7448d92a25f8e252434899e8dea1a2795f4940db5423eb1b7724c239fdb40e3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316661300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0927-0256
IngestDate Mon Jul 21 09:16:26 EDT 2025
Sat Nov 29 07:07:51 EST 2025
Tue Nov 18 21:48:55 EST 2025
Fri Feb 23 02:19:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linearly stabilized splitting scheme
Parallel computing
Multigrid
Phase separation
Cahn–Hilliard equation
High performance
Cahn-Hilliard equation
Spinodal decomposition
Free energy
Discretization method
Grain coarsening
Cahn Hilliard equation
Displacement rates
Parallel computation
Finite difference method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-ae7448d92a25f8e252434899e8dea1a2795f4940db5423eb1b7724c239fdb40e3
PageCount 8
ParticipantIDs pascalfrancis_primary_27179507
crossref_citationtrail_10_1016_j_commatsci_2013_01_008
crossref_primary_10_1016_j_commatsci_2013_01_008
elsevier_sciencedirect_doi_10_1016_j_commatsci_2013_01_008
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computational materials science
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Liang, Ni, He (b0080) 2010; 48
Anders, Weinberg (b0060) 2011; 50
Anders, Weinberg (b0085) 2012; 47
Elliott (b0110) 1989; vol. 88
Jeong, Goldenfeld, Dantzig (b0130) 2001; 64
Garcke, Preusser, Rumpf, Telea, Weikard, van Wijk (b0065) 2001; 7
Trottenberg, Oosterlee, Schüller (b0160) 2001
Fife (b0020) 2000; 48
Anders, Weinberg (b0050) 2011; 91
Cahn (b0005) 1961; 9
D. Playne, K. Hawick, Data parallel three-dimensional Cahn–Hilliard field equation simulation on GPUs with CUDA, in: Proc. 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA, 2009.
Elliott, French (b0055) 1987; 38
MGNET.
Mihajlović, Silvester (b0170) 2004; 30
Kim (b0040) 2005; 204
Kay, Welford (b0095) 2006; 212
Kim, Kang, Lowengrub (b0035) 2004; 193
Gurtin (b0025) 1996; 92
Gomez, Hughes (b0195) 2011; 230
(unpublished article).
Vey, Voigt (b0165) 2007; 81
Grama, Gupta, Karypis, Kumar (b0180) 2003
Message Passing Interface Forum, MPI, A Message Passing Interface Standard, 1994.
Anders, Hesch, Weinberg (b0090) 2012; 49
Guo, Pinna, Zvelindovsky (b0155) 2007; 16
Hulsemann, Kowarschik, Mohr, Rude (b0190) 2005
Do-Quang, Villanueva, Amberg, Loginova (b0135) 2007; 55
.
Kim, Lowengrub (b0045) 2005; 7
Wise, Lowengrub, Kim, Thornton, Voorhees, Johnson (b0075) 2005; 87
Cahn, Hilliard (b0010) 1958; 28
Zhu, Chen, Shen, Tikare (b0105) 1999; 60
Sides, Fredrickson (b0150) 2003; 44
Gomez, Calo, Bazilevs, Hughes (b0125) 2008; 197
Bertozzi, Esedoglu, Gillette (b0070) 2007; 16
Hilliard (b0030) 1970
Mello, Filho (b0015) 2005; 347
Guo, Mi, Grant (b0140) 2011; 231
Wells, Kuhl, Garikipati (b0120) 2006; 218
D.J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, 1998.
Eyre (b0115) 1998; 529
Sides (10.1016/j.commatsci.2013.01.008_b0150) 2003; 44
Cahn (10.1016/j.commatsci.2013.01.008_b0005) 1961; 9
10.1016/j.commatsci.2013.01.008_b0175
Hulsemann (10.1016/j.commatsci.2013.01.008_b0190) 2005
Kim (10.1016/j.commatsci.2013.01.008_b0045) 2005; 7
Grama (10.1016/j.commatsci.2013.01.008_b0180) 2003
Garcke (10.1016/j.commatsci.2013.01.008_b0065) 2001; 7
Elliott (10.1016/j.commatsci.2013.01.008_b0055) 1987; 38
Gurtin (10.1016/j.commatsci.2013.01.008_b0025) 1996; 92
Fife (10.1016/j.commatsci.2013.01.008_b0020) 2000; 48
Jeong (10.1016/j.commatsci.2013.01.008_b0130) 2001; 64
Mihajlović (10.1016/j.commatsci.2013.01.008_b0170) 2004; 30
Kim (10.1016/j.commatsci.2013.01.008_b0040) 2005; 204
Anders (10.1016/j.commatsci.2013.01.008_b0060) 2011; 50
Eyre (10.1016/j.commatsci.2013.01.008_b0115) 1998; 529
Zhu (10.1016/j.commatsci.2013.01.008_b0105) 1999; 60
Elliott (10.1016/j.commatsci.2013.01.008_b0110) 1989; vol. 88
Guo (10.1016/j.commatsci.2013.01.008_b0140) 2011; 231
Trottenberg (10.1016/j.commatsci.2013.01.008_b0160) 2001
Mello (10.1016/j.commatsci.2013.01.008_b0015) 2005; 347
10.1016/j.commatsci.2013.01.008_b0185
Liang (10.1016/j.commatsci.2013.01.008_b0080) 2010; 48
Kay (10.1016/j.commatsci.2013.01.008_b0095) 2006; 212
Anders (10.1016/j.commatsci.2013.01.008_b0085) 2012; 47
Bertozzi (10.1016/j.commatsci.2013.01.008_b0070) 2007; 16
Wise (10.1016/j.commatsci.2013.01.008_b0075) 2005; 87
10.1016/j.commatsci.2013.01.008_b0100
10.1016/j.commatsci.2013.01.008_b0145
Hilliard (10.1016/j.commatsci.2013.01.008_b0030) 1970
Anders (10.1016/j.commatsci.2013.01.008_b0090) 2012; 49
Vey (10.1016/j.commatsci.2013.01.008_b0165) 2007; 81
Gomez (10.1016/j.commatsci.2013.01.008_b0195) 2011; 230
Wells (10.1016/j.commatsci.2013.01.008_b0120) 2006; 218
Gomez (10.1016/j.commatsci.2013.01.008_b0125) 2008; 197
Cahn (10.1016/j.commatsci.2013.01.008_b0010) 1958; 28
Guo (10.1016/j.commatsci.2013.01.008_b0155) 2007; 16
Kim (10.1016/j.commatsci.2013.01.008_b0035) 2004; 193
Anders (10.1016/j.commatsci.2013.01.008_b0050) 2011; 91
Do-Quang (10.1016/j.commatsci.2013.01.008_b0135) 2007; 55
References_xml – volume: 50
  start-page: 1359
  year: 2011
  end-page: 1364
  ident: b0060
  publication-title: Comput. Mater. Sci.
– volume: 91
  start-page: 609
  year: 2011
  end-page: 629
  ident: b0050
  publication-title: Angew. Math. Mech.
– reference: D.J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, 1998. <
– volume: 212
  start-page: 288
  year: 2006
  end-page: 304
  ident: b0095
  publication-title: J. Comput. Phys.
– reference: D. Playne, K. Hawick, Data parallel three-dimensional Cahn–Hilliard field equation simulation on GPUs with CUDA, in: Proc. 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA, 2009.
– volume: 7
  start-page: 230
  year: 2001
  end-page: 241
  ident: b0065
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 231
  start-page: 1781
  year: 2011
  end-page: 1796
  ident: b0140
  publication-title: J. Comput. Phys.
– volume: 7
  start-page: 435
  year: 2005
  end-page: 466
  ident: b0045
  publication-title: Interface Free Bound.
– volume: 64
  start-page: 1
  year: 2001
  end-page: 14
  ident: b0130
  publication-title: Phys. Rev. E
– volume: 230
  start-page: 5310
  year: 2011
  end-page: 5327
  ident: b0195
  publication-title: J. Comput. Phys.
– year: 2005
  ident: b0190
  article-title: Parallel geometric multigrid
  publication-title: Numerical Solution of Partial Differential Equations on Parallel Computers
– volume: 48
  start-page: 1
  year: 2000
  end-page: 26
  ident: b0020
  publication-title: Electron. J. Differ. Equ.
– reference: > (unpublished article).
– volume: 197
  start-page: 4333
  year: 2008
  end-page: 4352
  ident: b0125
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 47
  start-page: 33
  year: 2012
  end-page: 50
  ident: b0085
  publication-title: Mech. Mater.
– volume: 81
  start-page: 53
  year: 2007
  end-page: 75
  ident: b0165
  publication-title: Computing
– volume: 48
  start-page: 871
  year: 2010
  end-page: 874
  ident: b0080
  publication-title: Comput. Mater. Sci.
– year: 2003
  ident: b0180
  article-title: Introduction to Parallel Computing
– volume: 16
  start-page: 779
  year: 2007
  end-page: 784
  ident: b0155
  publication-title: Macromol. Theor. Simul.
– volume: 347
  start-page: 429
  year: 2005
  end-page: 443
  ident: b0015
  publication-title: Physica A
– volume: 218
  start-page: 860
  year: 2006
  end-page: 877
  ident: b0120
  publication-title: J. Comput. Phys.
– reference: MGNET. <
– volume: 30
  start-page: 35
  year: 2004
  end-page: 55
  ident: b0170
  publication-title: Parallel Comput.
– volume: 529
  start-page: 39
  year: 1998
  end-page: 46
  ident: b0115
  publication-title: Mater. Res. Soc. Sympos. Proc.
– volume: 28
  start-page: 258
  year: 1958
  end-page: 267
  ident: b0010
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 285
  year: 2007
  end-page: 291
  ident: b0070
  publication-title: IEEE Trans. Image Process.
– volume: 49
  start-page: 1557
  year: 2012
  end-page: 1572
  ident: b0090
  publication-title: Int. J. Solids Struct.
– start-page: 497
  year: 1970
  end-page: 560
  ident: b0030
  article-title: Spinodal decomposition
  publication-title: Phase Transformations
– year: 2001
  ident: b0160
  article-title: Multigrid
– volume: vol. 88
  start-page: 35
  year: 1989
  end-page: 73
  ident: b0110
  article-title: The Cahn–Hilliard model for the kinetics of phase separation
  publication-title: Mathematical Models for Phase Change Problems
– reference: >.
– volume: 44
  start-page: 5859
  year: 2003
  end-page: 5866
  ident: b0150
  publication-title: Polymer
– volume: 193
  start-page: 511
  year: 2004
  end-page: 543
  ident: b0035
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: 229
  year: 2007
  end-page: 237
  ident: b0135
  publication-title: Bull. Pol. Acad. Sci. Technol. Sci.
– volume: 9
  start-page: 795
  year: 1961
  end-page: 801
  ident: b0005
  publication-title: Acta Mater.
– volume: 38
  start-page: 97
  year: 1987
  end-page: 128
  ident: b0055
  publication-title: IMA J. Appl. Math.
– volume: 204
  start-page: 784
  year: 2005
  end-page: 804
  ident: b0040
  publication-title: J. Comput. Phys.
– volume: 87
  start-page: 133102-1
  year: 2005
  end-page: 133102-3
  ident: b0075
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 178
  year: 1996
  end-page: 192
  ident: b0025
  publication-title: Physica D
– reference: Message Passing Interface Forum, MPI, A Message Passing Interface Standard, 1994.
– volume: 60
  start-page: 3564
  year: 1999
  end-page: 3572
  ident: b0105
  publication-title: Phys. Rev.
– volume: 204
  start-page: 784
  year: 2005
  ident: 10.1016/j.commatsci.2013.01.008_b0040
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.10.032
– volume: 87
  start-page: 133102-1
  year: 2005
  ident: 10.1016/j.commatsci.2013.01.008_b0075
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2061852
– volume: 218
  start-page: 860
  year: 2006
  ident: 10.1016/j.commatsci.2013.01.008_b0120
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.010
– ident: 10.1016/j.commatsci.2013.01.008_b0145
– volume: 47
  start-page: 33
  year: 2012
  ident: 10.1016/j.commatsci.2013.01.008_b0085
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2011.12.009
– volume: 48
  start-page: 1
  year: 2000
  ident: 10.1016/j.commatsci.2013.01.008_b0020
  publication-title: Electron. J. Differ. Equ.
– volume: 38
  start-page: 97
  year: 1987
  ident: 10.1016/j.commatsci.2013.01.008_b0055
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/38.2.97
– volume: 44
  start-page: 5859
  year: 2003
  ident: 10.1016/j.commatsci.2013.01.008_b0150
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00606-2
– ident: 10.1016/j.commatsci.2013.01.008_b0185
– volume: 16
  start-page: 285
  year: 2007
  ident: 10.1016/j.commatsci.2013.01.008_b0070
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.887728
– volume: 48
  start-page: 871
  year: 2010
  ident: 10.1016/j.commatsci.2013.01.008_b0080
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.04.005
– volume: 16
  start-page: 779
  year: 2007
  ident: 10.1016/j.commatsci.2013.01.008_b0155
  publication-title: Macromol. Theor. Simul.
  doi: 10.1002/mats.200700038
– volume: 7
  start-page: 230
  year: 2001
  ident: 10.1016/j.commatsci.2013.01.008_b0065
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/2945.942691
– volume: 197
  start-page: 4333
  year: 2008
  ident: 10.1016/j.commatsci.2013.01.008_b0125
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.05.003
– volume: 230
  start-page: 5310
  year: 2011
  ident: 10.1016/j.commatsci.2013.01.008_b0195
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.03.033
– volume: 91
  start-page: 609
  year: 2011
  ident: 10.1016/j.commatsci.2013.01.008_b0050
  publication-title: Angew. Math. Mech.
  doi: 10.1002/zamm.201000121
– volume: 49
  start-page: 1557
  year: 2012
  ident: 10.1016/j.commatsci.2013.01.008_b0090
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.03.018
– volume: 347
  start-page: 429
  year: 2005
  ident: 10.1016/j.commatsci.2013.01.008_b0015
  publication-title: Physica A
  doi: 10.1016/j.physa.2004.08.076
– ident: 10.1016/j.commatsci.2013.01.008_b0100
– volume: 81
  start-page: 53
  year: 2007
  ident: 10.1016/j.commatsci.2013.01.008_b0165
  publication-title: Computing
  doi: 10.1007/s00607-007-0243-1
– volume: 529
  start-page: 39
  year: 1998
  ident: 10.1016/j.commatsci.2013.01.008_b0115
  publication-title: Mater. Res. Soc. Sympos. Proc.
  doi: 10.1557/PROC-529-39
– volume: 55
  start-page: 229
  year: 2007
  ident: 10.1016/j.commatsci.2013.01.008_b0135
  publication-title: Bull. Pol. Acad. Sci. Technol. Sci.
– volume: 60
  start-page: 3564
  year: 1999
  ident: 10.1016/j.commatsci.2013.01.008_b0105
  publication-title: Phys. Rev.
– volume: 64
  start-page: 1
  year: 2001
  ident: 10.1016/j.commatsci.2013.01.008_b0130
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.041602
– volume: 50
  start-page: 1359
  year: 2011
  ident: 10.1016/j.commatsci.2013.01.008_b0060
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.03.030
– volume: 231
  start-page: 1781
  year: 2011
  ident: 10.1016/j.commatsci.2013.01.008_b0140
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.11.006
– volume: 212
  start-page: 288
  year: 2006
  ident: 10.1016/j.commatsci.2013.01.008_b0095
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.004
– volume: 7
  start-page: 435
  year: 2005
  ident: 10.1016/j.commatsci.2013.01.008_b0045
  publication-title: Interface Free Bound.
  doi: 10.4171/ifb/132
– volume: 30
  start-page: 35
  year: 2004
  ident: 10.1016/j.commatsci.2013.01.008_b0170
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2003.07.002
– year: 2005
  ident: 10.1016/j.commatsci.2013.01.008_b0190
  article-title: Parallel geometric multigrid
– year: 2001
  ident: 10.1016/j.commatsci.2013.01.008_b0160
– volume: vol. 88
  start-page: 35
  year: 1989
  ident: 10.1016/j.commatsci.2013.01.008_b0110
  article-title: The Cahn–Hilliard model for the kinetics of phase separation
– volume: 9
  start-page: 795
  year: 1961
  ident: 10.1016/j.commatsci.2013.01.008_b0005
  publication-title: Acta Mater.
  doi: 10.1016/0001-6160(61)90182-1
– start-page: 497
  year: 1970
  ident: 10.1016/j.commatsci.2013.01.008_b0030
  article-title: Spinodal decomposition
– volume: 193
  start-page: 511
  year: 2004
  ident: 10.1016/j.commatsci.2013.01.008_b0035
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.035
– ident: 10.1016/j.commatsci.2013.01.008_b0175
– volume: 28
  start-page: 258
  year: 1958
  ident: 10.1016/j.commatsci.2013.01.008_b0010
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 92
  start-page: 178
  year: 1996
  ident: 10.1016/j.commatsci.2013.01.008_b0025
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00173-5
– year: 2003
  ident: 10.1016/j.commatsci.2013.01.008_b0180
SSID ssj0016982
Score 2.1512566
Snippet ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Cahn–Hilliard equation
Condensed matter: structure, mechanical and thermal properties
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Linearly stabilized splitting scheme
Multigrid
Parallel computing
Phase separation
Physics
Solubility, segregation, and mixing; phase separation
Title A parallel multigrid method of the Cahn–Hilliard equation
URI https://dx.doi.org/10.1016/j.commatsci.2013.01.008
Volume 71
WOSCitedRecordID wos000316661300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVQhwUIIZ5ieIyyYFdFSmwntmFVDYOGERqxGFB3kRPbnQ4lLX2gWfIP_CFfwnX8aKeAyizYRFUUu3HOte_D1_cg9LKkoDW1gdWPNkVKwXxLucxFamreEKxUrjuuw0_v2ekpHw7FBx_MWXR0Aqxt-eWlmP1XqOEegG2Pzl4D7tgp3IDfADpcAXa4_hPwg74t5z2Z6InLFhzNx8oTRYeEgEN53oYsB3LcRVzmqq-_rtYwheIFHelDCBiCdetG0PeKM8Znzj2pl7S1Stb7-l9c4k87-jzeyvx5M21Hi9X2oyf2gLy3-n0owtJCxAwWH1PELLVG1Oby6hhW_Pro6IK8pnVUtr-t4S6ccGEhgGHBeGwCHumKq2Z8rbbCVv2WNos5hiF97aKKHVW2oyrLq-54-B5mheA9tDd4dzQ8iVtPpegYxuJYriQF_vGd_mbS3JnJBUw04xhSNsyWs3vorvc3koGTk_vohm4foNsbVSgfoteDJEhMEiUmcRKTTE0CEpNYifn5_UeQlSTIyiP08e3R2eFx6jk10obQYplKzcAhVwJLXBiucYEpoeBza660zCVmojBU0EzVBRjaoMhrcL9og4kwqqaZJo9Rr522-glKtNK2libmhZK0JEQaw0QNJmRTyrxRbB-V4bNUjS84b3lPJtUOaPZRFhvOXM2V3U1ehe9e-RngTMIKpGp344MrSMU_xQzUFThMT6__Qs_QrfUMeY56y_lKv0A3m2_L8WJ-4GXuF-3bn64
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+multigrid+method+of+the+Cahn%E2%80%93Hilliard+equation&rft.jtitle=Computational+materials+science&rft.au=Shin%2C+Jaemin&rft.au=Kim%2C+Sungki&rft.au=Lee%2C+Dongsun&rft.au=Kim%2C+Junseok&rft.date=2013-04-01&rft.issn=0927-0256&rft.volume=71&rft.spage=89&rft.epage=96&rft_id=info:doi/10.1016%2Fj.commatsci.2013.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2013_01_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon