Parametric study and Multi-Objective optimization of a ductless Archimedes screw hydrokinetic Turbine: Experimental and numerical investigation
•A ductless Archimedes screw turbine is proposed for low-speed current application.•The number of turns plays a dominant role in improving the power coefficient.•The lead angle predominates in optimizing the static torque coefficient.•Multi-objective optimization was performed by applying the Geneti...
Uloženo v:
| Vydáno v: | Energy conversion and management Ročník 273; s. 116423 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2022
|
| Témata: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A ductless Archimedes screw turbine is proposed for low-speed current application.•The number of turns plays a dominant role in improving the power coefficient.•The lead angle predominates in optimizing the static torque coefficient.•Multi-objective optimization was performed by applying the Genetic Algorithm.
Aiming to prolong the duration of detection equipment deployed in deep water, a new type of hydrokinetic turbine with good self-starting ability should be developed to harness low-speed current energy in such deep-water scenarios. In this study, a novel ductless Archimedes screw turbine is proposed to improve the system’s startup performance for low-speed current applications. An experimentally verified numerical method was used to investigate the parametric sensitivity of several key geometrical parameters. Strong interaction effects between the lead angle and number of turns were observed. The turbine performance enhancement by increasing the number of turns can only be achieved at a large lead angle. A tradeoff between the lead angle and number of turns is necessary for the optimization design of the ductless Archimedes screw turbine. Multi-objective optimization was performed on the ductless Archimedes screw turbine to improve its self-starting ability and power coefficient by using the central composite design, the radial basis function neural network, and the non-dominated sorting genetic algorithm. Water flume experiment results showed that the maximum power coefficient and static torque coefficient of the optimized ductless Archimedes screw turbine can be improved by 36.7% and 143%, respectively, with respect to the initial design. These results indicate ductless Archimedes screw turbines are suitable for low-speed current applications in deep water. |
|---|---|
| AbstractList | •A ductless Archimedes screw turbine is proposed for low-speed current application.•The number of turns plays a dominant role in improving the power coefficient.•The lead angle predominates in optimizing the static torque coefficient.•Multi-objective optimization was performed by applying the Genetic Algorithm.
Aiming to prolong the duration of detection equipment deployed in deep water, a new type of hydrokinetic turbine with good self-starting ability should be developed to harness low-speed current energy in such deep-water scenarios. In this study, a novel ductless Archimedes screw turbine is proposed to improve the system’s startup performance for low-speed current applications. An experimentally verified numerical method was used to investigate the parametric sensitivity of several key geometrical parameters. Strong interaction effects between the lead angle and number of turns were observed. The turbine performance enhancement by increasing the number of turns can only be achieved at a large lead angle. A tradeoff between the lead angle and number of turns is necessary for the optimization design of the ductless Archimedes screw turbine. Multi-objective optimization was performed on the ductless Archimedes screw turbine to improve its self-starting ability and power coefficient by using the central composite design, the radial basis function neural network, and the non-dominated sorting genetic algorithm. Water flume experiment results showed that the maximum power coefficient and static torque coefficient of the optimized ductless Archimedes screw turbine can be improved by 36.7% and 143%, respectively, with respect to the initial design. These results indicate ductless Archimedes screw turbines are suitable for low-speed current applications in deep water. Aiming to prolong the duration of detection equipment deployed in deep water, a new type of hydrokinetic turbine with good self-starting ability should be developed to harness low-speed current energy in such deep-water scenarios. In this study, a novel ductless Archimedes screw turbine is proposed to improve the system’s startup performance for low-speed current applications. An experimentally verified numerical method was used to investigate the parametric sensitivity of several key geometrical parameters. Strong interaction effects between the lead angle and number of turns were observed. The turbine performance enhancement by increasing the number of turns can only be achieved at a large lead angle. A tradeoff between the lead angle and number of turns is necessary for the optimization design of the ductless Archimedes screw turbine. Multi-objective optimization was performed on the ductless Archimedes screw turbine to improve its self-starting ability and power coefficient by using the central composite design, the radial basis function neural network, and the non-dominated sorting genetic algorithm. Water flume experiment results showed that the maximum power coefficient and static torque coefficient of the optimized ductless Archimedes screw turbine can be improved by 36.7% and 143%, respectively, with respect to the initial design. These results indicate ductless Archimedes screw turbines are suitable for low-speed current applications in deep water. |
| ArticleNumber | 116423 |
| Author | Li, Jingyin Hu, Qiao Guo, Penghua Zhang, Dayu |
| Author_xml | – sequence: 1 givenname: Dayu surname: Zhang fullname: Zhang, Dayu organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi’an, PR China – sequence: 2 givenname: Penghua surname: Guo fullname: Guo, Penghua email: penghuaguo@xjtu.edu.cn organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi’an, PR China – sequence: 3 givenname: Qiao surname: Hu fullname: Hu, Qiao organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi’an, PR China – sequence: 4 givenname: Jingyin surname: Li fullname: Li, Jingyin organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi’an, PR China |
| BookMark | eNqFkc9uEzEQxi1UJNLCKyAfuWzwn13HizhQVYUiFZVDOVuOPUsn7NrB9qaEl-CV6yZw4dKTx6Pf981ovlNyEmIAQl5ztuSMq7ebJQQXw2TDUjAhlpyrVshnZMH1qm-EEKsTsmC8V43uWfuCnOa8YYzJjqkF-fPVJjtBSehoLrPfUxs8_TKPBZub9QZcwR3QuC044W9bMAYaB2qpn10ZIWd6ntwdTuAh0-wS3NO7vU_xBwYo1fJ2TutavqOXv7aQKheKHQ8jwjzVhqs_DDvIBb8f3F-S54MdM7z6-56Rbx8vby-umuubT58vzq8bJ9uuNL1wzKlBtZ4PKytapVuojZXWtvcDU7LvrO-1XGspXF1OAK-wlUyrnsnByjPy5ui7TfHnXOebCbODcbQB4pyN5J3UndCdrOj7I-pSzDnBYByWw7IlWRwNZ-YxB7Mx_3IwjzmYYw5Vrv6Tb-shbNo_LfxwFEK9ww4hmeywkuAx1VyMj_iUxQMPOKyq |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_131341 crossref_primary_10_1016_j_energy_2024_131141 crossref_primary_10_1016_j_oceaneng_2023_116307 crossref_primary_10_1016_j_jclepro_2024_140953 crossref_primary_10_1016_j_enconman_2024_118702 crossref_primary_10_1016_j_petsci_2024_03_022 crossref_primary_10_1016_j_renene_2025_122634 crossref_primary_10_1016_j_oceaneng_2023_116113 crossref_primary_10_1016_j_renene_2024_120235 crossref_primary_10_1016_j_enconman_2023_117009 crossref_primary_10_1016_j_oceaneng_2023_115185 crossref_primary_10_1016_j_enconman_2023_116947 crossref_primary_10_3390_su17010201 crossref_primary_10_1016_j_oceaneng_2024_116909 crossref_primary_10_32604_fdmp_2024_046828 crossref_primary_10_1016_j_renene_2025_123909 |
| Cites_doi | 10.1177/1687814017754158 10.1088/1742-6596/1684/1/012156 10.1016/j.dsr.2016.01.007 10.1016/j.enconman.2021.114833 10.1016/j.enconman.2020.113281 10.1016/j.energy.2022.123432 10.1016/j.enconman.2022.116151 10.3390/en10091427 10.1016/j.apenergy.2021.116987 10.1016/j.renene.2020.04.155 10.1016/j.renene.2021.03.076 10.1016/j.renene.2020.01.135 10.1016/j.enconman.2019.01.006 10.1016/j.renene.2022.05.062 10.1016/j.renene.2016.11.021 10.1016/j.rser.2014.10.037 10.1098/rspb.2013.1684 10.1016/j.oceaneng.2015.05.036 10.1016/j.energy.2021.120051 10.1016/j.jweia.2015.01.004 10.1016/j.renene.2019.06.174 10.3389/fmars.2019.00241 10.1016/j.jclepro.2022.131458 10.1016/j.enconman.2019.01.057 10.1016/j.enconman.2017.01.002 10.1016/j.egyr.2021.07.027 10.1016/j.renene.2012.04.045 10.1016/j.rser.2014.08.022 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2022.116423 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2022_116423 S0196890422012018 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-92c0c6f64d1f7a24684e0c6788a9df06395ad983b832cede2e1f64a3086903fa3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893536900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Sun Nov 09 14:04:30 EST 2025 Sat Nov 29 07:22:33 EST 2025 Tue Nov 18 22:43:54 EST 2025 Fri Feb 23 02:38:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrokinetic turbine Startup performance Low current speed Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-92c0c6f64d1f7a24684e0c6788a9df06395ad983b832cede2e1f64a3086903fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3153852853 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153852853 crossref_citationtrail_10_1016_j_enconman_2022_116423 crossref_primary_10_1016_j_enconman_2022_116423 elsevier_sciencedirect_doi_10_1016_j_enconman_2022_116423 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Han, Su, Zhao, Zheng, Hu, Wang (b0050) 2020; 207 Shahverdi, Loni, Ghobadian, Monem, Gohari, Marofi (b0140) 2019; 187 Salleh, Kamaruddin, Mohamed-Kassim (b0135) 2022; 247 Liu, Huang, Lin, Zhu (b0035) 2022; 350 Chen, Guo, Zhang, Chai, Zhao, Li (b0190) 2022; 193 Day, Babarit, Fontaine, He, Kraskowski, Murai (b0055) 2015; 108 AR1500 Tidal Turbine, (2016). Northern exposure - testing tidal turbines, (2003). http://www.waterpowermagazine.com (accessed March 30, 2022). Zhao, Zhou, Zhao, Tian, Xu (b0075) 2016; 110 Stergiopoulou, Stergiopoulos, Kalkani (b0150) 2015; 6 Jin, Ye, Wang, Li, Qian (b0030) 2017; 136 Tian, Mao, Song (b0015) 2018; 10 Levin, Bett, Gates, Heimbach, Howe, Janssen (b0025) 2019; 6 Nachtane, Tarfaoui, Goda, Rouway (b0095) 2020; 157 M.J. Barnsley, J.F. Wellicome, Final report on the 2nd phase of development and testing of a horizontal axis wind turbine test rig for the investigation of stall regulation aerodynamics, Carried ETSU Agreem. No. E.5A/CON5103/1746 (1990). Wedding, Friedlander, Kittinger, Watling, Gaines, Bennett (b0005) 2013; 280 Li (b0185) 2020; 1684 Tian, Mao, Ding (b0090) 2019; 183 Elkhoury, Kiwata, Aoun (b0085) 2015; 139 Du, Guan, Chen, Ye, Li, Wen (b0040) 2021; 250 Kinsey, Dumas (b0175) 2017; 103 Tian, Mao, Zhao (b0020) 2017; 10 Ross, Polagye (b0180) 2020; 152 Qin, Wang, Wang, Sun, Luo (b0010) 2020; 223 Vennell, Funke, Draper, Stevens, Divett (b0065) 2015; 41 Nawar, Hameed, Ramadan, Attai, Mohamed (b0145) 2021; 223 MCT, SeaGen-S 2MW, (2016). https://simecatlantis.com/ (accessed March 14, 2022). Maskell (b0170) 1963 (accessed March 14, 2022). Bouvant, Betancour, Velásquez, Rubio-Clemente, Chica (b0160) 2021; 172 ABS Alaskan, Inc, EnCurrent Hydro Turbines, (2020). Yuce, Muratoglu (b0115) 2015; 43 Open Hydro, (2016). Satrio, Utama (b0070) 2021; 7 (accessed March 30, 2022). Zitti, Fattore, Brunori, Brunori, Brocchini (b0155) 2020; 146 Guan, Li, Wen, Du, Han, Ji (b0045) 2021; 295 Yi, Zhang, Peng, Zhang, Yuan (b0080) 2022; 269 Birjandi, Woods, Bibeau (b0060) 2012; 48 The Verdant Power, (2016). Liu (10.1016/j.enconman.2022.116423_b0035) 2022; 350 Du (10.1016/j.enconman.2022.116423_b0040) 2021; 250 Vennell (10.1016/j.enconman.2022.116423_b0065) 2015; 41 Birjandi (10.1016/j.enconman.2022.116423_b0060) 2012; 48 Tian (10.1016/j.enconman.2022.116423_b0020) 2017; 10 Day (10.1016/j.enconman.2022.116423_b0055) 2015; 108 Zhao (10.1016/j.enconman.2022.116423_b0075) 2016; 110 10.1016/j.enconman.2022.116423_b0110 Levin (10.1016/j.enconman.2022.116423_b0025) 2019; 6 10.1016/j.enconman.2022.116423_b0130 Shahverdi (10.1016/j.enconman.2022.116423_b0140) 2019; 187 Li (10.1016/j.enconman.2022.116423_b0185) 2020; 1684 Kinsey (10.1016/j.enconman.2022.116423_b0175) 2017; 103 Han (10.1016/j.enconman.2022.116423_b0050) 2020; 207 Yi (10.1016/j.enconman.2022.116423_b0080) 2022; 269 Jin (10.1016/j.enconman.2022.116423_b0030) 2017; 136 Yuce (10.1016/j.enconman.2022.116423_b0115) 2015; 43 Guan (10.1016/j.enconman.2022.116423_b0045) 2021; 295 Chen (10.1016/j.enconman.2022.116423_b0190) 2022; 193 Nachtane (10.1016/j.enconman.2022.116423_b0095) 2020; 157 Salleh (10.1016/j.enconman.2022.116423_b0135) 2022; 247 Stergiopoulou (10.1016/j.enconman.2022.116423_b0150) 2015; 6 Qin (10.1016/j.enconman.2022.116423_b0010) 2020; 223 Tian (10.1016/j.enconman.2022.116423_b0090) 2019; 183 Tian (10.1016/j.enconman.2022.116423_b0015) 2018; 10 Ross (10.1016/j.enconman.2022.116423_b0180) 2020; 152 Zitti (10.1016/j.enconman.2022.116423_b0155) 2020; 146 10.1016/j.enconman.2022.116423_b0100 10.1016/j.enconman.2022.116423_b0165 Maskell (10.1016/j.enconman.2022.116423_b0170) 1963 10.1016/j.enconman.2022.116423_b0120 Nawar (10.1016/j.enconman.2022.116423_b0145) 2021; 223 Satrio (10.1016/j.enconman.2022.116423_b0070) 2021; 7 Bouvant (10.1016/j.enconman.2022.116423_b0160) 2021; 172 Wedding (10.1016/j.enconman.2022.116423_b0005) 2013; 280 10.1016/j.enconman.2022.116423_b0105 Elkhoury (10.1016/j.enconman.2022.116423_b0085) 2015; 139 10.1016/j.enconman.2022.116423_b0125 |
| References_xml | – volume: 48 start-page: 183 year: 2012 end-page: 192 ident: b0060 article-title: Investigation of macro-turbulent flow structures interaction with a vertical hydrokinetic river turbine publication-title: Renew Energy – volume: 136 start-page: 66 year: 2017 end-page: 77 ident: b0030 article-title: Thermodynamic analysis of siphon flash evaporation desalination system using ocean thermal energy publication-title: Energy Convers Manag – volume: 247 year: 2022 ident: b0135 article-title: Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers publication-title: Energy – volume: 43 start-page: 72 year: 2015 end-page: 82 ident: b0115 article-title: Hydrokinetic energy conversion systems: A technology status review publication-title: Renew Sustain Energy Rev – reference: Open Hydro, (2016). – volume: 108 start-page: 46 year: 2015 end-page: 69 ident: b0055 article-title: Hydrodynamic modelling of marine renewable energy devices: A state of the art review publication-title: Ocean Eng – volume: 146 start-page: 867 year: 2020 end-page: 879 ident: b0155 article-title: Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations publication-title: Renew Energy – volume: 223 year: 2020 ident: b0010 article-title: Thermodynamic and experimental investigation of a metal fuelled steam Rankine cycle for Unmanned Underwater Vehicles publication-title: Energy Convers Manag – volume: 223 year: 2021 ident: b0145 article-title: Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance publication-title: Energy – reference: ABS Alaskan, Inc, EnCurrent Hydro Turbines, (2020). – volume: 269 year: 2022 ident: b0080 article-title: Pre-expansion ejector absorption power cycle for ocean thermal energy conversion publication-title: Energy Convers Manag – volume: 172 start-page: 941 year: 2021 end-page: 954 ident: b0160 article-title: Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology publication-title: Renew Energy – volume: 187 start-page: 205 year: 2019 end-page: 220 ident: b0140 article-title: Energy harvesting using solar ORC system and Archimedes Screw Turbine (AST) combination with different refrigerant working fluids publication-title: Energy Convers Manag – volume: 10 start-page: 1 year: 2018 end-page: 10 ident: b0015 article-title: Dynamic modeling of an underwater moored platform equipped with a hydrokinetic energy turbine publication-title: Adv Mech Eng – year: 1963 ident: b0170 article-title: A theory of the blockage effects on bluff bodies and stalled Wings in a closed wind tunnel – volume: 152 start-page: 1328 year: 2020 end-page: 1341 ident: b0180 article-title: An experimental assessment of analytical blockage corrections for turbines publication-title: Renew Energy – reference: The Verdant Power, (2016). – volume: 207 year: 2020 ident: b0050 article-title: Research of the hydrostatic transmission for deep-sea current energy converter publication-title: Energy Convers Manag – volume: 103 start-page: 239 year: 2017 end-page: 254 ident: b0175 article-title: Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines publication-title: Renew Energy – volume: 193 start-page: 832 year: 2022 end-page: 842 ident: b0190 article-title: Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method publication-title: Renew Energy – volume: 110 start-page: 65 year: 2016 end-page: 74 ident: b0075 article-title: Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel, Deep Sea Res publication-title: Part Oceanogr Res Pap – volume: 10 start-page: 1427 year: 2017 ident: b0020 article-title: Design and numerical simulations of a flow induced vibration energy converter for underwater mooring platforms publication-title: Energies – reference: Northern exposure - testing tidal turbines, (2003). http://www.waterpowermagazine.com (accessed March 30, 2022). – volume: 280 start-page: 20131684 year: 2013 ident: b0005 article-title: From principles to practice: a spatial approach to systematic conservation planning in the deep sea publication-title: Proc R Soc B Biol Sci – volume: 295 year: 2021 ident: b0045 article-title: Efficient underwater energy harvesting from bubble-driven pipe flow publication-title: Appl Energy – volume: 41 start-page: 454 year: 2015 end-page: 472 ident: b0065 article-title: Designing large arrays of tidal turbines: A synthesis and review publication-title: Renew Sustain Energy Rev – reference: (accessed March 14, 2022). – volume: 1684 year: 2020 ident: b0185 article-title: Multi-objective optimization design for battery pack of electric vehicle based on neural network of radial basis function (RBF) publication-title: J Phys Conf Ser – reference: (accessed March 30, 2022). – volume: 157 start-page: 1274 year: 2020 end-page: 1288 ident: b0095 article-title: A review on the technologies, design considerations and numerical models of tidal current turbines publication-title: Renew Energy – volume: 7 start-page: 4587 year: 2021 end-page: 4594 ident: b0070 article-title: Experimental investigation into the improvement of self-starting capability of vertical-axis tidal current turbine publication-title: Energy Rep – reference: AR1500 Tidal Turbine, (2016). – reference: M.J. Barnsley, J.F. Wellicome, Final report on the 2nd phase of development and testing of a horizontal axis wind turbine test rig for the investigation of stall regulation aerodynamics, Carried ETSU Agreem. No. E.5A/CON5103/1746 (1990). – volume: 250 year: 2021 ident: b0040 article-title: Broadband rotary hybrid generator for wide-flow-rate fluid energy harvesting and bubble power generation publication-title: Energy Convers Manag – volume: 350 year: 2022 ident: b0035 article-title: Enhanced copper removal and bioelectricity generation in sediment microbial fuel cells through biostimulation and bioaugmentation publication-title: J Clean Prod – volume: 183 start-page: 732 year: 2019 end-page: 745 ident: b0090 article-title: Numerical study of a passive-pitch shield for the efficiency improvement of vertical axis wind turbines publication-title: Energy Convers Manag – reference: MCT, SeaGen-S 2MW, (2016). https://simecatlantis.com/ (accessed March 14, 2022). – volume: 139 start-page: 111 year: 2015 end-page: 123 ident: b0085 article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch publication-title: J Wind Eng Ind Aerodyn – volume: 6 start-page: 471 year: 2015 end-page: 478 ident: b0150 article-title: Experimental and theoretical research of zero head innovative horizontal axis archimedean screw turbines publication-title: Int J Energy Environm – volume: 6 start-page: 241 year: 2019 ident: b0025 article-title: Global observing needs in the deep ocean publication-title: Front Mar Sci – ident: 10.1016/j.enconman.2022.116423_b0120 – volume: 10 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.enconman.2022.116423_b0015 article-title: Dynamic modeling of an underwater moored platform equipped with a hydrokinetic energy turbine publication-title: Adv Mech Eng doi: 10.1177/1687814017754158 – volume: 1684 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0185 article-title: Multi-objective optimization design for battery pack of electric vehicle based on neural network of radial basis function (RBF) publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1684/1/012156 – year: 1963 ident: 10.1016/j.enconman.2022.116423_b0170 – volume: 110 start-page: 65 year: 2016 ident: 10.1016/j.enconman.2022.116423_b0075 article-title: Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel, Deep Sea Res publication-title: Part Oceanogr Res Pap doi: 10.1016/j.dsr.2016.01.007 – volume: 250 year: 2021 ident: 10.1016/j.enconman.2022.116423_b0040 article-title: Broadband rotary hybrid generator for wide-flow-rate fluid energy harvesting and bubble power generation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114833 – volume: 223 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0010 article-title: Thermodynamic and experimental investigation of a metal fuelled steam Rankine cycle for Unmanned Underwater Vehicles publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113281 – ident: 10.1016/j.enconman.2022.116423_b0105 – volume: 247 year: 2022 ident: 10.1016/j.enconman.2022.116423_b0135 article-title: Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers publication-title: Energy doi: 10.1016/j.energy.2022.123432 – volume: 269 year: 2022 ident: 10.1016/j.enconman.2022.116423_b0080 article-title: Pre-expansion ejector absorption power cycle for ocean thermal energy conversion publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.116151 – volume: 10 start-page: 1427 year: 2017 ident: 10.1016/j.enconman.2022.116423_b0020 article-title: Design and numerical simulations of a flow induced vibration energy converter for underwater mooring platforms publication-title: Energies doi: 10.3390/en10091427 – volume: 295 year: 2021 ident: 10.1016/j.enconman.2022.116423_b0045 article-title: Efficient underwater energy harvesting from bubble-driven pipe flow publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116987 – volume: 157 start-page: 1274 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0095 article-title: A review on the technologies, design considerations and numerical models of tidal current turbines publication-title: Renew Energy doi: 10.1016/j.renene.2020.04.155 – volume: 172 start-page: 941 year: 2021 ident: 10.1016/j.enconman.2022.116423_b0160 article-title: Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.076 – volume: 152 start-page: 1328 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0180 article-title: An experimental assessment of analytical blockage corrections for turbines publication-title: Renew Energy doi: 10.1016/j.renene.2020.01.135 – volume: 183 start-page: 732 year: 2019 ident: 10.1016/j.enconman.2022.116423_b0090 article-title: Numerical study of a passive-pitch shield for the efficiency improvement of vertical axis wind turbines publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.01.006 – volume: 193 start-page: 832 year: 2022 ident: 10.1016/j.enconman.2022.116423_b0190 article-title: Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method publication-title: Renew Energy doi: 10.1016/j.renene.2022.05.062 – volume: 103 start-page: 239 year: 2017 ident: 10.1016/j.enconman.2022.116423_b0175 article-title: Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines publication-title: Renew Energy doi: 10.1016/j.renene.2016.11.021 – volume: 43 start-page: 72 year: 2015 ident: 10.1016/j.enconman.2022.116423_b0115 article-title: Hydrokinetic energy conversion systems: A technology status review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.037 – ident: 10.1016/j.enconman.2022.116423_b0130 – volume: 280 start-page: 20131684 year: 2013 ident: 10.1016/j.enconman.2022.116423_b0005 article-title: From principles to practice: a spatial approach to systematic conservation planning in the deep sea publication-title: Proc R Soc B Biol Sci doi: 10.1098/rspb.2013.1684 – volume: 108 start-page: 46 year: 2015 ident: 10.1016/j.enconman.2022.116423_b0055 article-title: Hydrodynamic modelling of marine renewable energy devices: A state of the art review publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.05.036 – volume: 223 year: 2021 ident: 10.1016/j.enconman.2022.116423_b0145 article-title: Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance publication-title: Energy doi: 10.1016/j.energy.2021.120051 – volume: 139 start-page: 111 year: 2015 ident: 10.1016/j.enconman.2022.116423_b0085 article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.01.004 – ident: 10.1016/j.enconman.2022.116423_b0100 – ident: 10.1016/j.enconman.2022.116423_b0165 – ident: 10.1016/j.enconman.2022.116423_b0125 – volume: 207 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0050 article-title: Research of the hydrostatic transmission for deep-sea current energy converter publication-title: Energy Convers Manag – volume: 6 start-page: 471 year: 2015 ident: 10.1016/j.enconman.2022.116423_b0150 article-title: Experimental and theoretical research of zero head innovative horizontal axis archimedean screw turbines publication-title: Int J Energy Environm – volume: 146 start-page: 867 year: 2020 ident: 10.1016/j.enconman.2022.116423_b0155 article-title: Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.174 – volume: 6 start-page: 241 year: 2019 ident: 10.1016/j.enconman.2022.116423_b0025 article-title: Global observing needs in the deep ocean publication-title: Front Mar Sci doi: 10.3389/fmars.2019.00241 – ident: 10.1016/j.enconman.2022.116423_b0110 – volume: 350 year: 2022 ident: 10.1016/j.enconman.2022.116423_b0035 article-title: Enhanced copper removal and bioelectricity generation in sediment microbial fuel cells through biostimulation and bioaugmentation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.131458 – volume: 187 start-page: 205 year: 2019 ident: 10.1016/j.enconman.2022.116423_b0140 article-title: Energy harvesting using solar ORC system and Archimedes Screw Turbine (AST) combination with different refrigerant working fluids publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.01.057 – volume: 136 start-page: 66 year: 2017 ident: 10.1016/j.enconman.2022.116423_b0030 article-title: Thermodynamic analysis of siphon flash evaporation desalination system using ocean thermal energy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.01.002 – volume: 7 start-page: 4587 year: 2021 ident: 10.1016/j.enconman.2022.116423_b0070 article-title: Experimental investigation into the improvement of self-starting capability of vertical-axis tidal current turbine publication-title: Energy Rep doi: 10.1016/j.egyr.2021.07.027 – volume: 48 start-page: 183 year: 2012 ident: 10.1016/j.enconman.2022.116423_b0060 article-title: Investigation of macro-turbulent flow structures interaction with a vertical hydrokinetic river turbine publication-title: Renew Energy doi: 10.1016/j.renene.2012.04.045 – volume: 41 start-page: 454 year: 2015 ident: 10.1016/j.enconman.2022.116423_b0065 article-title: Designing large arrays of tidal turbines: A synthesis and review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.08.022 |
| SSID | ssj0003506 |
| Score | 2.4861543 |
| Snippet | •A ductless Archimedes screw turbine is proposed for low-speed current application.•The number of turns plays a dominant role in improving the power... Aiming to prolong the duration of detection equipment deployed in deep water, a new type of hydrokinetic turbine with good self-starting ability should be... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116423 |
| SubjectTerms | administrative management algorithms energy conversion hydraulic flumes hydrodynamics Hydrokinetic turbine lead Low current speed Optimization Startup performance torque |
| Title | Parametric study and Multi-Objective optimization of a ductless Archimedes screw hydrokinetic Turbine: Experimental and numerical investigation |
| URI | https://dx.doi.org/10.1016/j.enconman.2022.116423 https://www.proquest.com/docview/3153852853 |
| Volume | 273 |
| WOSCitedRecordID | wos000893536900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iGyAj8ValtHYuNm8VDMGExhBF6lvkJA5b6ZKpbcb6K_gZ_E3OsZ0LHWggxEvUWk2c9vt6zrFzzncIeZaJXCW51J6K9NDzsS5HJLBw9WWqVZ4IVEwxzSaiw0MxncqjXu97XQtzPo-KQlxcyLP_CjWMAdhYOvsXcDcXhQF4DaDDEWCH4x8Bf6Qw3wqF9612rE2lwLxB730ys_atX4KlOHUlmLZEEnVf52j2jBYt-Ei97INJ0V_7x-tsUX6BaBS1XSfVIkFtUj52KsmuOQBOUlT28Q_KeDTqHQ72evPflhqaXHezUWdOPL2Ug9PsY79S66rJEapKm1JcfD6uVEtIHPxwosp65J3JUDgAp7x2uuJuW4OxjRSRpt6mTW4y258y9IS0DYsH2ppsEUkPK3q7Np3Z_iiX_IPdqpgNUCS0gC83wKnBbcAqjLcesclT_IgT4nyMYZHxSFwj2ywKJJjP7fHb_elB4_R5YNq4NjfYKUb_9Wy_i4M2IgIT5kxuk1tufULHlld3SE8Xd8nNjmrlPfKtZRg1DKOAId1gGO0yjJY5VbRmGG0ZRg3DaJdh1DHsBe3yy0zR8Iv-xK_75NPr_cnLN57r6-Gl3A9WnmTpMA3z0M9GeaSYHwpfw0AkhJJZjjFzoDIpeALeJoWbYXoEH1Z8iN3TeK74A7JVlIV-SKgfZSobcZ2FXPlSRUmWj3ym4G0ES28V7JCg_pXj1IneY--VeVxnN87iGp0Y0YktOjvkeXPemZV9ufIMWYMYu-DVBqUxcO_Kc5_WqMdg3fGRnSp0WS1jjgFJwCCm3v2H6--RG-1f7BHZWi0q_ZhcT89XJ8vFE0flH9nP1vQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+study+and+Multi-Objective+optimization+of+a+ductless+Archimedes+screw+hydrokinetic+Turbine%3A+Experimental+and+numerical+investigation&rft.jtitle=Energy+conversion+and+management&rft.au=Zhang%2C+Dayu&rft.au=Guo%2C+Penghua&rft.au=Hu%2C+Qiao&rft.au=Li%2C+Jingyin&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=273&rft_id=info:doi/10.1016%2Fj.enconman.2022.116423&rft.externalDocID=S0196890422012018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |