A parallel multigrid method of the Cahn–Hilliard equation
► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference schem...
Saved in:
| Published in: | Computational materials science Vol. 71; pp. 89 - 96 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2013
Elsevier |
| Subjects: | |
| ISSN: | 0927-0256, 1879-0801 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy.
We present a parallel finite difference scheme and its implementation for solving the Cahn–Hilliard equation, which describes the phase separation process. Our numerical algorithm employs an unconditionally gradient stable splitting discretization method. The resulting discrete equations are solved using a parallel multigrid method. This parallel scheme facilitates the solution of large-scale problems. We provide numerical results related to the speed-up, efficiency, and scalability to demonstrate the high performance of our proposed method. We also propose a linearly stabilized splitting scheme for the Cahn–Hilliard equation with logarithmic free energy. |
|---|---|
| AbstractList | ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy.
We present a parallel finite difference scheme and its implementation for solving the Cahn–Hilliard equation, which describes the phase separation process. Our numerical algorithm employs an unconditionally gradient stable splitting discretization method. The resulting discrete equations are solved using a parallel multigrid method. This parallel scheme facilitates the solution of large-scale problems. We provide numerical results related to the speed-up, efficiency, and scalability to demonstrate the high performance of our proposed method. We also propose a linearly stabilized splitting scheme for the Cahn–Hilliard equation with logarithmic free energy. |
| Author | Kim, Junseok Kim, Sungki Shin, Jaemin Lee, Dongsun |
| Author_xml | – sequence: 1 givenname: Jaemin surname: Shin fullname: Shin, Jaemin – sequence: 2 givenname: Sungki surname: Kim fullname: Kim, Sungki – sequence: 3 givenname: Dongsun surname: Lee fullname: Lee, Dongsun – sequence: 4 givenname: Junseok surname: Kim fullname: Kim, Junseok email: cfdkim@korea.ac.kr |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27179507$$DView record in Pascal Francis |
| BookMark | eNqFkLFOwzAURS1UJNrCN5CFMcF2nNoWYqgqoEiVWGC2XPuFunKSYrtIbPwDf8iXkFJgYOn0lnvufTojNGi7FhA6J7ggmEwu14XpmkanaFxBMSkLTAqMxREaEsFljgUmAzTEkvIc02pygkYxrnFPSkGH6GqabXTQ3oPPmq1P7jk4mzWQVp3NujpLK8hmetV-vn_MnfdOB5vBy1Yn17Wn6LjWPsLZzx2jp9ubx9k8Xzzc3c-mi9yUrEq5Bs6YsJJqWtUCaEVZyYSUICxooimXVc0kw3ZZMVrCkiw5p8zQUtZ2yTCUY3Sx793oaLSvg26Ni2oTXKPDm6Kc9BWY97nrfc6ELsYAtTIufX-agnZeEax2xtRa_RlTO2MKE9Ub63n-j_-dOExO9yT0Gl4dBNUnoDVgXQCTlO3cwY4vzYWNoQ |
| CitedBy_id | crossref_primary_10_1016_j_commatsci_2013_08_027 crossref_primary_10_1016_j_enganabound_2017_02_005 crossref_primary_10_1016_j_compfluid_2022_105432 crossref_primary_10_1016_j_physa_2014_04_038 crossref_primary_10_1007_s12572_018_0210_4 crossref_primary_10_1016_j_cnsns_2024_108327 crossref_primary_10_1016_j_cam_2019_06_038 crossref_primary_10_3390_math8010097 crossref_primary_10_1016_j_enganabound_2025_106132 crossref_primary_10_1016_j_camwa_2025_07_012 crossref_primary_10_3390_math8081385 crossref_primary_10_1016_j_ijmecsci_2022_107648 crossref_primary_10_1007_s00366_021_01583_5 crossref_primary_10_1007_s10915_018_0753_3 crossref_primary_10_1016_j_enganabound_2014_10_008 crossref_primary_10_1063_5_0205263 crossref_primary_10_1216_RMJ_2019_49_3_1029 crossref_primary_10_1016_j_ijmecsci_2022_107489 crossref_primary_10_1016_j_jcp_2023_112345 crossref_primary_10_1088_1757_899X_394_3_032089 |
| Cites_doi | 10.1016/j.jcp.2004.10.032 10.1063/1.2061852 10.1016/j.jcp.2006.03.010 10.1016/j.mechmat.2011.12.009 10.1093/imamat/38.2.97 10.1016/S0032-3861(03)00606-2 10.1109/TIP.2006.887728 10.1016/j.commatsci.2010.04.005 10.1002/mats.200700038 10.1109/2945.942691 10.1016/j.cma.2008.05.003 10.1016/j.jcp.2011.03.033 10.1002/zamm.201000121 10.1016/j.ijsolstr.2012.03.018 10.1016/j.physa.2004.08.076 10.1007/s00607-007-0243-1 10.1557/PROC-529-39 10.1103/PhysRevE.64.041602 10.1016/j.commatsci.2010.03.030 10.1016/j.jcp.2011.11.006 10.1016/j.jcp.2005.07.004 10.4171/ifb/132 10.1016/j.parco.2003.07.002 10.1016/0001-6160(61)90182-1 10.1016/j.jcp.2003.07.035 10.1063/1.1744102 10.1016/0167-2789(95)00173-5 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.commatsci.2013.01.008 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-0801 |
| EndPage | 96 |
| ExternalDocumentID | 27179507 10_1016_j_commatsci_2013_01_008 S0927025613000128 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c345t-ae7448d92a25f8e252434899e8dea1a2795f4940db5423eb1b7724c239fdb40e3 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316661300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-0256 |
| IngestDate | Mon Jul 21 09:16:26 EDT 2025 Sat Nov 29 07:07:51 EST 2025 Tue Nov 18 21:48:55 EST 2025 Fri Feb 23 02:19:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Linearly stabilized splitting scheme Parallel computing Multigrid Phase separation Cahn–Hilliard equation High performance Cahn-Hilliard equation Spinodal decomposition Free energy Discretization method Grain coarsening Cahn Hilliard equation Displacement rates Parallel computation Finite difference method |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-ae7448d92a25f8e252434899e8dea1a2795f4940db5423eb1b7724c239fdb40e3 |
| PageCount | 8 |
| ParticipantIDs | pascalfrancis_primary_27179507 crossref_citationtrail_10_1016_j_commatsci_2013_01_008 crossref_primary_10_1016_j_commatsci_2013_01_008 elsevier_sciencedirect_doi_10_1016_j_commatsci_2013_01_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computational materials science |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Liang, Ni, He (b0080) 2010; 48 Anders, Weinberg (b0060) 2011; 50 Anders, Weinberg (b0085) 2012; 47 Elliott (b0110) 1989; vol. 88 Jeong, Goldenfeld, Dantzig (b0130) 2001; 64 Garcke, Preusser, Rumpf, Telea, Weikard, van Wijk (b0065) 2001; 7 Trottenberg, Oosterlee, Schüller (b0160) 2001 Fife (b0020) 2000; 48 Anders, Weinberg (b0050) 2011; 91 Cahn (b0005) 1961; 9 D. Playne, K. Hawick, Data parallel three-dimensional Cahn–Hilliard field equation simulation on GPUs with CUDA, in: Proc. 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA, 2009. Elliott, French (b0055) 1987; 38 MGNET. Mihajlović, Silvester (b0170) 2004; 30 Kim (b0040) 2005; 204 Kay, Welford (b0095) 2006; 212 Kim, Kang, Lowengrub (b0035) 2004; 193 Gurtin (b0025) 1996; 92 Gomez, Hughes (b0195) 2011; 230 (unpublished article). Vey, Voigt (b0165) 2007; 81 Grama, Gupta, Karypis, Kumar (b0180) 2003 Message Passing Interface Forum, MPI, A Message Passing Interface Standard, 1994. Anders, Hesch, Weinberg (b0090) 2012; 49 Guo, Pinna, Zvelindovsky (b0155) 2007; 16 Hulsemann, Kowarschik, Mohr, Rude (b0190) 2005 Do-Quang, Villanueva, Amberg, Loginova (b0135) 2007; 55 . Kim, Lowengrub (b0045) 2005; 7 Wise, Lowengrub, Kim, Thornton, Voorhees, Johnson (b0075) 2005; 87 Cahn, Hilliard (b0010) 1958; 28 Zhu, Chen, Shen, Tikare (b0105) 1999; 60 Sides, Fredrickson (b0150) 2003; 44 Gomez, Calo, Bazilevs, Hughes (b0125) 2008; 197 Bertozzi, Esedoglu, Gillette (b0070) 2007; 16 Hilliard (b0030) 1970 Mello, Filho (b0015) 2005; 347 Guo, Mi, Grant (b0140) 2011; 231 Wells, Kuhl, Garikipati (b0120) 2006; 218 D.J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, 1998. Eyre (b0115) 1998; 529 Sides (10.1016/j.commatsci.2013.01.008_b0150) 2003; 44 Cahn (10.1016/j.commatsci.2013.01.008_b0005) 1961; 9 10.1016/j.commatsci.2013.01.008_b0175 Hulsemann (10.1016/j.commatsci.2013.01.008_b0190) 2005 Kim (10.1016/j.commatsci.2013.01.008_b0045) 2005; 7 Grama (10.1016/j.commatsci.2013.01.008_b0180) 2003 Garcke (10.1016/j.commatsci.2013.01.008_b0065) 2001; 7 Elliott (10.1016/j.commatsci.2013.01.008_b0055) 1987; 38 Gurtin (10.1016/j.commatsci.2013.01.008_b0025) 1996; 92 Fife (10.1016/j.commatsci.2013.01.008_b0020) 2000; 48 Jeong (10.1016/j.commatsci.2013.01.008_b0130) 2001; 64 Mihajlović (10.1016/j.commatsci.2013.01.008_b0170) 2004; 30 Kim (10.1016/j.commatsci.2013.01.008_b0040) 2005; 204 Anders (10.1016/j.commatsci.2013.01.008_b0060) 2011; 50 Eyre (10.1016/j.commatsci.2013.01.008_b0115) 1998; 529 Zhu (10.1016/j.commatsci.2013.01.008_b0105) 1999; 60 Elliott (10.1016/j.commatsci.2013.01.008_b0110) 1989; vol. 88 Guo (10.1016/j.commatsci.2013.01.008_b0140) 2011; 231 Trottenberg (10.1016/j.commatsci.2013.01.008_b0160) 2001 Mello (10.1016/j.commatsci.2013.01.008_b0015) 2005; 347 10.1016/j.commatsci.2013.01.008_b0185 Liang (10.1016/j.commatsci.2013.01.008_b0080) 2010; 48 Kay (10.1016/j.commatsci.2013.01.008_b0095) 2006; 212 Anders (10.1016/j.commatsci.2013.01.008_b0085) 2012; 47 Bertozzi (10.1016/j.commatsci.2013.01.008_b0070) 2007; 16 Wise (10.1016/j.commatsci.2013.01.008_b0075) 2005; 87 10.1016/j.commatsci.2013.01.008_b0100 10.1016/j.commatsci.2013.01.008_b0145 Hilliard (10.1016/j.commatsci.2013.01.008_b0030) 1970 Anders (10.1016/j.commatsci.2013.01.008_b0090) 2012; 49 Vey (10.1016/j.commatsci.2013.01.008_b0165) 2007; 81 Gomez (10.1016/j.commatsci.2013.01.008_b0195) 2011; 230 Wells (10.1016/j.commatsci.2013.01.008_b0120) 2006; 218 Gomez (10.1016/j.commatsci.2013.01.008_b0125) 2008; 197 Cahn (10.1016/j.commatsci.2013.01.008_b0010) 1958; 28 Guo (10.1016/j.commatsci.2013.01.008_b0155) 2007; 16 Kim (10.1016/j.commatsci.2013.01.008_b0035) 2004; 193 Anders (10.1016/j.commatsci.2013.01.008_b0050) 2011; 91 Do-Quang (10.1016/j.commatsci.2013.01.008_b0135) 2007; 55 |
| References_xml | – volume: 50 start-page: 1359 year: 2011 end-page: 1364 ident: b0060 publication-title: Comput. Mater. Sci. – volume: 91 start-page: 609 year: 2011 end-page: 629 ident: b0050 publication-title: Angew. Math. Mech. – reference: D.J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, 1998. < – volume: 212 start-page: 288 year: 2006 end-page: 304 ident: b0095 publication-title: J. Comput. Phys. – reference: D. Playne, K. Hawick, Data parallel three-dimensional Cahn–Hilliard field equation simulation on GPUs with CUDA, in: Proc. 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA, 2009. – volume: 7 start-page: 230 year: 2001 end-page: 241 ident: b0065 publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 231 start-page: 1781 year: 2011 end-page: 1796 ident: b0140 publication-title: J. Comput. Phys. – volume: 7 start-page: 435 year: 2005 end-page: 466 ident: b0045 publication-title: Interface Free Bound. – volume: 64 start-page: 1 year: 2001 end-page: 14 ident: b0130 publication-title: Phys. Rev. E – volume: 230 start-page: 5310 year: 2011 end-page: 5327 ident: b0195 publication-title: J. Comput. Phys. – year: 2005 ident: b0190 article-title: Parallel geometric multigrid publication-title: Numerical Solution of Partial Differential Equations on Parallel Computers – volume: 48 start-page: 1 year: 2000 end-page: 26 ident: b0020 publication-title: Electron. J. Differ. Equ. – reference: > (unpublished article). – volume: 197 start-page: 4333 year: 2008 end-page: 4352 ident: b0125 publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 47 start-page: 33 year: 2012 end-page: 50 ident: b0085 publication-title: Mech. Mater. – volume: 81 start-page: 53 year: 2007 end-page: 75 ident: b0165 publication-title: Computing – volume: 48 start-page: 871 year: 2010 end-page: 874 ident: b0080 publication-title: Comput. Mater. Sci. – year: 2003 ident: b0180 article-title: Introduction to Parallel Computing – volume: 16 start-page: 779 year: 2007 end-page: 784 ident: b0155 publication-title: Macromol. Theor. Simul. – volume: 347 start-page: 429 year: 2005 end-page: 443 ident: b0015 publication-title: Physica A – volume: 218 start-page: 860 year: 2006 end-page: 877 ident: b0120 publication-title: J. Comput. Phys. – reference: MGNET. < – volume: 30 start-page: 35 year: 2004 end-page: 55 ident: b0170 publication-title: Parallel Comput. – volume: 529 start-page: 39 year: 1998 end-page: 46 ident: b0115 publication-title: Mater. Res. Soc. Sympos. Proc. – volume: 28 start-page: 258 year: 1958 end-page: 267 ident: b0010 publication-title: J. Chem. Phys. – volume: 16 start-page: 285 year: 2007 end-page: 291 ident: b0070 publication-title: IEEE Trans. Image Process. – volume: 49 start-page: 1557 year: 2012 end-page: 1572 ident: b0090 publication-title: Int. J. Solids Struct. – start-page: 497 year: 1970 end-page: 560 ident: b0030 article-title: Spinodal decomposition publication-title: Phase Transformations – year: 2001 ident: b0160 article-title: Multigrid – volume: vol. 88 start-page: 35 year: 1989 end-page: 73 ident: b0110 article-title: The Cahn–Hilliard model for the kinetics of phase separation publication-title: Mathematical Models for Phase Change Problems – reference: >. – volume: 44 start-page: 5859 year: 2003 end-page: 5866 ident: b0150 publication-title: Polymer – volume: 193 start-page: 511 year: 2004 end-page: 543 ident: b0035 publication-title: J. Comput. Phys. – volume: 55 start-page: 229 year: 2007 end-page: 237 ident: b0135 publication-title: Bull. Pol. Acad. Sci. Technol. Sci. – volume: 9 start-page: 795 year: 1961 end-page: 801 ident: b0005 publication-title: Acta Mater. – volume: 38 start-page: 97 year: 1987 end-page: 128 ident: b0055 publication-title: IMA J. Appl. Math. – volume: 204 start-page: 784 year: 2005 end-page: 804 ident: b0040 publication-title: J. Comput. Phys. – volume: 87 start-page: 133102-1 year: 2005 end-page: 133102-3 ident: b0075 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 178 year: 1996 end-page: 192 ident: b0025 publication-title: Physica D – reference: Message Passing Interface Forum, MPI, A Message Passing Interface Standard, 1994. – volume: 60 start-page: 3564 year: 1999 end-page: 3572 ident: b0105 publication-title: Phys. Rev. – volume: 204 start-page: 784 year: 2005 ident: 10.1016/j.commatsci.2013.01.008_b0040 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.10.032 – volume: 87 start-page: 133102-1 year: 2005 ident: 10.1016/j.commatsci.2013.01.008_b0075 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2061852 – volume: 218 start-page: 860 year: 2006 ident: 10.1016/j.commatsci.2013.01.008_b0120 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.010 – ident: 10.1016/j.commatsci.2013.01.008_b0145 – volume: 47 start-page: 33 year: 2012 ident: 10.1016/j.commatsci.2013.01.008_b0085 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2011.12.009 – volume: 48 start-page: 1 year: 2000 ident: 10.1016/j.commatsci.2013.01.008_b0020 publication-title: Electron. J. Differ. Equ. – volume: 38 start-page: 97 year: 1987 ident: 10.1016/j.commatsci.2013.01.008_b0055 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/38.2.97 – volume: 44 start-page: 5859 year: 2003 ident: 10.1016/j.commatsci.2013.01.008_b0150 publication-title: Polymer doi: 10.1016/S0032-3861(03)00606-2 – ident: 10.1016/j.commatsci.2013.01.008_b0185 – volume: 16 start-page: 285 year: 2007 ident: 10.1016/j.commatsci.2013.01.008_b0070 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.887728 – volume: 48 start-page: 871 year: 2010 ident: 10.1016/j.commatsci.2013.01.008_b0080 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.04.005 – volume: 16 start-page: 779 year: 2007 ident: 10.1016/j.commatsci.2013.01.008_b0155 publication-title: Macromol. Theor. Simul. doi: 10.1002/mats.200700038 – volume: 7 start-page: 230 year: 2001 ident: 10.1016/j.commatsci.2013.01.008_b0065 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/2945.942691 – volume: 197 start-page: 4333 year: 2008 ident: 10.1016/j.commatsci.2013.01.008_b0125 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2008.05.003 – volume: 230 start-page: 5310 year: 2011 ident: 10.1016/j.commatsci.2013.01.008_b0195 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.03.033 – volume: 91 start-page: 609 year: 2011 ident: 10.1016/j.commatsci.2013.01.008_b0050 publication-title: Angew. Math. Mech. doi: 10.1002/zamm.201000121 – volume: 49 start-page: 1557 year: 2012 ident: 10.1016/j.commatsci.2013.01.008_b0090 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.03.018 – volume: 347 start-page: 429 year: 2005 ident: 10.1016/j.commatsci.2013.01.008_b0015 publication-title: Physica A doi: 10.1016/j.physa.2004.08.076 – ident: 10.1016/j.commatsci.2013.01.008_b0100 – volume: 81 start-page: 53 year: 2007 ident: 10.1016/j.commatsci.2013.01.008_b0165 publication-title: Computing doi: 10.1007/s00607-007-0243-1 – volume: 529 start-page: 39 year: 1998 ident: 10.1016/j.commatsci.2013.01.008_b0115 publication-title: Mater. Res. Soc. Sympos. Proc. doi: 10.1557/PROC-529-39 – volume: 55 start-page: 229 year: 2007 ident: 10.1016/j.commatsci.2013.01.008_b0135 publication-title: Bull. Pol. Acad. Sci. Technol. Sci. – volume: 60 start-page: 3564 year: 1999 ident: 10.1016/j.commatsci.2013.01.008_b0105 publication-title: Phys. Rev. – volume: 64 start-page: 1 year: 2001 ident: 10.1016/j.commatsci.2013.01.008_b0130 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.041602 – volume: 50 start-page: 1359 year: 2011 ident: 10.1016/j.commatsci.2013.01.008_b0060 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.03.030 – volume: 231 start-page: 1781 year: 2011 ident: 10.1016/j.commatsci.2013.01.008_b0140 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.11.006 – volume: 212 start-page: 288 year: 2006 ident: 10.1016/j.commatsci.2013.01.008_b0095 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.07.004 – volume: 7 start-page: 435 year: 2005 ident: 10.1016/j.commatsci.2013.01.008_b0045 publication-title: Interface Free Bound. doi: 10.4171/ifb/132 – volume: 30 start-page: 35 year: 2004 ident: 10.1016/j.commatsci.2013.01.008_b0170 publication-title: Parallel Comput. doi: 10.1016/j.parco.2003.07.002 – year: 2005 ident: 10.1016/j.commatsci.2013.01.008_b0190 article-title: Parallel geometric multigrid – year: 2001 ident: 10.1016/j.commatsci.2013.01.008_b0160 – volume: vol. 88 start-page: 35 year: 1989 ident: 10.1016/j.commatsci.2013.01.008_b0110 article-title: The Cahn–Hilliard model for the kinetics of phase separation – volume: 9 start-page: 795 year: 1961 ident: 10.1016/j.commatsci.2013.01.008_b0005 publication-title: Acta Mater. doi: 10.1016/0001-6160(61)90182-1 – start-page: 497 year: 1970 ident: 10.1016/j.commatsci.2013.01.008_b0030 article-title: Spinodal decomposition – volume: 193 start-page: 511 year: 2004 ident: 10.1016/j.commatsci.2013.01.008_b0035 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.07.035 – ident: 10.1016/j.commatsci.2013.01.008_b0175 – volume: 28 start-page: 258 year: 1958 ident: 10.1016/j.commatsci.2013.01.008_b0010 publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 92 start-page: 178 year: 1996 ident: 10.1016/j.commatsci.2013.01.008_b0025 publication-title: Physica D doi: 10.1016/0167-2789(95)00173-5 – year: 2003 ident: 10.1016/j.commatsci.2013.01.008_b0180 |
| SSID | ssj0016982 |
| Score | 2.1512566 |
| Snippet | ► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 89 |
| SubjectTerms | Cahn–Hilliard equation Condensed matter: structure, mechanical and thermal properties Equations of state, phase equilibria, and phase transitions Exact sciences and technology Linearly stabilized splitting scheme Multigrid Parallel computing Phase separation Physics Solubility, segregation, and mixing; phase separation |
| Title | A parallel multigrid method of the Cahn–Hilliard equation |
| URI | https://dx.doi.org/10.1016/j.commatsci.2013.01.008 |
| Volume | 71 |
| WOSCitedRecordID | wos000316661300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVQhwUIIZ5ieIyyYFdFSmwntmFVDYOGERqxGFB3kRPbnQ4lLX2gWfIP_CFfwnX8aKeAyizYRFUUu3HOte_D1_cg9LKkoDW1gdWPNkVKwXxLucxFamreEKxUrjuuw0_v2ekpHw7FBx_MWXR0Aqxt-eWlmP1XqOEegG2Pzl4D7tgp3IDfADpcAXa4_hPwg74t5z2Z6InLFhzNx8oTRYeEgEN53oYsB3LcRVzmqq-_rtYwheIFHelDCBiCdetG0PeKM8Znzj2pl7S1Stb7-l9c4k87-jzeyvx5M21Hi9X2oyf2gLy3-n0owtJCxAwWH1PELLVG1Oby6hhW_Pro6IK8pnVUtr-t4S6ccGEhgGHBeGwCHumKq2Z8rbbCVv2WNos5hiF97aKKHVW2oyrLq-54-B5mheA9tDd4dzQ8iVtPpegYxuJYriQF_vGd_mbS3JnJBUw04xhSNsyWs3vorvc3koGTk_vohm4foNsbVSgfoteDJEhMEiUmcRKTTE0CEpNYifn5_UeQlSTIyiP08e3R2eFx6jk10obQYplKzcAhVwJLXBiucYEpoeBza660zCVmojBU0EzVBRjaoMhrcL9og4kwqqaZJo9Rr522-glKtNK2libmhZK0JEQaw0QNJmRTyrxRbB-V4bNUjS84b3lPJtUOaPZRFhvOXM2V3U1ehe9e-RngTMIKpGp344MrSMU_xQzUFThMT6__Qs_QrfUMeY56y_lKv0A3m2_L8WJ-4GXuF-3bn64 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+multigrid+method+of+the+Cahn%E2%80%93Hilliard+equation&rft.jtitle=Computational+materials+science&rft.au=Shin%2C+Jaemin&rft.au=Kim%2C+Sungki&rft.au=Lee%2C+Dongsun&rft.au=Kim%2C+Junseok&rft.date=2013-04-01&rft.issn=0927-0256&rft.volume=71&rft.spage=89&rft.epage=96&rft_id=info:doi/10.1016%2Fj.commatsci.2013.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2013_01_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |