An optimal home energy management system for modulating heat pumps and photovoltaic systems

Efficient residential sector coupling plays a key role in supporting the energy transition. In this study, we analyze the structural properties associated with the optimal control of a home energy management system and the effects of common technological configurations and objectives. We conduct thi...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 278; p. 115661
Main Authors: Langer, Lissy, Volling, Thomas
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.11.2020
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Efficient residential sector coupling plays a key role in supporting the energy transition. In this study, we analyze the structural properties associated with the optimal control of a home energy management system and the effects of common technological configurations and objectives. We conduct this study by modeling a representative building with a modulating air-sourced heat pump, a photovoltaic(PV) system, a battery, and thermal storage systems for floor heating and hot-water supply. In addition, we allow grid feed-in by assuming fixed feed-in tariffs and consider user comfort. In our numerical analysis, we find that the battery, naturally, is the essential building block for improving self-sufficiency. However, in order to use the PV surplus efficiently grid feed-in is necessary. The commonly considered objective of maximizing self-consumption is not economically viable under the given tariff structure; however, close-to-optimal performance and significant reduction in solution times can be achieved by maximizing self-sufficiency. Based on optimal control and considering seasonal effects, the dominant order of PV distribution and the target states of charge of the storage systems can be derived. Using a rolling horizon approach, the solution time can be reduced to less than 1min (achieving a time resolution of 1h per year). By evaluating the value of information, we find that the common horizon of 24h for prediction and control results in unintended but avoidable end-of-horizon effects. Our input data and mixed-integer linear model developed using the Julia JuMP programming language are available in an open-source manner. •Mixed-integer linear program analyzes an integrated home energy management system.•Target states of charge and charging times are obtained from the optimal flows.•Grid feed-in increases the process efficiency and maintains the self-sufficiency.•Maximizing self-consumption reduces net profits due to inefficient PV processing.•Rolling horizons must be carefully configured to eliminate the end-of-horizon effect.
AbstractList Efficient residential sector coupling plays a key role in supporting the energy transition. In this study, we analyze the structural properties associated with the optimal control of a home energy management system and the effects of common technological configurations and objectives. We conduct this study by modeling a representative building with a modulating air-sourced heat pump, a photovoltaic(PV) system, a battery, and thermal storage systems for floor heating and hot-water supply. In addition, we allow grid feed-in by assuming fixed feed-in tariffs and consider user comfort. In our numerical analysis, we find that the battery, naturally, is the essential building block for improving self-sufficiency. However, in order to use the PV surplus efficiently grid feed-in is necessary. The commonly considered objective of maximizing self-consumption is not economically viable under the given tariff structure; however, close-to-optimal performance and significant reduction in solution times can be achieved by maximizing self-sufficiency. Based on optimal control and considering seasonal effects, the dominant order of PV distribution and the target states of charge of the storage systems can be derived. Using a rolling horizon approach, the solution time can be reduced to less than 1min (achieving a time resolution of 1h per year). By evaluating the value of information, we find that the common horizon of 24h for prediction and control results in unintended but avoidable end-of-horizon effects. Our input data and mixed-integer linear model developed using the Julia JuMP programming language are available in an open-source manner.
Efficient residential sector coupling plays a key role in supporting the energy transition. In this study, we analyze the structural properties associated with the optimal control of a home energy management system and the effects of common technological configurations and objectives. We conduct this study by modeling a representative building with a modulating air-sourced heat pump, a photovoltaic(PV) system, a battery, and thermal storage systems for floor heating and hot-water supply. In addition, we allow grid feed-in by assuming fixed feed-in tariffs and consider user comfort. In our numerical analysis, we find that the battery, naturally, is the essential building block for improving self-sufficiency. However, in order to use the PV surplus efficiently grid feed-in is necessary. The commonly considered objective of maximizing self-consumption is not economically viable under the given tariff structure; however, close-to-optimal performance and significant reduction in solution times can be achieved by maximizing self-sufficiency. Based on optimal control and considering seasonal effects, the dominant order of PV distribution and the target states of charge of the storage systems can be derived. Using a rolling horizon approach, the solution time can be reduced to less than 1min (achieving a time resolution of 1h per year). By evaluating the value of information, we find that the common horizon of 24h for prediction and control results in unintended but avoidable end-of-horizon effects. Our input data and mixed-integer linear model developed using the Julia JuMP programming language are available in an open-source manner. •Mixed-integer linear program analyzes an integrated home energy management system.•Target states of charge and charging times are obtained from the optimal flows.•Grid feed-in increases the process efficiency and maintains the self-sufficiency.•Maximizing self-consumption reduces net profits due to inefficient PV processing.•Rolling horizons must be carefully configured to eliminate the end-of-horizon effect.
ArticleNumber 115661
Author Volling, Thomas
Langer, Lissy
Author_xml – sequence: 1
  givenname: Lissy
  orcidid: 0000-0002-2053-0725
  surname: Langer
  fullname: Langer, Lissy
  email: langer@pom.tu-berlin.de
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0003-2167-6109
  surname: Volling
  fullname: Volling, Thomas
BookMark eNqFkEtLAzEUhYNUsK3-BcnSzdS85lFwYSm-oOBGVy5CmtxpU2aSMUkL_fdOmbpx4-rC4XwH7jdBI-cdIHRLyYwSWtzvZqoDB2FznDHC-pDmRUEv0JhWJcvmlFYjNCacFBkr6PwKTWLcEUIYZWSMvhYO-y7ZVjV461vAwxJulVMbaMElHI8xQYtrH3Drzb5RyboN3oJKuNu3XcTKGdxtffIH3yRl9ZmI1-iyVk2Em_Odos_np4_la7Z6f3lbLlaZ5iJPmeJkzatCARG84jQ3APMcSrouBWHCFGKtlACjK26Y0qYSWhANdcnyOa8NED5Fd8NuF_z3HmKSrY0amkY58PsoWV4KTkuen6oPQ1UHH2OAWmqb-oe8S0HZRlIiT07lTv46lSencnDa48UfvAu9unD8H3wcQOg9HCwEGbUFp8HYADpJ4-1_Ez8cN5l4
CitedBy_id crossref_primary_10_1016_j_rser_2025_115931
crossref_primary_10_1016_j_jclepro_2021_127904
crossref_primary_10_1007_s12273_023_1026_0
crossref_primary_10_1016_j_egyr_2022_04_023
crossref_primary_10_3390_en18184961
crossref_primary_10_1016_j_jclepro_2021_128716
crossref_primary_10_1016_j_ecmx_2025_101074
crossref_primary_10_1016_j_apenergy_2025_126465
crossref_primary_10_1016_j_enbuild_2024_114648
crossref_primary_10_1016_j_jobe_2025_113963
crossref_primary_10_1016_j_energy_2023_126791
crossref_primary_10_1002_ente_202301404
crossref_primary_10_3390_math11061333
crossref_primary_10_1007_s12273_023_1007_3
crossref_primary_10_1016_j_applthermaleng_2024_125004
crossref_primary_10_1109_JIOT_2022_3152586
crossref_primary_10_1016_j_enbuild_2025_115856
crossref_primary_10_1016_j_enbuild_2025_116223
crossref_primary_10_3390_en18051080
crossref_primary_10_1016_j_apenergy_2024_122820
crossref_primary_10_1016_j_enbuild_2023_113753
crossref_primary_10_1109_TIA_2024_3396797
crossref_primary_10_3390_app13137933
crossref_primary_10_1016_j_enconman_2024_119233
crossref_primary_10_3390_buildings15183298
crossref_primary_10_1016_j_energy_2021_120839
crossref_primary_10_1002_er_6738
crossref_primary_10_1016_j_rser_2021_111385
crossref_primary_10_1016_j_ijrefrig_2022_03_001
crossref_primary_10_1016_j_egyr_2024_05_023
crossref_primary_10_1016_j_apenergy_2023_121140
crossref_primary_10_1016_j_energy_2025_138471
crossref_primary_10_1016_j_apenergy_2024_123988
crossref_primary_10_1016_j_egyr_2022_08_015
crossref_primary_10_1155_2022_9180774
crossref_primary_10_3390_en18174489
crossref_primary_10_3390_en14185852
crossref_primary_10_1016_j_est_2023_106784
crossref_primary_10_1051_e3sconf_202452301005
crossref_primary_10_1016_j_enconman_2024_119207
crossref_primary_10_1016_j_esr_2022_101001
crossref_primary_10_1016_j_renene_2024_121995
crossref_primary_10_1016_j_tsep_2021_101173
crossref_primary_10_1109_JSYST_2023_3326978
crossref_primary_10_1016_j_apenergy_2024_125118
crossref_primary_10_1016_j_apenergy_2025_126525
crossref_primary_10_1016_j_apenergy_2021_118204
crossref_primary_10_1109_ACCESS_2023_3248502
crossref_primary_10_1016_j_energy_2025_134601
crossref_primary_10_3390_en18133265
crossref_primary_10_1016_j_egyai_2025_100617
crossref_primary_10_1016_j_apenergy_2022_118702
crossref_primary_10_1016_j_apenergy_2022_119911
crossref_primary_10_3390_en13205348
crossref_primary_10_1016_j_apenergy_2022_120020
crossref_primary_10_1016_j_apenergy_2023_122131
crossref_primary_10_1016_j_enconman_2022_116426
crossref_primary_10_1016_j_apenergy_2024_122750
crossref_primary_10_1038_s41598_022_15685_7
crossref_primary_10_1016_j_apenergy_2021_118040
crossref_primary_10_1016_j_enconman_2025_120216
Cites_doi 10.1016/j.ijrefrig.2011.05.007
10.1016/j.apenergy.2016.02.067
10.3390/batteries2020014
10.1016/j.apenergy.2018.07.042
10.1016/j.apenergy.2015.10.036
10.1016/j.apenergy.2019.113847
10.1016/j.energy.2020.118023
10.1016/j.apenergy.2019.01.177
10.1016/j.apenergy.2014.12.028
10.1137/15M1020575
10.1109/JIOT.2019.2957289
10.1175/JCLI-D-11-00015.1
10.1016/j.apenergy.2018.11.002
10.1016/j.jprocont.2018.03.006
10.1016/j.apenergy.2017.06.110
10.1016/j.energy.2016.08.060
10.1016/j.apenergy.2018.08.004
10.1016/j.apenergy.2018.12.008
10.1016/j.apenergy.2017.12.073
10.1080/23744731.2015.1035590
10.1016/j.rser.2016.11.182
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.115661
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_115661
S0306261920311570
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-a30b386ae0438315dee95e71b74024d64baa4edc83d2acd84c40cef72593fde03
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596384600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 09:47:55 EDT 2025
Sat Nov 29 07:20:42 EST 2025
Tue Nov 18 21:00:28 EST 2025
Fri Feb 23 02:45:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Demand-side flexibility
Thermal energy storage
Mixed-integer linear programming(MILP)
Model predictive control(MPC)
Heat pump
Photovoltaics(PV)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-a30b386ae0438315dee95e71b74024d64baa4edc83d2acd84c40cef72593fde03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2053-0725
0000-0003-2167-6109
PQID 2574317350
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574317350
crossref_citationtrail_10_1016_j_apenergy_2020_115661
crossref_primary_10_1016_j_apenergy_2020_115661
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115661
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Christensen, Anderson, Horowitz, Courtney, Spencer (b24) 2006
Péan, Salom, Costa-Castelló (b12) 2019; 74
(b31) 2020
Vázquez-Canteli, Nagy (b36) 2019; 235
(b14) 2018
(b9) 2019
Yu, Xie, Xie, Zou, Zhang, Sun (b33) 2020; 7
(b28) 2020
Neves, Scott, Silva (b38) 2020; 205
Nolting, Praktiknjo (b6) 2019; 238
Renaldi, Kiprakis, Friedrich (b15) 2017; 186
Truong, Naumann, Karl, Müller, Jossen, Hesse (b22) 2016; 2
Pfenninger, Staffell (b26) 2016; 114
Clauß, Georges (b17) 2019; 255
Vrettos, Lai, Oldewurtel, Andersson (b18) 2013
(b10) 2017
Luthander, Widén, Nilsson, Palm (b34) 2015; 142
(b40) 2018
(b2) 2019
Dunning, Huchette, Lubin (b23) 2017; 59
(b25) 2019
Lüth, Zepter, Crespodel Granado, Egging (b37) 2018; 229
Fischer, Madani (b7) 2017; 70
Masy, Georges, Verhelst, Lemort, André (b21) 2015; 21
Fischer, Bernhardt, Madani, Wittwer (b19) 2017; 204
(b3) 2019
Dengiz, Jochem, Fichtner (b20) 2019; 238
(b5) 2019
(b8) 2019
Bloess, Schill, Zerrahn (b16) 2018; 212
Salpakari, Lund (b13) 2016; 161
(b30) 2020
Dengiz, Jochem, Fichtner (b35) 2019
Kost, Shammugam, Jülch, Nguyen, Schlegl (b32) 2018
(b4) 2020
(b1) 2016
Rienecker, Suarez, Gelaro, Todling, Bacmeister, Liu (b27) 2011; 24
Nguyen, Peng, Sokolowski, Alahakoon, Yu (b39) 2018; 228
Bürger, Braungardt, Cludius (b11) 2019
Madani, Claesson, Lundqvist (b29) 2011; 34
(10.1016/j.apenergy.2020.115661_b8) 2019
Clauß (10.1016/j.apenergy.2020.115661_b17) 2019; 255
(10.1016/j.apenergy.2020.115661_b25) 2019
Dunning (10.1016/j.apenergy.2020.115661_b23) 2017; 59
Dengiz (10.1016/j.apenergy.2020.115661_b35) 2019
Salpakari (10.1016/j.apenergy.2020.115661_b13) 2016; 161
Luthander (10.1016/j.apenergy.2020.115661_b34) 2015; 142
Renaldi (10.1016/j.apenergy.2020.115661_b15) 2017; 186
Kost (10.1016/j.apenergy.2020.115661_b32) 2018
(10.1016/j.apenergy.2020.115661_b1) 2016
Bloess (10.1016/j.apenergy.2020.115661_b16) 2018; 212
(10.1016/j.apenergy.2020.115661_b5) 2019
Lüth (10.1016/j.apenergy.2020.115661_b37) 2018; 229
(10.1016/j.apenergy.2020.115661_b30) 2020
Masy (10.1016/j.apenergy.2020.115661_b21) 2015; 21
Vázquez-Canteli (10.1016/j.apenergy.2020.115661_b36) 2019; 235
Bürger (10.1016/j.apenergy.2020.115661_b11) 2019
Péan (10.1016/j.apenergy.2020.115661_b12) 2019; 74
(10.1016/j.apenergy.2020.115661_b4) 2020
(10.1016/j.apenergy.2020.115661_b14) 2018
(10.1016/j.apenergy.2020.115661_b3) 2019
Rienecker (10.1016/j.apenergy.2020.115661_b27) 2011; 24
(10.1016/j.apenergy.2020.115661_b2) 2019
Christensen (10.1016/j.apenergy.2020.115661_b24) 2006
Vrettos (10.1016/j.apenergy.2020.115661_b18) 2013
Dengiz (10.1016/j.apenergy.2020.115661_b20) 2019; 238
Nguyen (10.1016/j.apenergy.2020.115661_b39) 2018; 228
Truong (10.1016/j.apenergy.2020.115661_b22) 2016; 2
Fischer (10.1016/j.apenergy.2020.115661_b19) 2017; 204
(10.1016/j.apenergy.2020.115661_b9) 2019
(10.1016/j.apenergy.2020.115661_b28) 2020
Fischer (10.1016/j.apenergy.2020.115661_b7) 2017; 70
Nolting (10.1016/j.apenergy.2020.115661_b6) 2019; 238
Pfenninger (10.1016/j.apenergy.2020.115661_b26) 2016; 114
Madani (10.1016/j.apenergy.2020.115661_b29) 2011; 34
(10.1016/j.apenergy.2020.115661_b40) 2018
Yu (10.1016/j.apenergy.2020.115661_b33) 2020; 7
Neves (10.1016/j.apenergy.2020.115661_b38) 2020; 205
(10.1016/j.apenergy.2020.115661_b10) 2017
(10.1016/j.apenergy.2020.115661_b31) 2020
References_xml – volume: 70
  start-page: 342
  year: 2017
  end-page: 357
  ident: b7
  article-title: On heat pumps in smart grids: A review
  publication-title: Renew Sustain Energy Rev
– volume: 21
  start-page: 800
  year: 2015
  end-page: 811
  ident: b21
  article-title: Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the belgian context
  publication-title: Sci Technol Built Environ
– volume: 212
  start-page: 1611
  year: 2018
  end-page: 1626
  ident: b16
  article-title: Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials
  publication-title: Appl Energy
– volume: 7
  start-page: 2751
  year: 2020
  end-page: 2762
  ident: b33
  article-title: Deep reinforcement learning for smart home energy management
  publication-title: IEEE Internet Things J
– year: 2020
  ident: b31
  article-title: Preisrechner naturstrom Strom
– volume: 161
  start-page: 425
  year: 2016
  end-page: 436
  ident: b13
  article-title: Optimal and rule-based control strategies for energy flexibility in buildings with PV
  publication-title: Appl Energy
– year: 2020
  ident: b30
  article-title: Preisrechner Ökostrom aktiv
– year: 2019
  ident: b3
  article-title: Zeitreihen zur entwicklung der erneuerbaren energien in deutschland
– year: 2019
  ident: b9
  article-title: Gesamtbestand zentraler wärmeerzeuger 2018
– year: 2020
  ident: b4
  article-title: EEG-registerdaten und fördersätze-zubau- und summenwerte
– volume: 74
  start-page: 35
  year: 2019
  end-page: 49
  ident: b12
  article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings
  publication-title: J Process Control
– volume: 255
  year: 2019
  ident: b17
  article-title: Model complexity of heat pump systems to investigate the building energy flexibility and guidelines for model implementation
  publication-title: Appl Energy
– volume: 204
  start-page: 93
  year: 2017
  end-page: 105
  ident: b19
  article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV
  publication-title: Appl Energy
– volume: 2
  start-page: 14
  year: 2016
  ident: b22
  article-title: Economics of residential photovoltaic battery systems in Germany: The case of Tesla’s powerwall
  publication-title: Batteries
– year: 2017
  ident: b10
  article-title: Heat transition 2030 - Key technologies for reaching the intermediate and long-term climate targets in the building sector
– year: 2018
  ident: b32
  article-title: Stromgestehungskosten erneuerbare energien
– volume: 205
  year: 2020
  ident: b38
  article-title: Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities
  publication-title: Energy
– volume: 238
  start-page: 1346
  year: 2019
  end-page: 1360
  ident: b20
  article-title: Demand response with heuristic control strategies for modulating heat pumps
  publication-title: Appl Energy
– volume: 142
  start-page: 80
  year: 2015
  end-page: 94
  ident: b34
  article-title: Photovoltaic self-consumption in buildings: A review
  publication-title: Appl Energy
– year: 2019
  ident: b25
  article-title: Wohnungen nach baujahr 2018
– volume: 238
  start-page: 1417
  year: 2019
  end-page: 1433
  ident: b6
  article-title: Techno-economic analysis of flexible heat pump controls
  publication-title: Appl Energy
– volume: 228
  start-page: 2567
  year: 2018
  end-page: 2580
  ident: b39
  article-title: Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading
  publication-title: Appl Energy
– year: 2020
  ident: b28
  article-title: Fördersätze für pv-anlagen - anzulegende werte für solaranlagen November 2019 bis Januar 2020
– year: 2016
  ident: b1
  article-title: Climate action plan 2050 - principles and goals of the German government’s climate policy
– year: 2018
  ident: b14
  article-title: Wissenschaftliches mess- und evaluierungsprogramm solarstromspeicher 2.0 - Jahresbericht 2018
– start-page: 1
  year: 2019
  end-page: 5
  ident: b35
  article-title: Uncertainty handling control algorithms for demand response with modulating electric heating devices
  publication-title: 2019 IEEE PES innovative smart grid technologies Europe (ISGT-Europe)
– volume: 59
  start-page: 295
  year: 2017
  end-page: 320
  ident: b23
  article-title: Jump: A modeling language for mathematical optimization
  publication-title: SIAM Rev
– volume: 229
  start-page: 1233
  year: 2018
  end-page: 1243
  ident: b37
  article-title: Local electricity market designs for peer-to-peer trading: The role of battery flexibility
  publication-title: Appl Energy
– year: 2019
  ident: b11
  article-title: Auswirkungen der sektorkopplung im wärmebereich auf die energiekosten von privaten verbraucherinnen und verbrauchern
– year: 2019
  ident: b2
  article-title: Richtlinien zur förderung von maßnahmen zur nutzung erneuerbarer energien im wärmemarkt
– volume: 186
  start-page: 520
  year: 2017
  end-page: 529
  ident: b15
  article-title: An optimisation framework for thermal energy storage integration in a residential heat pump heating system
  publication-title: Appl Energy
– year: 2018
  ident: b40
  article-title: Tesla powerwall 2 AC - datenblatt
– year: 2019
  ident: b5
  article-title: Energieverbrauch der privaten haushalte für wohnen 2010-2017
– start-page: 2527
  year: 2013
  end-page: 2534
  ident: b18
  article-title: Predictive control of buildings for demand response with dynamic day-ahead and real-time prices
  publication-title: 2013 European control conference (ECC)
– year: 2019
  ident: b8
  article-title: Bauen und wohnen- Baugenehmigungen / Baufertigstellungen von wohn- und nichtwohngebäuden (neubau) nach art der Beheizung und art der verwendeten Heizenergie
– volume: 114
  start-page: 1251
  year: 2016
  end-page: 1265
  ident: b26
  article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data
  publication-title: Energy
– volume: 24
  start-page: 3624
  year: 2011
  end-page: 3648
  ident: b27
  article-title: MERRA: NASA’s modern-era retrospective analysis for research and applications
  publication-title: J Clim
– volume: 235
  start-page: 1072
  year: 2019
  end-page: 1089
  ident: b36
  article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques
  publication-title: Appl Energy
– year: 2006
  ident: b24
  article-title: BEopt(tm) software for building energy optimization: features and capabilities
– volume: 34
  start-page: 1338
  year: 2011
  end-page: 1347
  ident: b29
  article-title: Capacity control in ground source heat pump systems: Part I: modeling and simulation
  publication-title: Int J Refrig
– volume: 34
  start-page: 1338
  issue: 6
  year: 2011
  ident: 10.1016/j.apenergy.2020.115661_b29
  article-title: Capacity control in ground source heat pump systems: Part I: modeling and simulation
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2011.05.007
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b5
– year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b30
– volume: 186
  start-page: 520
  year: 2017
  ident: 10.1016/j.apenergy.2020.115661_b15
  article-title: An optimisation framework for thermal energy storage integration in a residential heat pump heating system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.067
– volume: 2
  start-page: 14
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2020.115661_b22
  article-title: Economics of residential photovoltaic battery systems in Germany: The case of Tesla’s powerwall
  publication-title: Batteries
  doi: 10.3390/batteries2020014
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b9
– volume: 228
  start-page: 2567
  year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b39
  article-title: Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.042
– volume: 161
  start-page: 425
  year: 2016
  ident: 10.1016/j.apenergy.2020.115661_b13
  article-title: Optimal and rule-based control strategies for energy flexibility in buildings with PV
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.036
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b25
– volume: 255
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b17
  article-title: Model complexity of heat pump systems to investigate the building energy flexibility and guidelines for model implementation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113847
– year: 2017
  ident: 10.1016/j.apenergy.2020.115661_b10
– year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b14
– year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b28
– volume: 205
  year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b38
  article-title: Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118023
– year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b4
– volume: 238
  start-page: 1417
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b6
  article-title: Techno-economic analysis of flexible heat pump controls
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.177
– volume: 142
  start-page: 80
  year: 2015
  ident: 10.1016/j.apenergy.2020.115661_b34
  article-title: Photovoltaic self-consumption in buildings: A review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.028
– year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b31
– volume: 59
  start-page: 295
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2020.115661_b23
  article-title: Jump: A modeling language for mathematical optimization
  publication-title: SIAM Rev
  doi: 10.1137/15M1020575
– volume: 7
  start-page: 2751
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2020.115661_b33
  article-title: Deep reinforcement learning for smart home energy management
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2957289
– start-page: 2527
  year: 2013
  ident: 10.1016/j.apenergy.2020.115661_b18
  article-title: Predictive control of buildings for demand response with dynamic day-ahead and real-time prices
– year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b32
– year: 2006
  ident: 10.1016/j.apenergy.2020.115661_b24
– volume: 24
  start-page: 3624
  issue: 14
  year: 2011
  ident: 10.1016/j.apenergy.2020.115661_b27
  article-title: MERRA: NASA’s modern-era retrospective analysis for research and applications
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00015.1
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b35
  article-title: Uncertainty handling control algorithms for demand response with modulating electric heating devices
– volume: 235
  start-page: 1072
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b36
  article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.002
– volume: 74
  start-page: 35
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b12
  article-title: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2018.03.006
– volume: 204
  start-page: 93
  year: 2017
  ident: 10.1016/j.apenergy.2020.115661_b19
  article-title: Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.110
– year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b40
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b2
– volume: 114
  start-page: 1251
  year: 2016
  ident: 10.1016/j.apenergy.2020.115661_b26
  article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.060
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b11
– year: 2016
  ident: 10.1016/j.apenergy.2020.115661_b1
– volume: 229
  start-page: 1233
  year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b37
  article-title: Local electricity market designs for peer-to-peer trading: The role of battery flexibility
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.004
– volume: 238
  start-page: 1346
  year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b20
  article-title: Demand response with heuristic control strategies for modulating heat pumps
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.008
– volume: 212
  start-page: 1611
  year: 2018
  ident: 10.1016/j.apenergy.2020.115661_b16
  article-title: Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.073
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b8
– volume: 21
  start-page: 800
  issue: 6
  year: 2015
  ident: 10.1016/j.apenergy.2020.115661_b21
  article-title: Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the belgian context
  publication-title: Sci Technol Built Environ
  doi: 10.1080/23744731.2015.1035590
– year: 2019
  ident: 10.1016/j.apenergy.2020.115661_b3
– volume: 70
  start-page: 342
  year: 2017
  ident: 10.1016/j.apenergy.2020.115661_b7
  article-title: On heat pumps in smart grids: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.11.182
SSID ssj0002120
Score 2.5906723
Snippet Efficient residential sector coupling plays a key role in supporting the energy transition. In this study, we analyze the structural properties associated with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115661
SubjectTerms batteries
Demand-side flexibility
economic sustainability
energy
heat
Heat pump
heat pumps
linear models
management systems
Mixed-integer linear programming(MILP)
Model predictive control(MPC)
Photovoltaics(PV)
prediction
tariffs
Thermal energy storage
Title An optimal home energy management system for modulating heat pumps and photovoltaic systems
URI https://dx.doi.org/10.1016/j.apenergy.2020.115661
https://www.proquest.com/docview/2574317350
Volume 278
WOSCitedRecordID wos000596384600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JaxRBFC408aAH0WgwbpTgLXTsqarurjoOMqIegmCUAQ9FbdGETHeT7kh-vq-WXohKFPHSDEXXwnxv3vtezVsQellSZ0pRkszxSmeMCZ0BC9EZEWB_cqpYQXRoNlEdHvL1WnxIvdq70E6gqmt-eSna_wo1jAHYPnX2L-AeF4UB-AygwxNgh-cfAb8EAgh6YOOTHJuN23cxu28zxrmk6s0hwHDT2NC_q_7qKWO_3wK6sWpz-63pG9BdvToxaUY3Z7IDfY3Lj3E9IY04OvtdNw5_jqW_r0QkpcsG8Cx9wFsx3YANWTBTyFHIvMrLzHti0aZERcor4hUpn2taErv1_KS14wXC6YFq45kP_NagzIFqLiY7NUYPfvQbBs8vD7WC8ptom1SFAKW2vXy3Wr8fTTFJdTmHA85SxH-92-_YyRU7HcjH0T10N3kNeBnRvo9uuHoH3ZnVktxBu6spZRFeTTq7e4C-LGucBAJ7gcDxPHgSCBzhxSAQeBII7AUCB4HAIBB4LhBpRvcQfXqzOnr9NkstNTJDWdFniuaa8lK5UKJ2UVjnROGqha4YkDVbMq0Uc9ZwaokyljPDcuOOK3CS6bF1Od1FW3VTu0cIW6KNEQvFNPevGW79fYcT4NCXQMPVHiqGr1KaVG_etz05k0Ng4akcIJAeAhkh2EOvxnltrLhy7QwxICUTb4x8UIKAXTv3xQCtBMXq_y1TtWsuOgm2zJNrWuSP_2H9J-j29Dt6irb68wv3DN0y3_uT7vx5ktcfXGClAQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+home+energy+management+system+for+modulating+heat+pumps+and+photovoltaic+systems&rft.jtitle=Applied+energy&rft.au=Langer%2C+Lissy&rft.au=Volling%2C+Thomas&rft.date=2020-11-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=278&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115661&rft.externalDocID=S0306261920311570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon