An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis

Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 337; p. 120862
Main Authors: Wen, Shuqing, Zhang, Weirong, Sun, Yifu, Li, Zhenxi, Huang, Boju, Bian, Shouguo, Zhao, Lin, Wang, Yan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2023
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component analysis (PCA) method using the Savitzky–Golay (SG) filter and density-based spatial clustering of applications with noise (DBSCAN) algorithm. First, the DBSCAN algorithm is used to automatically divide the dataset into sub-datasets with different working conditions to reduce the interference information and concentrate the information of each training set. Then, each sub-dataset is smoothed using the SG algorithm to reduce the effects of data fluctuations. The processed dataset is used to build a sub-PCA model that ultimately identifies and locates faults. The proposed strategy is validated using field operating data for 20 air-handling unit (AHU) systems, as obtained from a large commercial building. The fault detection performances of multiple strategies are compared and analysed under different degrees of bias in single AHU and multiple AHU systems. The verification results show that the proposed DBSCAN-SG-PCA model offers significant improvements in fault detection accuracy and fault identification sensitivity over the conventional PCA method. Compared with the SG-PCA model, the proposed model reduces the amount of data required for fault detection by an average of 13.7%, and the Youden index is increased by an average of 0.21. Furthermore, the fault detection accuracy of the proposed model is ±0.7 °C. •This paper proposes a high-precision sensor fault detection and diagnosis method.•DBSCAN can recognize the different operating conditions of the air handling unit (AHU) successfully.•Field operating data from 20 real AHU systems were used for model validation.•The sensor's fault detection accuracy and sensitivity are significantly improved using the proposed method.
AbstractList Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component analysis (PCA) method using the Savitzky–Golay (SG) filter and density-based spatial clustering of applications with noise (DBSCAN) algorithm. First, the DBSCAN algorithm is used to automatically divide the dataset into sub-datasets with different working conditions to reduce the interference information and concentrate the information of each training set. Then, each sub-dataset is smoothed using the SG algorithm to reduce the effects of data fluctuations. The processed dataset is used to build a sub-PCA model that ultimately identifies and locates faults. The proposed strategy is validated using field operating data for 20 air-handling unit (AHU) systems, as obtained from a large commercial building. The fault detection performances of multiple strategies are compared and analysed under different degrees of bias in single AHU and multiple AHU systems. The verification results show that the proposed DBSCAN-SG-PCA model offers significant improvements in fault detection accuracy and fault identification sensitivity over the conventional PCA method. Compared with the SG-PCA model, the proposed model reduces the amount of data required for fault detection by an average of 13.7%, and the Youden index is increased by an average of 0.21. Furthermore, the fault detection accuracy of the proposed model is ±0.7 °C. •This paper proposes a high-precision sensor fault detection and diagnosis method.•DBSCAN can recognize the different operating conditions of the air handling unit (AHU) successfully.•Field operating data from 20 real AHU systems were used for model validation.•The sensor's fault detection accuracy and sensitivity are significantly improved using the proposed method.
Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component analysis (PCA) method using the Savitzky–Golay (SG) filter and density-based spatial clustering of applications with noise (DBSCAN) algorithm. First, the DBSCAN algorithm is used to automatically divide the dataset into sub-datasets with different working conditions to reduce the interference information and concentrate the information of each training set. Then, each sub-dataset is smoothed using the SG algorithm to reduce the effects of data fluctuations. The processed dataset is used to build a sub-PCA model that ultimately identifies and locates faults. The proposed strategy is validated using field operating data for 20 air-handling unit (AHU) systems, as obtained from a large commercial building. The fault detection performances of multiple strategies are compared and analysed under different degrees of bias in single AHU and multiple AHU systems. The verification results show that the proposed DBSCAN-SG-PCA model offers significant improvements in fault detection accuracy and fault identification sensitivity over the conventional PCA method. Compared with the SG-PCA model, the proposed model reduces the amount of data required for fault detection by an average of 13.7%, and the Youden index is increased by an average of 0.21. Furthermore, the fault detection accuracy of the proposed model is ±0.7 °C.
ArticleNumber 120862
Author Zhang, Weirong
Huang, Boju
Sun, Yifu
Zhao, Lin
Bian, Shouguo
Wen, Shuqing
Li, Zhenxi
Wang, Yan
Author_xml – sequence: 1
  givenname: Shuqing
  surname: Wen
  fullname: Wen, Shuqing
  organization: Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Weirong
  surname: Zhang
  fullname: Zhang, Weirong
  email: zhangwr@bjut.edu.cn
  organization: Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Yifu
  surname: Sun
  fullname: Sun, Yifu
  organization: Persagy Technology Co., Ltd., Beijing 100096, China
– sequence: 4
  givenname: Zhenxi
  surname: Li
  fullname: Li, Zhenxi
  organization: China Overseas Commercial Property Management Co., Ltd., Chengdu 610000, China
– sequence: 5
  givenname: Boju
  surname: Huang
  fullname: Huang, Boju
  organization: China Overseas Commercial Property Management Co., Ltd., Chengdu 610000, China
– sequence: 6
  givenname: Shouguo
  surname: Bian
  fullname: Bian, Shouguo
  organization: China Overseas Commercial Property Management Co., Ltd., Chengdu 610000, China
– sequence: 7
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: Persagy Technology Co., Ltd., Beijing 100096, China
– sequence: 8
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Persagy Technology Co., Ltd., Beijing 100096, China
BookMark eNqFkc1u1DAUhSNUJKaFV0Bessngn4mTSCyoKihIlVgAa-vGuZ7x4NjB9rQKK56gm74hT4KHgQ2bru5dfOdc3XPOqzMfPFbVS0bXjDL5er-GGT3G7bLmlIs147ST_Em1Yl3L656x7qxaUUFlzSXrn1XnKe0ppbxwq-r-0hP0O_AaRzJH67WdwREdprlc8ZmAB7ckm8iEeRdGcmfzjnyGW5t_fFt-_Xy4Dg4WYqzLGAs8Eu0OqezWbwm4bYiFn4gJkST0qQwDB5fJiBl1tsH_0YwWtj6UK8-rpwZcwhd_50X19f27L1cf6ptP1x-vLm9qLTZNrntDGwMogXcD1UY0rNGmlUPPoZEbU37mHWractOMw2ZsdS-GXm-A6qGVUrTionp18p1j-H7AlNVkk0bnwGM4JCVYIwrZN6Kg8oTqGFKKaFSJaYK4KEbVsQC1V_8KUMcC1KmAInzzn1DbDMefcwTrHpe_Pcmx5HBrMaqkLR57srFEp8ZgH7P4DQDaraM
CitedBy_id crossref_primary_10_1007_s12273_025_1254_6
crossref_primary_10_1016_j_jobe_2024_109028
crossref_primary_10_1016_j_energy_2025_135788
crossref_primary_10_3390_math13111747
crossref_primary_10_1016_j_energy_2025_137841
crossref_primary_10_1016_j_buildenv_2025_113346
crossref_primary_10_1098_rsos_241957
crossref_primary_10_1016_j_enbuild_2023_113877
crossref_primary_10_3390_act12100389
crossref_primary_10_1016_j_energy_2024_130619
crossref_primary_10_1002_cem_70064
crossref_primary_10_1016_j_apenergy_2023_121731
crossref_primary_10_1016_j_icheatmasstransfer_2024_107872
crossref_primary_10_1016_j_pnucene_2023_104936
crossref_primary_10_1016_j_enbuild_2025_116462
crossref_primary_10_1016_j_enbuild_2024_115175
crossref_primary_10_1117_1_OE_63_3_031002
crossref_primary_10_1109_LSENS_2025_3555389
crossref_primary_10_1016_j_egyr_2025_03_012
crossref_primary_10_1016_j_jobe_2025_112646
crossref_primary_10_1016_j_apenergy_2024_124714
crossref_primary_10_1016_j_matcom_2025_07_034
crossref_primary_10_1016_j_scs_2024_106068
crossref_primary_10_1016_j_apenergy_2023_122356
crossref_primary_10_1016_j_engappai_2025_111607
crossref_primary_10_3390_buildings15040648
crossref_primary_10_1016_j_ces_2023_119681
crossref_primary_10_1016_j_sigpro_2024_109699
crossref_primary_10_1016_j_energy_2024_133704
crossref_primary_10_1016_j_matdes_2025_114143
crossref_primary_10_1016_j_enbuild_2023_113572
crossref_primary_10_1063_5_0258379
crossref_primary_10_1016_j_buildenv_2024_112312
crossref_primary_10_1016_j_apenergy_2023_121830
crossref_primary_10_1016_j_energy_2025_137510
crossref_primary_10_1109_TCE_2024_3478310
crossref_primary_10_1016_j_measurement_2024_116350
crossref_primary_10_1016_j_engappai_2025_112305
crossref_primary_10_3389_fphy_2025_1666117
crossref_primary_10_1016_j_oceaneng_2024_118928
crossref_primary_10_1109_ACCESS_2023_3298649
crossref_primary_10_1016_j_aei_2025_103360
crossref_primary_10_1016_j_chemolab_2025_105379
crossref_primary_10_1016_j_applthermaleng_2024_123910
crossref_primary_10_1016_j_ifacol_2024_08_131
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_3390_agronomy14061163
crossref_primary_10_1016_j_apenergy_2023_122330
crossref_primary_10_1016_j_ijrefrig_2025_02_013
crossref_primary_10_1016_j_jobe_2025_113761
crossref_primary_10_1016_j_optlastec_2025_113783
crossref_primary_10_1016_j_apenergy_2024_122716
Cites_doi 10.1016/j.applthermaleng.2019.114098
10.1016/j.rser.2019.04.021
10.1109/ACCESS.2020.3015526
10.1016/j.enbuild.2015.04.035
10.1016/j.enbuild.2014.06.042
10.1016/j.enbuild.2017.03.026
10.1016/j.enbuild.2013.08.044
10.1080/10789669.2005.10391133
10.1016/j.enbuild.2015.12.045
10.1016/j.autcon.2013.12.006
10.1016/j.enbuild.2021.111293
10.1002/aic.14335
10.1016/j.applthermaleng.2018.06.037
10.1016/j.enbuild.2003.10.002
10.1016/j.buildenv.2013.11.021
10.1080/23744731.2021.1877966
10.1016/j.enbuild.2022.111872
10.1016/j.enbuild.2018.05.025
10.1016/j.apenergy.2012.12.043
10.1016/j.enbuild.2017.04.041
10.1016/j.autcon.2014.03.002
10.1016/j.enconman.2005.11.010
10.1016/j.enbuild.2017.11.008
10.1016/j.enbuild.2020.110445
10.1016/j.enconman.2003.12.008
10.1109/TCST.2021.3107200
10.1080/10789669.2005.10391123
10.1080/01998595.1999.10530472
10.1016/j.enbuild.2007.03.007
10.1016/j.enbuild.2021.111709
10.1016/j.enbuild.2016.08.017
10.1007/s12273-018-0475-3
10.1016/j.apenergy.2004.11.002
10.1016/j.enbuild.2011.09.043
10.1080/10789669.2006.10391187
10.1007/s12273-021-0791-x
10.1016/j.enbuild.2015.11.066
10.1016/j.enbuild.2018.10.013
10.1016/j.apenergy.2021.118088
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.120862
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2023_120862
S030626192300226X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-9f05fae6a28b0cf3515cf76b92a564f91128ec072f5db4d7c93b9c4a0cb766373
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949648500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 19:28:42 EDT 2025
Sat Nov 29 07:25:11 EST 2025
Tue Nov 18 21:18:57 EST 2025
Fri Feb 23 02:35:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensor fault
Savitzky–Golay filter
Clustering
Fault detection and diagnosis
Air-handling unit
Principal component analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-9f05fae6a28b0cf3515cf76b92a564f91128ec072f5db4d7c93b9c4a0cb766373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153766953
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153766953
crossref_primary_10_1016_j_apenergy_2023_120862
crossref_citationtrail_10_1016_j_apenergy_2023_120862
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_120862
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Xiao (bb0070) 2004; 45
Li, Wen (bb0155) 2014; 68
Qiu, Yan, Deng, Liu, Shang, Wu (bb0085) 2020; 8
Dey, Dong (bb0075) 2016; 130
Ester, Kriegel, Sander, Xu (bb0230) 1996; 96
Huang, Wen, Yoon (bb0150) 2022; 259
Pérez-Lombard, Ortiz, Pout (bb0005) 2008; 40
Fan, Xiao, Li, Wang (bb0225) 2018; 159
Katipamula, Brambley (bb0040) 2005; 11
Bruton, Raftery, O’Donovan, Aughney, Keane, O’Sullivan (bb0095) 2014; 39
Wang, Cui (bb0130) 2006; 12
Zhao, Li, Zhang, Zhang (bb0025) 2019; 109
Li, Zhou, Zhao, Zhang, Zhang (bb0105) 2022; 306
Proctor (bb0020) 2004
Katipamula, Brambley (bb0035) 2005; 11
Wang, Wang, Liang, Tan (bb0115) 2018; 141
Tan, Steinbach, Kumar (bb0180) 2005
Hu, Chen, Li (bb0175) 2016; 112
Jolliffe (bb0210) 1986
Li, Hu, Chen, Wang, Guo, Liu (bb0190) 2017; 146
Liu, Huang, Wang, Yue, Yoon (bb0110) 2021; 250
Liu (bb0030) 1999; 96
Li, Wen (bb0220) 2014; 43
Guo, Li, Chen (bb0170) 2017; 142
Edward Jackson (bb0215) 1991
Du, Fan, Jin, Chi (bb0050) 2014; 73
Padilla, Choiniere (bb0135) 2015; 99
Gunay, Shi (bb0195) 2020; 228
Li, Hu (bb0165) 2019; 183
Cibse (bb0015) 2000
Zhang, Chen, Guo, Wang, Li, Shen (bb0200) 2019; 160
Jiang, Yan (bb0235) 2014; 60
Yoon, Yu, Wang, Wang (bb0060) 2019; 12
Wang, Xiao (bb0145) 2004; 36
Yu, Woradechjumroen, Yu (bb0045) 2014; 82
Zhang, Zhao, Zhou, Zhang, Li (bb0100) 2022; 15
Zhu, Jin, Du (bb0160) 2012; 44
Hou, Lian, Yao, Yuan (bb0080) 2006; 47
Yang, Zhang, Li, Woradechjumroen, Liu (bb0010) 2014
Jolliffe (bb0240) 2002
Zhang, Zhu, Anduv, Jin, Du (bb0185) 2021; 27
Wang, Cui (bb0055) 2006; 12
Li, Hu (bb0205) 2018; 173
Wang, Cui (bb0140) 2005; 82
Simmini, Rampazzo, Peterle, Susto, Beghi (bb0120) 2021; 30
Papadopoulos, Lymperopoulos, Polycarpou, Ioannou (bb0090) 2022; 256
Kao, Pierce (bb0065) 1983; 25
Li, Hu, Chen (bb0125) 2016; 116
Zhao, Wang, Xiao (bb0245) 2013; 112
Pérez-Lombard (10.1016/j.apenergy.2023.120862_bb0005) 2008; 40
Papadopoulos (10.1016/j.apenergy.2023.120862_bb0090) 2022; 256
Huang (10.1016/j.apenergy.2023.120862_bb0150) 2022; 259
Liu (10.1016/j.apenergy.2023.120862_bb0110) 2021; 250
Ester (10.1016/j.apenergy.2023.120862_bb0230) 1996; 96
Katipamula (10.1016/j.apenergy.2023.120862_bb0040) 2005; 11
Li (10.1016/j.apenergy.2023.120862_bb0155) 2014; 68
Yoon (10.1016/j.apenergy.2023.120862_bb0060) 2019; 12
Li (10.1016/j.apenergy.2023.120862_bb0190) 2017; 146
Kao (10.1016/j.apenergy.2023.120862_bb0065) 1983; 25
Proctor (10.1016/j.apenergy.2023.120862_bb0020) 2004
Jolliffe (10.1016/j.apenergy.2023.120862_bb0210) 1986
Wang (10.1016/j.apenergy.2023.120862_bb0070) 2004; 45
Yang (10.1016/j.apenergy.2023.120862_bb0010) 2014
Fan (10.1016/j.apenergy.2023.120862_bb0225) 2018; 159
Zhang (10.1016/j.apenergy.2023.120862_bb0185) 2021; 27
Zhu (10.1016/j.apenergy.2023.120862_bb0160) 2012; 44
Simmini (10.1016/j.apenergy.2023.120862_bb0120) 2021; 30
Jiang (10.1016/j.apenergy.2023.120862_bb0235) 2014; 60
Cibse (10.1016/j.apenergy.2023.120862_bb0015) 2000
Bruton (10.1016/j.apenergy.2023.120862_bb0095) 2014; 39
Du (10.1016/j.apenergy.2023.120862_bb0050) 2014; 73
Li (10.1016/j.apenergy.2023.120862_bb0220) 2014; 43
Zhao (10.1016/j.apenergy.2023.120862_bb0025) 2019; 109
Li (10.1016/j.apenergy.2023.120862_bb0165) 2019; 183
Li (10.1016/j.apenergy.2023.120862_bb0125) 2016; 116
Qiu (10.1016/j.apenergy.2023.120862_bb0085) 2020; 8
Yu (10.1016/j.apenergy.2023.120862_bb0045) 2014; 82
Zhang (10.1016/j.apenergy.2023.120862_bb0100) 2022; 15
Li (10.1016/j.apenergy.2023.120862_bb0105) 2022; 306
Wang (10.1016/j.apenergy.2023.120862_bb0130) 2006; 12
Guo (10.1016/j.apenergy.2023.120862_bb0170) 2017; 142
Zhao (10.1016/j.apenergy.2023.120862_bb0245) 2013; 112
Katipamula (10.1016/j.apenergy.2023.120862_bb0035) 2005; 11
Hou (10.1016/j.apenergy.2023.120862_bb0080) 2006; 47
Edward Jackson (10.1016/j.apenergy.2023.120862_bb0215) 1991
Wang (10.1016/j.apenergy.2023.120862_bb0140) 2005; 82
Tan (10.1016/j.apenergy.2023.120862_bb0180) 2005
Padilla (10.1016/j.apenergy.2023.120862_bb0135) 2015; 99
Hu (10.1016/j.apenergy.2023.120862_bb0175) 2016; 112
Zhang (10.1016/j.apenergy.2023.120862_bb0200) 2019; 160
Wang (10.1016/j.apenergy.2023.120862_bb0145) 2004; 36
Li (10.1016/j.apenergy.2023.120862_bb0205) 2018; 173
Dey (10.1016/j.apenergy.2023.120862_bb0075) 2016; 130
Wang (10.1016/j.apenergy.2023.120862_bb0115) 2018; 141
Wang (10.1016/j.apenergy.2023.120862_bb0055) 2006; 12
Gunay (10.1016/j.apenergy.2023.120862_bb0195) 2020; 228
Liu (10.1016/j.apenergy.2023.120862_bb0030) 1999; 96
Jolliffe (10.1016/j.apenergy.2023.120862_bb0240) 2002
References_xml – volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: bb0230
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: 256
  year: 2022
  ident: bb0090
  article-title: Distributed diagnosis of sensor and actuator faults in air handling units in multi-zone buildings: a model-based approach
  publication-title: Energ Buildings
– volume: 96
  start-page: 46
  year: 1999
  end-page: 56
  ident: bb0030
  article-title: Improving building energy system performance by continuous commissioning
  publication-title: Energy Eng
– start-page: 854
  year: 2014
  end-page: 864
  ident: bb0010
  article-title: HVAC equipment, unitary: fault detection and diagnosis
  publication-title: Encyclopedia of Energy Engineering and Technology
– volume: 173
  start-page: 502
  year: 2018
  end-page: 515
  ident: bb0205
  article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis
  publication-title: Energ Buildings
– volume: 45
  start-page: 2667
  year: 2004
  end-page: 2686
  ident: bb0070
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energ Conver Manage
– year: 2005
  ident: bb0180
  article-title: Introduction to data mining
– volume: 159
  start-page: 296
  year: 2018
  end-page: 308
  ident: bb0225
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energ Buildings
– year: 1991
  ident: bb0215
  article-title: A user’s guide to principal components
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: bb0005
  article-title: A review on buildings energy consumption information
  publication-title: Energ Buildings
– volume: 259
  year: 2022
  ident: bb0150
  article-title: Real vs. simulated: questions on the capability of simulated datasets on building fault detection for energy efficiency from a data-driven perspective
  publication-title: Energ Buildings
– volume: 43
  start-page: 49
  year: 2014
  end-page: 58
  ident: bb0220
  article-title: Application of pattern matching method for detecting faults in air handling unit system
  publication-title: Autom Constr
– volume: 99
  start-page: 214
  year: 2015
  end-page: 219
  ident: bb0135
  article-title: A combined passive-active sensor fault detection and isolation approach for air handling units
  publication-title: Energ Buildings
– volume: 183
  start-page: 311
  year: 2019
  end-page: 324
  ident: bb0165
  article-title: An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising
  publication-title: Energ Buildings
– volume: 60
  start-page: 949
  year: 2014
  end-page: 965
  ident: bb0235
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J
– volume: 142
  start-page: 167
  year: 2017
  end-page: 178
  ident: bb0170
  article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis
  publication-title: Energ Buildings
– volume: 146
  start-page: 257
  year: 2017
  end-page: 270
  ident: bb0190
  article-title: Identification and isolation of outdoor fouling faults using only built-in sensors in variable refrigerant flow system: a data mining approach
  publication-title: Energ Buildings
– volume: 68
  start-page: 63
  year: 2014
  end-page: 71
  ident: bb0155
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energ Buildings
– year: 2002
  ident: bb0240
  article-title: Principal component analysis
– volume: 228
  year: 2020
  ident: bb0195
  article-title: Cluster analysis-based anomaly detection in building automation systems
  publication-title: Energ Buildings
– volume: 112
  start-page: 1041
  year: 2013
  end-page: 1048
  ident: bb0245
  article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD)
  publication-title: Appl Energy
– volume: 27
  start-page: 608
  year: 2021
  end-page: 623
  ident: bb0185
  article-title: Fault detection and diagnosis for the screw chillers using multi-region XGBoost model
  publication-title: Sci Technol Built Environ
– volume: 73
  start-page: 1
  year: 2014
  end-page: 11
  ident: bb0050
  article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis
  publication-title: Build Environ
– volume: 44
  start-page: 7
  year: 2012
  end-page: 16
  ident: bb0160
  article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal
  publication-title: Energ Buildings
– volume: 11
  start-page: 169
  year: 2005
  end-page: 187
  ident: bb0040
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2
  publication-title: HVAC&R Res
– volume: 36
  start-page: 147
  year: 2004
  end-page: 160
  ident: bb0145
  article-title: AHU sensor fault diagnosis using principal component analysis method
  publication-title: Energ Buildings
– volume: 112
  start-page: 270
  year: 2016
  end-page: 278
  ident: bb0175
  article-title: A statistical training data cleaning strategy for the PCA-based chiller sensor fault detection, diagnosis and data reconstruction method
  publication-title: Energ Buildings
– volume: 12
  start-page: 259
  year: 2019
  end-page: 271
  ident: bb0060
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build Simul
– volume: 116
  start-page: 104
  year: 2016
  end-page: 113
  ident: bb0125
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energ Buildings
– year: 2004
  ident: bb0020
  article-title: Residential and small commercial central air conditioning; rated efficiency isn’t automatic
– volume: 306
  year: 2022
  ident: bb0105
  article-title: A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems
  publication-title: Appl Energy
– volume: 15
  start-page: 69
  year: 2022
  end-page: 81
  ident: bb0100
  article-title: A real-time abnormal operation pattern detection method for building energy systems based on association rule bases
  publication-title: Build Simul
– volume: 130
  start-page: 177
  year: 2016
  end-page: 187
  ident: bb0075
  article-title: A probabilistic approach to diagnose faults of air handling units in buildings
  publication-title: Energ Buildings
– volume: 39
  start-page: 70
  year: 2014
  end-page: 83
  ident: bb0095
  article-title: Development and alpha testing of a cloud based automated fault detection and diagnosis tool for air handling units
  publication-title: Automat Constr
– volume: 82
  start-page: 197
  year: 2005
  end-page: 213
  ident: bb0140
  article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal component analysis method
  publication-title: Appl Energy
– year: 1986
  ident: bb0210
  article-title: Principal component analysis
– volume: 30
  start-page: 1359
  year: 2021
  end-page: 1374
  ident: bb0120
  article-title: A self-tuning KPCA-based approach to fault detection in chiller systems
  publication-title: IEEE Trans Control Syst Technol
– volume: 160
  year: 2019
  ident: bb0200
  article-title: Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering
  publication-title: Appl Therm Eng
– volume: 12
  start-page: 407
  year: 2006
  end-page: 428
  ident: bb0055
  article-title: A robust fault detection and diagnosis strategy for centrifugal chillers
  publication-title: HVAC & R Res
– volume: 141
  start-page: 898
  year: 2018
  end-page: 905
  ident: bb0115
  article-title: Enhanced chiller fault detection using bayesian network and principal component analysis
  publication-title: Appl Therm Eng
– volume: 109
  start-page: 85
  year: 2019
  end-page: 101
  ident: bb0025
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future
  publication-title: Renew Sustain Energy Rev
– volume: 8
  year: 2020
  ident: bb0085
  article-title: Modeling of HVAC systems for fault diagnosis
  publication-title: IEEE Access
– volume: 82
  start-page: 550
  year: 2014
  end-page: 562
  ident: bb0045
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energ Buildings
– volume: 12
  start-page: 407
  year: 2006
  end-page: 428
  ident: bb0130
  article-title: A robust fault detection and diagnosis strategy for centrifugal chillers
  publication-title: HVAC&R Res
– volume: 25
  start-page: 42
  year: 1983
  end-page: 45
  ident: bb0065
  article-title: Sensor errors: their effects on building energy consumption
  publication-title: ASHRAE J
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bb0035
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1
  publication-title: HVAC&R Res
– volume: 47
  start-page: 2479
  year: 2006
  end-page: 2490
  ident: bb0080
  article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system
  publication-title: Energ Conver Manage
– year: 2000
  ident: bb0015
  article-title: Building control systems
– volume: 250
  year: 2021
  ident: bb0110
  article-title: A novel fault diagnosis and self-calibration method for air-handling units using Bayesian inference and virtual sensing
  publication-title: Energ Buildings
– volume: 160
  year: 2019
  ident: 10.1016/j.apenergy.2023.120862_bb0200
  article-title: Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114098
– year: 1991
  ident: 10.1016/j.apenergy.2023.120862_bb0215
– volume: 109
  start-page: 85
  year: 2019
  ident: 10.1016/j.apenergy.2023.120862_bb0025
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.04.021
– volume: 8
  year: 2020
  ident: 10.1016/j.apenergy.2023.120862_bb0085
  article-title: Modeling of HVAC systems for fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015526
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.apenergy.2023.120862_bb0230
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: 99
  start-page: 214
  year: 2015
  ident: 10.1016/j.apenergy.2023.120862_bb0135
  article-title: A combined passive-active sensor fault detection and isolation approach for air handling units
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2015.04.035
– volume: 82
  start-page: 550
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0045
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2014.06.042
– volume: 142
  start-page: 167
  year: 2017
  ident: 10.1016/j.apenergy.2023.120862_bb0170
  article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2017.03.026
– volume: 68
  start-page: 63
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0155
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2013.08.044
– volume: 11
  start-page: 169
  year: 2005
  ident: 10.1016/j.apenergy.2023.120862_bb0040
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 2
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2005.10391133
– volume: 116
  start-page: 104
  year: 2016
  ident: 10.1016/j.apenergy.2023.120862_bb0125
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2015.12.045
– volume: 39
  start-page: 70
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0095
  article-title: Development and alpha testing of a cloud based automated fault detection and diagnosis tool for air handling units
  publication-title: Automat Constr
  doi: 10.1016/j.autcon.2013.12.006
– volume: 250
  year: 2021
  ident: 10.1016/j.apenergy.2023.120862_bb0110
  article-title: A novel fault diagnosis and self-calibration method for air-handling units using Bayesian inference and virtual sensing
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2021.111293
– volume: 60
  start-page: 949
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0235
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J
  doi: 10.1002/aic.14335
– volume: 141
  start-page: 898
  year: 2018
  ident: 10.1016/j.apenergy.2023.120862_bb0115
  article-title: Enhanced chiller fault detection using bayesian network and principal component analysis
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.06.037
– volume: 36
  start-page: 147
  issue: 2
  year: 2004
  ident: 10.1016/j.apenergy.2023.120862_bb0145
  article-title: AHU sensor fault diagnosis using principal component analysis method
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2003.10.002
– volume: 73
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0050
  article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.11.021
– volume: 27
  start-page: 608
  issue: 5
  year: 2021
  ident: 10.1016/j.apenergy.2023.120862_bb0185
  article-title: Fault detection and diagnosis for the screw chillers using multi-region XGBoost model
  publication-title: Sci Technol Built Environ
  doi: 10.1080/23744731.2021.1877966
– volume: 259
  year: 2022
  ident: 10.1016/j.apenergy.2023.120862_bb0150
  article-title: Real vs. simulated: questions on the capability of simulated datasets on building fault detection for energy efficiency from a data-driven perspective
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2022.111872
– volume: 173
  start-page: 502
  year: 2018
  ident: 10.1016/j.apenergy.2023.120862_bb0205
  article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2018.05.025
– volume: 112
  start-page: 1041
  year: 2013
  ident: 10.1016/j.apenergy.2023.120862_bb0245
  article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 146
  start-page: 257
  year: 2017
  ident: 10.1016/j.apenergy.2023.120862_bb0190
  article-title: Identification and isolation of outdoor fouling faults using only built-in sensors in variable refrigerant flow system: a data mining approach
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2017.04.041
– volume: 43
  start-page: 49
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0220
  article-title: Application of pattern matching method for detecting faults in air handling unit system
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2014.03.002
– volume: 47
  start-page: 2479
  issue: 15–16
  year: 2006
  ident: 10.1016/j.apenergy.2023.120862_bb0080
  article-title: Data mining based sensor fault diagnosis and validation for building air conditioning system
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2005.11.010
– volume: 159
  start-page: 296
  year: 2018
  ident: 10.1016/j.apenergy.2023.120862_bb0225
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2017.11.008
– volume: 228
  year: 2020
  ident: 10.1016/j.apenergy.2023.120862_bb0195
  article-title: Cluster analysis-based anomaly detection in building automation systems
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2020.110445
– volume: 45
  start-page: 2667
  issue: 17
  year: 2004
  ident: 10.1016/j.apenergy.2023.120862_bb0070
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2003.12.008
– start-page: 854
  year: 2014
  ident: 10.1016/j.apenergy.2023.120862_bb0010
  article-title: HVAC equipment, unitary: fault detection and diagnosis
– volume: 30
  start-page: 1359
  issue: 4
  year: 2021
  ident: 10.1016/j.apenergy.2023.120862_bb0120
  article-title: A self-tuning KPCA-based approach to fault detection in chiller systems
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2021.3107200
– year: 2005
  ident: 10.1016/j.apenergy.2023.120862_bb0180
– volume: 11
  start-page: 3
  year: 2005
  ident: 10.1016/j.apenergy.2023.120862_bb0035
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems – a review part 1
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2005.10391123
– volume: 96
  start-page: 46
  year: 1999
  ident: 10.1016/j.apenergy.2023.120862_bb0030
  article-title: Improving building energy system performance by continuous commissioning
  publication-title: Energy Eng
  doi: 10.1080/01998595.1999.10530472
– year: 1986
  ident: 10.1016/j.apenergy.2023.120862_bb0210
– volume: 40
  start-page: 394
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2023.120862_bb0005
  article-title: A review on buildings energy consumption information
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 256
  year: 2022
  ident: 10.1016/j.apenergy.2023.120862_bb0090
  article-title: Distributed diagnosis of sensor and actuator faults in air handling units in multi-zone buildings: a model-based approach
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2021.111709
– volume: 130
  start-page: 177
  year: 2016
  ident: 10.1016/j.apenergy.2023.120862_bb0075
  article-title: A probabilistic approach to diagnose faults of air handling units in buildings
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2016.08.017
– volume: 25
  start-page: 42
  issue: 12
  year: 1983
  ident: 10.1016/j.apenergy.2023.120862_bb0065
  article-title: Sensor errors: their effects on building energy consumption
  publication-title: ASHRAE J
– year: 2004
  ident: 10.1016/j.apenergy.2023.120862_bb0020
– year: 2002
  ident: 10.1016/j.apenergy.2023.120862_bb0240
– volume: 12
  start-page: 259
  year: 2019
  ident: 10.1016/j.apenergy.2023.120862_bb0060
  article-title: Impacts of HVACR temperature sensor offsets on building energy performance and occupant thermal comfort
  publication-title: Build Simul
  doi: 10.1007/s12273-018-0475-3
– volume: 82
  start-page: 197
  issue: 3
  year: 2005
  ident: 10.1016/j.apenergy.2023.120862_bb0140
  article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal component analysis method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.11.002
– volume: 44
  start-page: 7
  year: 2012
  ident: 10.1016/j.apenergy.2023.120862_bb0160
  article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2011.09.043
– volume: 12
  start-page: 407
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2023.120862_bb0055
  article-title: A robust fault detection and diagnosis strategy for centrifugal chillers
  publication-title: HVAC & R Res
  doi: 10.1080/10789669.2006.10391187
– volume: 15
  start-page: 69
  year: 2022
  ident: 10.1016/j.apenergy.2023.120862_bb0100
  article-title: A real-time abnormal operation pattern detection method for building energy systems based on association rule bases
  publication-title: Build Simul
  doi: 10.1007/s12273-021-0791-x
– volume: 112
  start-page: 270
  year: 2016
  ident: 10.1016/j.apenergy.2023.120862_bb0175
  article-title: A statistical training data cleaning strategy for the PCA-based chiller sensor fault detection, diagnosis and data reconstruction method
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2015.11.066
– volume: 12
  start-page: 407
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2023.120862_bb0130
  article-title: A robust fault detection and diagnosis strategy for centrifugal chillers
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2006.10391187
– year: 2000
  ident: 10.1016/j.apenergy.2023.120862_bb0015
– volume: 183
  start-page: 311
  year: 2019
  ident: 10.1016/j.apenergy.2023.120862_bb0165
  article-title: An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2018.10.013
– volume: 306
  year: 2022
  ident: 10.1016/j.apenergy.2023.120862_bb0105
  article-title: A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118088
SSID ssj0002120
Score 2.603023
Snippet Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120862
SubjectTerms Air-handling unit
algorithms
Clustering
data collection
energy
Fault detection and diagnosis
heat
Principal component analysis
Savitzky–Golay filter
Sensor fault
Title An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis
URI https://dx.doi.org/10.1016/j.apenergy.2023.120862
https://www.proquest.com/docview/3153766953
Volume 337
WOSCitedRecordID wos000949648500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMcEBSqlk2DhLhEDvZ4nWOEUhZFAakpBC6WPR4Tl9RxEztKOXHlwoV_yC_hzYzHsVBRy4GLE43mOU7el7fNWxB6ysDrsW3XMryY2YaTsMSIHZIYKQVfgCSWxeU4n_cjfzwOplP6rtP5rmth1nM_z4PNhhb_ldWwBswWpbP_wO7mprAA74HpcAW2w_VKjB_kPZ7P1MF-oULpsgfIabHIVUJ53YZEDY9WkdijaJ2VX7-c69wH-yW4vOeia5Nooihr3-aV6KkgaxrnnxdLoDqVOYorcIThJY2qedlLeMnr4eNAk6g8vmzVNoG13ctl1eH2ZEgFYmfVmVam7XD2By7K8Zr1o0ru_pillV4aybSETzOeb7J2KIO0Egd1CZfpGcKla4tn2_Z7Rd8iwvcyLhT6Kv5w0o8K9eR9ce-aYqvm9NH--G14eDwahZPhdPKsODPEADJxUF9PY7mGdojv0qCLdgavh9M3jVondY9P_YytcvOLP_pvls4fOl8aMpPb6FbtgeCBQs4d1OH5LrrZ6ku5i_aG2_JH2FrL_9Vd9GOQYw0u3IALN-DCGlxYgQsLcGENrl_ffkpYYQUr2JzgLaxwAysMsMIKVljCCjewkjQNrO6h48Ph5MUro57oYTDbcUuDpqabRtyLSBCbLAUZ4bLU92JKItdzUlC8JODM9EnqJrGT-IzaMWVOZLLYB9PYt_dQN4fvs4-wH1PKuUUDz6ROTMDQjSMwfokFMocxYh4gV__6Iavb3YupK_NQ5zWehJproeBaqLh2gJ43dIVq-HIpBdXMDWuzVZmjIQD0UtonGg0hyHVxWBflfFGtQtsSjZY86tr3r7DnAbqx_UM9RN1yWfFH6Dpbl9lq-biG8m_2jM29
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+principal+component+analysis+method+with+Savitzky%E2%80%93Golay+filter+and+clustering+algorithm+for+sensor+fault+detection+and+diagnosis&rft.jtitle=Applied+energy&rft.au=Wen%2C+Shuqing&rft.au=Zhang%2C+Weirong&rft.au=Sun%2C+Yifu&rft.au=Li%2C+Zhenxi&rft.date=2023-05-01&rft.issn=0306-2619&rft.volume=337+p.120862-&rft_id=info:doi/10.1016%2Fj.apenergy.2023.120862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon