Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction

•We propose approach for the prediction of the WTI crude oil price.•The values predicted by the proposed method and actual once are statistically equal.•The proposed method indicated performance improvement over existing results. This paper proposes an alternative approach based on a genetic algorit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 142; s. 266 - 273
Hlavní autoři: Chiroma, Haruna, Abdulkareem, Sameem, Herawan, Tutut
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.03.2015
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•We propose approach for the prediction of the WTI crude oil price.•The values predicted by the proposed method and actual once are statistically equal.•The proposed method indicated performance improvement over existing results. This paper proposes an alternative approach based on a genetic algorithm and neural network (GA–NN) for the prediction of the West Texas Intermediate (WTI) crude oil price. Comparative simulation results suggested that the proposed GA–NN approach is better than the baseline algorithms in terms of prediction accuracy and computational efficiency. Mann–Whitney test results indicated that the WTI crude oil price predicted by the proposed GA–NN and the observed price are statistically equal. Further comparison of the proposed GA–NN with previous studies indicated performance improvement over existing results. The proposed model can be useful in the formulation of policies related to international crude oil price estimations, development plans and industrial production.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2014.12.045