Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework

•Four solar steam methane reforming alternatives are investigated.•Machine learning based optimisation framework is proposed to achieve optimal design.•Total annualised cost is reduced by 14.9 % ~ 15.1% in comparison to existing work.•CO2 emission decreases by 80.0 kt yr−1 than conventional steam me...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 305; p. 117751
Main Authors: Wang, Wanrong, Ma, Yingjie, Maroufmashat, Azadeh, Zhang, Nan, Li, Jie, Xiao, Xin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2022
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Four solar steam methane reforming alternatives are investigated.•Machine learning based optimisation framework is proposed to achieve optimal design.•Total annualised cost is reduced by 14.9 % ~ 15.1% in comparison to existing work.•CO2 emission decreases by 80.0 kt yr−1 than conventional steam methane reforming.•Levelized cost of H2 production using solar is reduced from 2.9 to 2.4 $ kg−1. Hydrogen is an important energy carrier in the transportation sector and an essential industrial feedstock for petroleum refineries, methanol, and ammonia production. Renewable energy sources, especially solar energy have been investigated for large-scale hydrogen production in thermochemical, electrochemical, or photochemical manners due to considerable greenhouse gas emissions from the conventional steam reforming of natural gas and oil-based feedstock. The solar steam methane reforming using molten salt (SSMR-MS) is superior due to its unlimited operation hours and lower total annualized cost (TAC). In this work, we extend the existing optimisation framework for optimal design of SSMR-MS in which machine learning techniques are employed to describe the relationship between solar-related cost and molten salt heat duty and establish relationships of TAC, hydrogen production rate and molten salt heat duty with independent input variables in the whole flowsheet based on 18,619 sample points generated using the Latin hypercube sampling technique. A hybrid global optimisation algorithm is adopted to optimise the developed model and generate the optimal design, which is validated in SAM and Aspen Plus V8.8. The computational results demonstrate that a significant reduction in TAC by 14.9 % ~ 15.1 %, and CO2 emissions by 4.4 % ~ 5.2 % can be achieved compared to the existing SSMR-MS. The lowest Levelized cost of Hydrogen Production is 2.4 $ kg−1 which is reduced by around 17.2 % compared to the existing process with levelized cost of 2.9 $ kg−1.
AbstractList Hydrogen is an important energy carrier in the transportation sector and an essential industrial feedstock for petroleum refineries, methanol, and ammonia production. Renewable energy sources, especially solar energy have been investigated for large-scale hydrogen production in thermochemical, electrochemical, or photochemical manners due to considerable greenhouse gas emissions from the conventional steam reforming of natural gas and oil-based feedstock. The solar steam methane reforming using molten salt (SSMR-MS) is superior due to its unlimited operation hours and lower total annualized cost (TAC). In this work, we extend the existing optimisation framework for optimal design of SSMR-MS in which machine learning techniques are employed to describe the relationship between solar-related cost and molten salt heat duty and establish relationships of TAC, hydrogen production rate and molten salt heat duty with independent input variables in the whole flowsheet based on 18,619 sample points generated using the Latin hypercube sampling technique. A hybrid global optimisation algorithm is adopted to optimise the developed model and generate the optimal design, which is validated in SAM and Aspen Plus V8.8. The computational results demonstrate that a significant reduction in TAC by 14.9 % ~ 15.1 %, and CO₂ emissions by 4.4 % ~ 5.2 % can be achieved compared to the existing SSMR-MS. The lowest Levelized cost of Hydrogen Production is 2.4 $ kg⁻¹ which is reduced by around 17.2 % compared to the existing process with levelized cost of 2.9 $ kg⁻¹.
•Four solar steam methane reforming alternatives are investigated.•Machine learning based optimisation framework is proposed to achieve optimal design.•Total annualised cost is reduced by 14.9 % ~ 15.1% in comparison to existing work.•CO2 emission decreases by 80.0 kt yr−1 than conventional steam methane reforming.•Levelized cost of H2 production using solar is reduced from 2.9 to 2.4 $ kg−1. Hydrogen is an important energy carrier in the transportation sector and an essential industrial feedstock for petroleum refineries, methanol, and ammonia production. Renewable energy sources, especially solar energy have been investigated for large-scale hydrogen production in thermochemical, electrochemical, or photochemical manners due to considerable greenhouse gas emissions from the conventional steam reforming of natural gas and oil-based feedstock. The solar steam methane reforming using molten salt (SSMR-MS) is superior due to its unlimited operation hours and lower total annualized cost (TAC). In this work, we extend the existing optimisation framework for optimal design of SSMR-MS in which machine learning techniques are employed to describe the relationship between solar-related cost and molten salt heat duty and establish relationships of TAC, hydrogen production rate and molten salt heat duty with independent input variables in the whole flowsheet based on 18,619 sample points generated using the Latin hypercube sampling technique. A hybrid global optimisation algorithm is adopted to optimise the developed model and generate the optimal design, which is validated in SAM and Aspen Plus V8.8. The computational results demonstrate that a significant reduction in TAC by 14.9 % ~ 15.1 %, and CO2 emissions by 4.4 % ~ 5.2 % can be achieved compared to the existing SSMR-MS. The lowest Levelized cost of Hydrogen Production is 2.4 $ kg−1 which is reduced by around 17.2 % compared to the existing process with levelized cost of 2.9 $ kg−1.
ArticleNumber 117751
Author Ma, Yingjie
Xiao, Xin
Wang, Wanrong
Maroufmashat, Azadeh
Zhang, Nan
Li, Jie
Author_xml – sequence: 1
  givenname: Wanrong
  surname: Wang
  fullname: Wang, Wanrong
  organization: Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
– sequence: 2
  givenname: Yingjie
  surname: Ma
  fullname: Ma, Yingjie
  organization: Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
– sequence: 3
  givenname: Azadeh
  surname: Maroufmashat
  fullname: Maroufmashat, Azadeh
  organization: GERAD, Department of Decision Sciences, HEC Montréal, Montréal, Canada
– sequence: 4
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
– sequence: 5
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: jie.li-2@manchester.ac.uk
  organization: Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
– sequence: 6
  givenname: Xin
  surname: Xiao
  fullname: Xiao, Xin
  organization: Institute of Process Engineering, Chinese Academy of Science, Beijing 100191, China
BookMark eNqFkMFuGyEQhlGVSnXSvkLFMZd1gfWyIOXQKmrSSJFyac9oFoYN7hpcWCfy2wfbyaWXnBjQ_80M3zk5iykiIV85W3LG5bf1ErYYMY_7pWCCLznv-45_IAuuetFoztUZWbCWyUZIrj-R81LWjNWkYAvy_LCdwwYm6rCEMdLk6QR5xKZYmJCWVG8NBIeOPu5dTiNGus3J7ewc0rG0WAp9CkA3YB9DRDoh5BjiSAcoFUuHAaHAMe8zbPA55b-fyUcPU8Evr-cF-XPz8_f1r-b-4fbu-sd9Y9tVNzcaFQcFioH2mne1wFYMolcSfWfBDgN6pfvBrTolB3BqtYL6IB1abL3w7QW5PPWtm_7bYZlN3cXiNEHEtCtGyFa2Wmnd1ag8RW1OpWT0Zpurmrw3nJmDabM2b6bNwbQ5ma7g1X-gDfPxv3OGML2Pfz_hWD08Bcym2IDRogsZ7WxcCu-1eAHEjqTm
CitedBy_id crossref_primary_10_1021_acs_energyfuels_5c00916
crossref_primary_10_1016_j_energy_2024_132554
crossref_primary_10_1016_j_cej_2025_166228
crossref_primary_10_1016_j_energy_2023_129302
crossref_primary_10_1016_j_jwpe_2025_108078
crossref_primary_10_1016_j_jclepro_2024_141377
crossref_primary_10_1016_j_cjche_2025_05_014
crossref_primary_10_3389_fenrg_2023_1181310
crossref_primary_10_1016_j_energy_2022_125711
crossref_primary_10_1007_s11770_022_0987_6
crossref_primary_10_1016_j_jgsce_2023_205104
crossref_primary_10_1016_j_apenergy_2022_119684
crossref_primary_10_1016_j_seppur_2022_120597
crossref_primary_10_1021_acsomega_5c01602
crossref_primary_10_1016_j_enconman_2024_118088
crossref_primary_10_1016_j_apenergy_2022_118965
crossref_primary_10_1016_j_psep_2025_107070
crossref_primary_10_2166_wrd_2023_071
crossref_primary_10_1016_j_energy_2024_131614
crossref_primary_10_1016_j_seta_2022_102059
crossref_primary_10_1016_j_apenergy_2025_126691
crossref_primary_10_1016_j_ijhydene_2025_151629
crossref_primary_10_1016_j_ijhydene_2025_04_326
crossref_primary_10_1016_j_seppur_2024_130354
crossref_primary_10_1155_er_8940534
crossref_primary_10_1016_j_ijhydene_2025_04_286
crossref_primary_10_1063_5_0281416
crossref_primary_10_29109_gujsc_1710629
crossref_primary_10_1007_s13042_025_02632_x
Cites_doi 10.1002/aic.11510
10.1016/j.ins.2013.01.024
10.1016/j.ijhydene.2018.06.052
10.1016/j.compchemeng.2020.107058
10.1002/er.1372
10.1016/j.rser.2016.09.044
10.1016/j.ijhydene.2017.07.069
10.1016/j.rser.2012.07.027
10.1016/j.rser.2011.02.026
10.1016/j.jclepro.2010.05.024
10.4135/9781446249437
10.1016/0895-7177(89)90208-2
10.1021/acs.energyfuels.5b00351
10.1016/j.apenergy.2015.05.038
10.1038/238037a0
10.1016/j.compchemeng.2011.02.003
10.1016/S0360-3199(01)00119-7
10.1016/j.ijhydene.2018.12.211
10.1016/j.energy.2005.11.002
10.1002/wene.174
10.1115/1.2164447
10.1016/j.enconman.2018.04.057
10.1021/acs.iecr.9b05361
10.1007/s11705-020-1977-y
10.1016/j.cherd.2018.03.006
10.1016/j.enchem.2019.100014
10.1016/j.cherd.2009.06.007
10.1016/j.ijhydene.2017.12.113
10.1016/j.rser.2013.08.050
10.1016/j.solener.2017.05.064
10.1002/aic.690350109
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117751
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117751
S0306261921010965
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-9e81a8a80a9f915a80e32b2786ef5cacbbef897bd4586bad844af896dece3f2f3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707902400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 14:56:55 EDT 2025
Tue Nov 18 22:15:34 EST 2025
Sat Nov 29 07:17:52 EST 2025
Fri Feb 23 02:42:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid optimization algorithm
Surrogate model
Hydrogen
Solar energy
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-9e81a8a80a9f915a80e32b2786ef5cacbbef897bd4586bad844af896dece3f2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636398995
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636398995
crossref_primary_10_1016_j_apenergy_2021_117751
crossref_citationtrail_10_1016_j_apenergy_2021_117751
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117751
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mohsin, Rasheed, Saidur (b0030) 2018; 43
Marxer, Furler, Scheffe, Geerlings, Falter, Batteiger (b0065) 2015; 29
Fujishima, Honda (b0075) 1972; 238
Python.org. 2021. Welcome to Python.org. [online] Available at: <https://www.python.org> [Accessed 18 July 2021].
Likkasit, Maroufmashat, Elkamel, Ku, Fowler (b0095) 2018; 168
Özcan, Akın (b0200) 2019; 44
Dua (b0175) 2010; 88
Armendariz (b0195) 2009
Abanades, Charvin, Flamant, Neveu (b0060) 2006; 31
The mathworks. R2019a - Updates to the MATLAB and Simulink product families. [online] Available at: <https://uk.mathworks.com/products/new_products/release2019a.html> [Accessed 29 April 2021].
Giaconia, de Falco, Caputo, Grena, Tarquini, Marrelli (b0105) 2008; 54
Sagir, Alipour, Elkahlout, Koku, Gunduz, Eroglu (b0055) 2018; 43
Horng, Lin (b0165) 2013; 233
Miltner, Wukovits, Pröll, Friedl (b0025) 2010; 18
Fallisch, Schellhase, Fresko, Zedda, Ohlmann, Steiner (b0085) 2017; 42
Ibrahim, Jobson, Li, Guillén-Gosálbez (b0120) 2018; 134
Ceas.manchester.ac.uk. 2021. Software packages - Centre for Process Integration - The University of Manchester. [online] Available at: <https://www.ceas.manchester.ac.uk/cpi/research/resources/software/> [Accessed 4 April 2021].
Gogate (b0145) 2020;3.; 3
Giaconia, A., Labach, I., Caputo, G. & Sau, S. Experimental and theoretical studies of solar steam reforming assisted by molten salts. 18th World Hydrogen Energy Conference 2010.
Likkasit (b0115) 2015
Nikolaidis, Poullikkas (b0015) 2017; 67
Ma, McLaughlan, Zhang, Li (b0205) 2020; 143
Agrafiotis, C., von charch, H., Roeb, M., Sattler, C. 'Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review', Renewable and Sustainable Energy Reviews 2014;29:656-682.
Abbasi, Abbasi (b0035) 2011; 15
Dincer (b0080) 2002; 27
Koumi Ngoh, Njomo (b0040) 2012; 16
Seider, Seader, Lewin, Widagdo (b0140) 2010
Eia.gov. 2021. Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA). [online] Available at: <https://www.eia.gov/tools/faqs/faq.php?id=74&t=11> [Accessed 13 May 2021].
Song, Liu, Ji, Kansha, Tsutsumi (b0005) 2015; 154
Xu, Froment (b0130) 1989; 35
Wei, Yang, Hou, Liu, Cao, Zhao (b0050) 2017; 153
Liu, Sheng, Ager, Kraft, Xu (b0045) 2019; 1
Muhich, Ehrhart, Al-Shankiti, Ward, Musgrave, Weimer (b0070) 2016; 5
Sam.nrel.gov. 2021. Home - System Advisor Model (SAM). [online] Available at: <https://sam.nrel.gov> [Accessed 5 April 2021].
Al Jamri, Li, Smith (b0180) 2020; 59
Aspentech.com. 2021. Aspen Custom Modeler | Quick and Easy | AspenTech. [online] Available at: <https://www.aspentech.com/en/products/engineering/aspen-custom-modeler> [Accessed 8 July 2021].
Hydrogen Council. Hydrogen Scaling up: a Sustainable Pathway for the Global Energy Transition; 2017.
Möller, Kaucic, Sattler (b0100) 2005; 128
Subramanyan, Diwekar, Zitney (b0155) 2011; 35
Elnashaie, Alhabdan (b0150) 1989; 12
Diamond, I., Jefferies, J. Beginning Statistics: An Introduction for Social Scientists. SAGE Publications 2001.California, US.
AspenTech. The leading process simulation software in the chemical industry with Aspen Plus®. [online] Available at: <https://www.aspentech.com/en/products/engineering/aspen-plus> [Accessed 29 April 2021].
Turner, Sverdrup, Mann, Maness, Kroposki, Ghirardi (b0020) 2008; 32
Ma, Zhang, Li, Cao (b0210) 2021; 15
Muhich (10.1016/j.apenergy.2021.117751_b0070) 2016; 5
Likkasit (10.1016/j.apenergy.2021.117751_b0115) 2015
Seider (10.1016/j.apenergy.2021.117751_b0140) 2010
Özcan (10.1016/j.apenergy.2021.117751_b0200) 2019; 44
10.1016/j.apenergy.2021.117751_b0010
Nikolaidis (10.1016/j.apenergy.2021.117751_b0015) 2017; 67
10.1016/j.apenergy.2021.117751_b0110
Ma (10.1016/j.apenergy.2021.117751_b0210) 2021; 15
Xu (10.1016/j.apenergy.2021.117751_b0130) 1989; 35
10.1016/j.apenergy.2021.117751_b0215
Liu (10.1016/j.apenergy.2021.117751_b0045) 2019; 1
10.1016/j.apenergy.2021.117751_b0135
Möller (10.1016/j.apenergy.2021.117751_b0100) 2005; 128
10.1016/j.apenergy.2021.117751_b0170
10.1016/j.apenergy.2021.117751_b0090
Dua (10.1016/j.apenergy.2021.117751_b0175) 2010; 88
10.1016/j.apenergy.2021.117751_b0190
Mohsin (10.1016/j.apenergy.2021.117751_b0030) 2018; 43
Al Jamri (10.1016/j.apenergy.2021.117751_b0180) 2020; 59
Horng (10.1016/j.apenergy.2021.117751_b0165) 2013; 233
Ibrahim (10.1016/j.apenergy.2021.117751_b0120) 2018; 134
Gogate (10.1016/j.apenergy.2021.117751_b0145) 20203; 3
Abbasi (10.1016/j.apenergy.2021.117751_b0035) 2011; 15
Armendariz (10.1016/j.apenergy.2021.117751_b0195) 2009
Wei (10.1016/j.apenergy.2021.117751_b0050) 2017; 153
Marxer (10.1016/j.apenergy.2021.117751_b0065) 2015; 29
Song (10.1016/j.apenergy.2021.117751_b0005) 2015; 154
Turner (10.1016/j.apenergy.2021.117751_b0020) 2008; 32
Subramanyan (10.1016/j.apenergy.2021.117751_b0155) 2011; 35
10.1016/j.apenergy.2021.117751_b0220
Likkasit (10.1016/j.apenergy.2021.117751_b0095) 2018; 168
10.1016/j.apenergy.2021.117751_b0125
Miltner (10.1016/j.apenergy.2021.117751_b0025) 2010; 18
Elnashaie (10.1016/j.apenergy.2021.117751_b0150) 1989; 12
10.1016/j.apenergy.2021.117751_b0185
Abanades (10.1016/j.apenergy.2021.117751_b0060) 2006; 31
10.1016/j.apenergy.2021.117751_b0160
Fallisch (10.1016/j.apenergy.2021.117751_b0085) 2017; 42
Fujishima (10.1016/j.apenergy.2021.117751_b0075) 1972; 238
Giaconia (10.1016/j.apenergy.2021.117751_b0105) 2008; 54
Dincer (10.1016/j.apenergy.2021.117751_b0080) 2002; 27
Sagir (10.1016/j.apenergy.2021.117751_b0055) 2018; 43
Ma (10.1016/j.apenergy.2021.117751_b0205) 2020; 143
Koumi Ngoh (10.1016/j.apenergy.2021.117751_b0040) 2012; 16
References_xml – reference: Ceas.manchester.ac.uk. 2021. Software packages - Centre for Process Integration - The University of Manchester. [online] Available at: <https://www.ceas.manchester.ac.uk/cpi/research/resources/software/> [Accessed 4 April 2021].
– volume: 44
  start-page: 14117
  year: 2019
  end-page: 14126
  ident: b0200
  article-title: Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study
  publication-title: Int J Hydrogen Energy
– volume: 29
  start-page: 3241
  year: 2015
  end-page: 3250
  ident: b0065
  article-title: Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H
  publication-title: Energy Fuels
– reference: Python.org. 2021. Welcome to Python.org. [online] Available at: <https://www.python.org> [Accessed 18 July 2021].
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: b0075
  article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode
  publication-title: Nature
– reference: Diamond, I., Jefferies, J. Beginning Statistics: An Introduction for Social Scientists. SAGE Publications 2001.California, US.
– volume: 88
  start-page: 55
  year: 2010
  end-page: 60
  ident: b0175
  article-title: A mixed-integer programming approach for optimal configuration of artificial neural networks
  publication-title: Chem Eng Res Des
– volume: 154
  start-page: 392
  year: 2015
  end-page: 401
  ident: b0005
  article-title: Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration
  publication-title: Appl Energy
– volume: 67
  start-page: 597
  year: 2017
  end-page: 611
  ident: b0015
  article-title: A comparative overview of hydrogen production processes
  publication-title: Renew Sustain Energy Rev
– volume: 1
  year: 2019
  ident: b0045
  article-title: Research advances towards large-scale solar hydrogen production from water
  publication-title: EnergyChem
– volume: 168
  start-page: 395
  year: 2018
  end-page: 406
  ident: b0095
  article-title: Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries
  publication-title: Energy Convers Manage
– volume: 3
  year: 2020;3.
  ident: b0145
  article-title: 'Water-Gas Shift Reaction: Advances and Industrial Applications', Progress in Petrochemical
  publication-title: Science
– reference: The mathworks. R2019a - Updates to the MATLAB and Simulink product families. [online] Available at: <https://uk.mathworks.com/products/new_products/release2019a.html> [Accessed 29 April 2021].
– reference: Hydrogen Council. Hydrogen Scaling up: a Sustainable Pathway for the Global Energy Transition; 2017.
– volume: 15
  start-page: 72
  year: 2021
  end-page: 89
  ident: b0210
  article-title: Optimal design of extractive dividing-wall column using an efficient equation-oriented approach
  publication-title: Front Chem Sci Eng
– volume: 143
  year: 2020
  ident: b0205
  article-title: Novel feasible path optimisation algorithms using steady-state and/or pseudo-transient simulations
  publication-title: Comput Chem Eng
– volume: 134
  start-page: 212
  year: 2018
  end-page: 225
  ident: b0120
  article-title: Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine
  publication-title: Chem Eng Res Des
– volume: 35
  start-page: 2667
  year: 2011
  end-page: 2679
  ident: b0155
  article-title: Stochastic modeling and multi-objective optimization for the APECS system
  publication-title: Comput Chem Eng
– year: 2010
  ident: b0140
  article-title: Product and Process Design Principles
– volume: 5
  start-page: 261
  year: 2016
  end-page: 287
  ident: b0070
  article-title: A review and perspective of efficient hydrogen generation via solar thermal water splitting
  publication-title: WIREs Energy Environ
– volume: 31
  start-page: 2805
  year: 2006
  end-page: 2822
  ident: b0060
  article-title: Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy
  publication-title: Energy
– reference: Sam.nrel.gov. 2021. Home - System Advisor Model (SAM). [online] Available at: <https://sam.nrel.gov> [Accessed 5 April 2021].
– volume: 12
  start-page: 1017
  year: 1989
  end-page: 1034
  ident: b0150
  article-title: Mathematical modelling and computer simulation of industrial water–gas shift converters
  publication-title: Math Comput Modell
– volume: 32
  start-page: 379
  year: 2008
  end-page: 407
  ident: b0020
  article-title: Renewable hydrogen production
  publication-title: Int J Energy Res
– volume: 18
  start-page: S51
  year: 2010
  end-page: S62
  ident: b0025
  article-title: Renewable hydrogen production: a technical evaluation based on process simulation
  publication-title: J Cleaner Prod
– year: 2015
  ident: b0115
  article-title: Integration of renewable energy to oil and gas industry: solar-aided hydrogen production
  publication-title: King Mongkut’s University of Technology Thonburi
– volume: 16
  start-page: 6782
  year: 2012
  end-page: 6792
  ident: b0040
  article-title: An overview of hydrogen gas production from solar energy
  publication-title: Renew Sustain Energy Rev
– reference: Agrafiotis, C., von charch, H., Roeb, M., Sattler, C. 'Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review', Renewable and Sustainable Energy Reviews 2014;29:656-682.
– reference: Eia.gov. 2021. Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA). [online] Available at: <https://www.eia.gov/tools/faqs/faq.php?id=74&t=11> [Accessed 13 May 2021].
– year: 2009
  ident: b0195
  article-title: Emissions from Natural Gas Production in the Barnett Shale Area and Opportunities for Cost-Effective Improvements
  publication-title: Environmental Defense Fund
– reference: AspenTech. The leading process simulation software in the chemical industry with Aspen Plus®. [online] Available at: <https://www.aspentech.com/en/products/engineering/aspen-plus> [Accessed 29 April 2021].
– volume: 54
  start-page: 1932
  year: 2008
  end-page: 1944
  ident: b0105
  article-title: Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers
  publication-title: AIChE J
– reference: Giaconia, A., Labach, I., Caputo, G. & Sau, S. Experimental and theoretical studies of solar steam reforming assisted by molten salts. 18th World Hydrogen Energy Conference 2010.
– volume: 128
  start-page: 16
  year: 2005
  end-page: 23
  ident: b0100
  article-title: Hydrogen Production by Solar Reforming of Natural Gas: A Comparison Study of Two Possible Process Configurations
  publication-title: J Sol Energy Eng
– volume: 27
  start-page: 265
  year: 2002
  end-page: 285
  ident: b0080
  article-title: Technical, environmental and exergetic aspects of hydrogen energy systems
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 88
  year: 1989
  end-page: 96
  ident: b0130
  article-title: Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics
  publication-title: AIChE J
– volume: 59
  start-page: 1989
  year: 2020
  end-page: 2004
  ident: b0180
  article-title: Molecular Modeling of Coprocessing Biomass Fast Pyrolysis Oil in Fluid Catalytic Cracking Unit
  publication-title: Ind Eng Chem Res
– volume: 15
  start-page: 3034
  year: 2011
  end-page: 3040
  ident: b0035
  article-title: ‘Renewable’ hydrogen: Prospects and challenges
  publication-title: Renew Sustain Energy Rev
– volume: 43
  start-page: 14987
  year: 2018
  end-page: 14995
  ident: b0055
  article-title: Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor
  publication-title: Int J Hydrogen Energy
– volume: 153
  start-page: 215
  year: 2017
  end-page: 223
  ident: b0050
  article-title: Direct solar photocatalytic hydrogen generation with CPC photoreactors: System development
  publication-title: Sol Energy
– reference: Aspentech.com. 2021. Aspen Custom Modeler | Quick and Easy | AspenTech. [online] Available at: <https://www.aspentech.com/en/products/engineering/aspen-custom-modeler> [Accessed 8 July 2021].
– volume: 43
  start-page: 2621
  year: 2018
  end-page: 2630
  ident: b0030
  article-title: Economic viability and production capacity of wind generated renewable hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 26804
  year: 2017
  end-page: 26815
  ident: b0085
  article-title: Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value
  publication-title: Int J Hydrogen Energy
– volume: 233
  start-page: 214
  year: 2013
  end-page: 229
  ident: b0165
  article-title: Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation
  publication-title: Inf Sci
– volume: 54
  start-page: 1932
  year: 2008
  ident: 10.1016/j.apenergy.2021.117751_b0105
  article-title: Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers
  publication-title: AIChE J
  doi: 10.1002/aic.11510
– volume: 233
  start-page: 214
  year: 2013
  ident: 10.1016/j.apenergy.2021.117751_b0165
  article-title: Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.01.024
– volume: 43
  start-page: 14987
  issue: 32
  year: 2018
  ident: 10.1016/j.apenergy.2021.117751_b0055
  article-title: Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.052
– volume: 143
  year: 2020
  ident: 10.1016/j.apenergy.2021.117751_b0205
  article-title: Novel feasible path optimisation algorithms using steady-state and/or pseudo-transient simulations
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2020.107058
– volume: 3
  issue: 4
  year: 20203
  ident: 10.1016/j.apenergy.2021.117751_b0145
  article-title: 'Water-Gas Shift Reaction: Advances and Industrial Applications', Progress in Petrochemical
  publication-title: Science
– volume: 32
  start-page: 379
  year: 2008
  ident: 10.1016/j.apenergy.2021.117751_b0020
  article-title: Renewable hydrogen production
  publication-title: Int J Energy Res
  doi: 10.1002/er.1372
– ident: 10.1016/j.apenergy.2021.117751_b0185
– ident: 10.1016/j.apenergy.2021.117751_b0160
– ident: 10.1016/j.apenergy.2021.117751_b0215
– volume: 67
  start-page: 597
  year: 2017
  ident: 10.1016/j.apenergy.2021.117751_b0015
  article-title: A comparative overview of hydrogen production processes
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.09.044
– volume: 42
  start-page: 26804
  year: 2017
  ident: 10.1016/j.apenergy.2021.117751_b0085
  article-title: Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.069
– volume: 16
  start-page: 6782
  year: 2012
  ident: 10.1016/j.apenergy.2021.117751_b0040
  article-title: An overview of hydrogen gas production from solar energy
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.07.027
– volume: 15
  start-page: 3034
  year: 2011
  ident: 10.1016/j.apenergy.2021.117751_b0035
  article-title: ‘Renewable’ hydrogen: Prospects and challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.02.026
– volume: 18
  start-page: S51
  year: 2010
  ident: 10.1016/j.apenergy.2021.117751_b0025
  article-title: Renewable hydrogen production: a technical evaluation based on process simulation
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2010.05.024
– ident: 10.1016/j.apenergy.2021.117751_b0170
  doi: 10.4135/9781446249437
– volume: 12
  start-page: 1017
  year: 1989
  ident: 10.1016/j.apenergy.2021.117751_b0150
  article-title: Mathematical modelling and computer simulation of industrial water–gas shift converters
  publication-title: Math Comput Modell
  doi: 10.1016/0895-7177(89)90208-2
– ident: 10.1016/j.apenergy.2021.117751_b0110
– volume: 29
  start-page: 3241
  year: 2015
  ident: 10.1016/j.apenergy.2021.117751_b0065
  article-title: Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b00351
– ident: 10.1016/j.apenergy.2021.117751_b0135
– volume: 154
  start-page: 392
  year: 2015
  ident: 10.1016/j.apenergy.2021.117751_b0005
  article-title: Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.038
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.apenergy.2021.117751_b0075
  article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 35
  start-page: 2667
  year: 2011
  ident: 10.1016/j.apenergy.2021.117751_b0155
  article-title: Stochastic modeling and multi-objective optimization for the APECS system
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2011.02.003
– volume: 27
  start-page: 265
  year: 2002
  ident: 10.1016/j.apenergy.2021.117751_b0080
  article-title: Technical, environmental and exergetic aspects of hydrogen energy systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00119-7
– ident: 10.1016/j.apenergy.2021.117751_b0190
– year: 2015
  ident: 10.1016/j.apenergy.2021.117751_b0115
  article-title: Integration of renewable energy to oil and gas industry: solar-aided hydrogen production
  publication-title: King Mongkut’s University of Technology Thonburi
– volume: 44
  start-page: 14117
  year: 2019
  ident: 10.1016/j.apenergy.2021.117751_b0200
  article-title: Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.211
– volume: 31
  start-page: 2805
  year: 2006
  ident: 10.1016/j.apenergy.2021.117751_b0060
  article-title: Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy
  publication-title: Energy
  doi: 10.1016/j.energy.2005.11.002
– volume: 5
  start-page: 261
  year: 2016
  ident: 10.1016/j.apenergy.2021.117751_b0070
  article-title: A review and perspective of efficient hydrogen generation via solar thermal water splitting
  publication-title: WIREs Energy Environ
  doi: 10.1002/wene.174
– volume: 128
  start-page: 16
  year: 2005
  ident: 10.1016/j.apenergy.2021.117751_b0100
  article-title: Hydrogen Production by Solar Reforming of Natural Gas: A Comparison Study of Two Possible Process Configurations
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.2164447
– volume: 168
  start-page: 395
  year: 2018
  ident: 10.1016/j.apenergy.2021.117751_b0095
  article-title: Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.057
– volume: 59
  start-page: 1989
  year: 2020
  ident: 10.1016/j.apenergy.2021.117751_b0180
  article-title: Molecular Modeling of Coprocessing Biomass Fast Pyrolysis Oil in Fluid Catalytic Cracking Unit
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b05361
– ident: 10.1016/j.apenergy.2021.117751_b0010
– ident: 10.1016/j.apenergy.2021.117751_b0125
– volume: 15
  start-page: 72
  year: 2021
  ident: 10.1016/j.apenergy.2021.117751_b0210
  article-title: Optimal design of extractive dividing-wall column using an efficient equation-oriented approach
  publication-title: Front Chem Sci Eng
  doi: 10.1007/s11705-020-1977-y
– volume: 134
  start-page: 212
  year: 2018
  ident: 10.1016/j.apenergy.2021.117751_b0120
  article-title: Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2018.03.006
– year: 2009
  ident: 10.1016/j.apenergy.2021.117751_b0195
  article-title: Emissions from Natural Gas Production in the Barnett Shale Area and Opportunities for Cost-Effective Improvements
  publication-title: Environmental Defense Fund
– volume: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117751_b0045
  article-title: Research advances towards large-scale solar hydrogen production from water
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100014
– volume: 88
  start-page: 55
  issue: 1
  year: 2010
  ident: 10.1016/j.apenergy.2021.117751_b0175
  article-title: A mixed-integer programming approach for optimal configuration of artificial neural networks
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2009.06.007
– volume: 43
  start-page: 2621
  year: 2018
  ident: 10.1016/j.apenergy.2021.117751_b0030
  article-title: Economic viability and production capacity of wind generated renewable hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.113
– year: 2010
  ident: 10.1016/j.apenergy.2021.117751_b0140
– ident: 10.1016/j.apenergy.2021.117751_b0090
  doi: 10.1016/j.rser.2013.08.050
– volume: 153
  start-page: 215
  year: 2017
  ident: 10.1016/j.apenergy.2021.117751_b0050
  article-title: Direct solar photocatalytic hydrogen generation with CPC photoreactors: System development
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.05.064
– volume: 35
  start-page: 88
  year: 1989
  ident: 10.1016/j.apenergy.2021.117751_b0130
  article-title: Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics
  publication-title: AIChE J
  doi: 10.1002/aic.690350109
– ident: 10.1016/j.apenergy.2021.117751_b0220
SSID ssj0002120
Score 2.5076983
Snippet •Four solar steam methane reforming alternatives are investigated.•Machine learning based optimisation framework is proposed to achieve optimal design.•Total...
Hydrogen is an important energy carrier in the transportation sector and an essential industrial feedstock for petroleum refineries, methanol, and ammonia...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117751
SubjectTerms algorithms
ammonia
carbon dioxide
electrochemistry
energy
feedstocks
heat
Hybrid optimization algorithm
Hydrogen
hydrogen production
Machine learning
methane
methanol
natural gas
petroleum
photochemistry
Solar energy
steam
Surrogate model
transportation industry
Title Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework
URI https://dx.doi.org/10.1016/j.apenergy.2021.117751
https://www.proquest.com/docview/2636398995
Volume 305
WOSCitedRecordID wos000707902400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8IBhMjC8Zibcoo3G-7McJFQEPBYkh9S1yEntr1SZV0pZt_wD_NuevJAzQQIiXNLJqO83v17vz-e6M0Cu12UKiOPR5UHI_iqTweSpCXyQsLgKeBrLI9WET6XRKZzP2aTT65nJhdsu0qujFBVv_V6ihDcBWqbN_AXc3KDTAPYAOV4Adrn8E_EcQAiu19aJjM5QxuFTR3n4LaAivVUtZX9WFLL3zy7Kpz0yQVmmqyHprkzjg7ebcW-lAS-FOljjzlMorvVpNYKOAPOmCu4ZWrjNthU4s7H32Rq7AZ1Nbhal94VoNwPiL-SAQt6m3csXbc27qIlzxUnSe687LPbXctm4LQq65Lbp8mj54SedwjRNfremMdjIimaZEiWQ6lNmhztX-Wf4bV8TimK_NLzyGqQO9MW3L2v5YW_uzmlCvIQO1RZjEt9A-SWMGEn7_5P1k9qFT6sRW-HQPOEg2__Vsv7Nzrml8bcac3kf37PoDnxjePEAjUR2gu4OqlAfocNInP8JXrfRvH6KvllrYUAvXEg-ohQfUwo5auKcWttTCQC1sqYUdtbCmFh5SC3fUeoS-vJ2cvnnn24M7_CKM4o3PBA045XTMmWRBDDciJDlJaSJkXPAiz4WkLM3LKKZJzksaRRwaklIUIpREhodor6or8RjhcVrQPMolB2srAmOXRkKWsGwIxbhIBAuOUOxec1bYqvbqcJVl5sIXF5mDJ1PwZAaeI_S667c2dV1u7MEcipm1To3VmQH5buz70sGewVtUe3K8EvW2zUgSwhqBMhY_-Yfxn6I7_X_sGdrbNFvxHN0udpt527ywXP4Os5fLZw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+large-scale+solar-aided+hydrogen+production+process+via+machine+learning+based+optimisation+framework&rft.jtitle=Applied+energy&rft.au=Wang%2C+Wanrong&rft.au=Ma%2C+Yingjie&rft.au=Maroufmashat%2C+Azadeh&rft.au=Zhang%2C+Nan&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=305&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117751&rft.externalDocID=S0306261921010965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon