Nondestructive determination of common indicators of beef for freshness assessment using airflow-three dimensional (3D) machine vision technique and machine learning

Assessment of beef freshness is critical to ensure a safe and sustainable beef supply chain. This work aims to investigate the feasibility of the viscoelasticity of beef to evaluate its freshness using the airflow-3D machine vision technique and machine learning models. The 3D camera was continuousl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food engineering Vol. 340; p. 111305
Main Authors: Luo, Xiuzhi, Sun, Qinming, Yang, Tianxi, He, Ke, Tang, Xiuying
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2023
Subjects:
ISSN:0260-8774, 1873-5770
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Assessment of beef freshness is critical to ensure a safe and sustainable beef supply chain. This work aims to investigate the feasibility of the viscoelasticity of beef to evaluate its freshness using the airflow-3D machine vision technique and machine learning models. The 3D camera was continuously used to acquire deformation images under the action of the airflow. The obtained images were preprocessed using region of interest (ROI) segmentation, filtering denoising, and down-sampling. And then the depth and volume of processed images were obtained by the Oriented Bounding Box (OBB) algorithm and volume algorithms, separately. Two four-element viscoelastic models were established to fit depth and volume respectively for obtaining viscoelastic characteristics. Finally, regression models were built and compared using viscoelastic characteristics to determine the optimum prediction models and methods for two freshness indicators. The backpropagation neural network (BPNN) and support vector machine regression (SVR) based on selected features were the best prediction models for pH and total volatile basic nitrogen (TVB-N) content evaluation in beef, and the correlation coefficients (Rc and Rp) of the calibration set and prediction set were 0.7636, 0.9036, and 0.7669, 0.8388, respectively. •A test electronic instrument based on airflow-3D machine vision was independently developed.•The depth and volume of spatial deformation were quantified by algorithms of point cloud image quantization.•Two four-element viscoelastic models of the creep recovery phase were established to extract viscoelastic characteristics.•Machine learning models for simultaneously predicting two common freshness indicators were built.•The prediction effects of different viscoelastic feature fusions and different models were compared.
AbstractList Assessment of beef freshness is critical to ensure a safe and sustainable beef supply chain. This work aims to investigate the feasibility of the viscoelasticity of beef to evaluate its freshness using the airflow-3D machine vision technique and machine learning models. The 3D camera was continuously used to acquire deformation images under the action of the airflow. The obtained images were preprocessed using region of interest (ROI) segmentation, filtering denoising, and down-sampling. And then the depth and volume of processed images were obtained by the Oriented Bounding Box (OBB) algorithm and volume algorithms, separately. Two four-element viscoelastic models were established to fit depth and volume respectively for obtaining viscoelastic characteristics. Finally, regression models were built and compared using viscoelastic characteristics to determine the optimum prediction models and methods for two freshness indicators. The backpropagation neural network (BPNN) and support vector machine regression (SVR) based on selected features were the best prediction models for pH and total volatile basic nitrogen (TVB-N) content evaluation in beef, and the correlation coefficients (Rc and Rp) of the calibration set and prediction set were 0.7636, 0.9036, and 0.7669, 0.8388, respectively. •A test electronic instrument based on airflow-3D machine vision was independently developed.•The depth and volume of spatial deformation were quantified by algorithms of point cloud image quantization.•Two four-element viscoelastic models of the creep recovery phase were established to extract viscoelastic characteristics.•Machine learning models for simultaneously predicting two common freshness indicators were built.•The prediction effects of different viscoelastic feature fusions and different models were compared.
Assessment of beef freshness is critical to ensure a safe and sustainable beef supply chain. This work aims to investigate the feasibility of the viscoelasticity of beef to evaluate its freshness using the airflow-3D machine vision technique and machine learning models. The 3D camera was continuously used to acquire deformation images under the action of the airflow. The obtained images were preprocessed using region of interest (ROI) segmentation, filtering denoising, and down-sampling. And then the depth and volume of processed images were obtained by the Oriented Bounding Box (OBB) algorithm and volume algorithms, separately. Two four-element viscoelastic models were established to fit depth and volume respectively for obtaining viscoelastic characteristics. Finally, regression models were built and compared using viscoelastic characteristics to determine the optimum prediction models and methods for two freshness indicators. The backpropagation neural network (BPNN) and SVR based on selected features were the best prediction models for pH and total volatile basic nitrogen (TVB-N) content evaluation in beef, and the correlation coefficients (Rc and Rₚ) of the calibration set and prediction set were 0.7636, 0.9036, and 0.7669, 0.8388, respectively.
ArticleNumber 111305
Author Yang, Tianxi
Tang, Xiuying
He, Ke
Luo, Xiuzhi
Sun, Qinming
Author_xml – sequence: 1
  givenname: Xiuzhi
  surname: Luo
  fullname: Luo, Xiuzhi
  email: hermione.x.luo@cau.edu.cn
  organization: College of Engineering, China Agricultural University, NO 17 Qinghua East Road, Beijing 100083, PR China
– sequence: 2
  givenname: Qinming
  surname: Sun
  fullname: Sun, Qinming
  email: 1179909120@qq.com
  organization: College of Engineering, China Agricultural University, NO 17 Qinghua East Road, Beijing 100083, PR China
– sequence: 3
  givenname: Tianxi
  orcidid: 0000-0003-4197-9262
  surname: Yang
  fullname: Yang, Tianxi
  email: tianxi.yang@ubc.ca
  organization: Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 4
  givenname: Ke
  surname: He
  fullname: He, Ke
  email: 1433104752@qq.com
  organization: College of Engineering, China Agricultural University, NO 17 Qinghua East Road, Beijing 100083, PR China
– sequence: 5
  givenname: Xiuying
  orcidid: 0000-0002-8045-9780
  surname: Tang
  fullname: Tang, Xiuying
  email: txying@cau.edu.cn
  organization: College of Engineering, China Agricultural University, NO 17 Qinghua East Road, Beijing 100083, PR China
BookMark eNqFkcFuEzEQhi1UJNLCKyAfy2GD7V3bG4kDqIWCVMEFzpbXHjcT7drFdlLxQLwnDgEOXCpZGmvm_z-N5j8nZzFFIOQlZ2vOuHq9W-9CSh7i3VowIdac857JJ2TFR913Umt2RlZMKNaNWg_PyHkpO8aYbNoV-fk5RQ-l5r2reADqoUJeMNqKKdIUqEvL0n4YPTpbUy7H5gQQaEiZhgxlG6EUaktpZYFY6b5gvKMWc5jTQ1e3GRoX26g0pp3pZX_9ii7WbTECPeCxSyu4bcTve6A2-n_DGWyODfacPA12LvDiT70g3z68_3r1sbv9cvPp6t1t5_pB1m6EjR21GEJoTwkJo5CeWTVJp-UEnk0BnA7T5DW30-gcHxR3o2RaqZ4NfX9BLk_c-5zaLqWaBYuDebYR0r4YsRnlRiopZJOqk9TlVEqGYO4zLjb_MJyZYy5mZ_7mYo65mFMuzfjmP6PD-vvcNVucH7e_Pdmh3eGAkE1xCNGBxwyuGp_wMcQvh4C1FA
CitedBy_id crossref_primary_10_3390_foods13030469
crossref_primary_10_1016_j_jfoodeng_2024_111936
crossref_primary_10_1016_j_biosystemseng_2023_01_006
crossref_primary_10_1016_j_jfoodeng_2025_112535
crossref_primary_10_1016_j_foodcont_2023_109914
crossref_primary_10_1016_j_jfca_2025_107815
crossref_primary_10_1016_j_meatsci_2025_109892
crossref_primary_10_24054_rcta_v2i42_2714
crossref_primary_10_3390_foods13101512
crossref_primary_10_1016_j_meatsci_2025_109791
crossref_primary_10_1007_s11694_024_02980_2
crossref_primary_10_1016_j_foodchem_2024_141382
crossref_primary_10_1111_1541_4337_13301
crossref_primary_10_1016_j_jfca_2025_107752
crossref_primary_10_1134_S1063776125600114
crossref_primary_10_1002_jsfa_13483
Cites_doi 10.1016/S0169-7439(01)00155-1
10.1016/j.jfoodeng.2020.110289
10.1007/s10068-019-00633-5
10.1002/cem.754
10.1016/j.meatsci.2018.07.005
10.1016/j.jfoodeng.2022.111192
10.1021/jf200078h
10.1016/j.meatsci.2021.108551
10.1007/978-3-319-48354-2_15
10.1016/j.postharvbio.2021.111589
10.1111/jtxs.12409
10.1007/s11694-022-01388-0
10.1016/j.lwt.2009.10.008
10.1080/1539445X.2020.1770283
10.1109/TIT.1967.1053964
10.1007/s12161-022-02360-w
10.1016/j.foodchem.2021.129329
10.1109/TIT.1983.1056714
10.1016/j.foodchem.2020.126628
10.3390/s19030605
10.1080/0951192X.2018.1466394
10.1111/jfpe.13642
10.1016/j.foodchem.2019.01.213
10.1016/j.jfoodeng.2021.110840
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jfoodeng.2022.111305
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1873-5770
ExternalDocumentID 10_1016_j_jfoodeng_2022_111305
S0260877422003594
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALCJ
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
VH1
WUQ
Y6R
ZY4
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-8e9a8724ff4ff625e825d0a6b5c75bed0bfec7fbbd71ab8cc1461c85076630433
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000869096200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0260-8774
IngestDate Thu Oct 02 12:12:14 EDT 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 07:22:35 EST 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Airflow-3D machine vision
pH value
TVB-N content
Four-element viscoelastic models
Beef
Point cloud image processing algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-8e9a8724ff4ff625e825d0a6b5c75bed0bfec7fbbd71ab8cc1461c85076630433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8045-9780
0000-0003-4197-9262
PQID 2985956525
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2985956525
crossref_primary_10_1016_j_jfoodeng_2022_111305
crossref_citationtrail_10_1016_j_jfoodeng_2022_111305
elsevier_sciencedirect_doi_10_1016_j_jfoodeng_2022_111305
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of food engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tamaki, Mazza (bib30) 2011; 59
Cover, Hart (bib1) 1967; 13
Miknis, Davies, Plassmann, Ware (bib22) 2015
Zhuang, Peng, Yang, Wang, Zhao, Chao, Guo (bib38) 2022; 316
Edelsbrunner, Kirkpatrick, Seidel (bib6) 1983; 29
Liu, Ji, Liu, Shi, Yang (bib17) 2020; 321
Sun, Kang, Cheng, Xie (bib29) 2021; 42
Zhu, Bai, Qiu, Zheng, Gu, Yao (bib39) 2021; 44
Holman, Bekhit, Waller, Bailes, Kerr, Hopkins (bib7) 2021; 179
Drucker, Burges, Kaufman, Smola, Vapnik (bib4) 1997
Wold, Sjostrom, Eriksson (bib32) 2001; 58
Lu, Hu, Dai, Zhang, Deng (bib18) 2020; 51
(bib25) 2015
Zhao, Zha, Li, Wu (bib37) 2021; 179
(bib10) 2015
Chen, Gu, Zhang, Mao, Tian (bib3) 2019; 19
Xu, Lin, Zhang, Hincapie, Tang (bib36) 2020; 19
Mladenov (bib21) 2020; 59
Prasanth, Shunmugam (bib26) 2018; 31
Li, Wang, Long, Peng, Li, Chao, Tang (bib13) 2018; 145
Xu, Dai (bib33) 2016; 32
He, Jing, Tang (bib9) 2022; 16
Li, Tang, Shen, Dong (bib16) 2019; 287
Leng, Li, Chen, Tang, Xie, Yu (bib19) 2021; 175
Lee, Shin (bib14) 2019; 28
(bib12) 2013
Metilli, Morris, Lazidis, Marty-Terrade, Holmes, Povey, Simone (bib24) 2022; 335
Shin, Lee, Kim, Choi, Kim (bib28) 2021; 352
He, Han, Tang, Li (bib8) 2022
Stordrange, Libnau, Malthe-Sørenssen, Kvalheim (bib27) 2002; 16
Chiang, Russell, Braatz (bib2) 2001
Louedec, Cielniak (bib20) 2021
Li, Xu, Dong, Yang, Zhang, Tang (bib15) 2019; 50
Xu, Zhao, He, Li, Peng, Tang (bib35) 2020; 51
Ding, Xue, Long, Xia, Lu (bib5) 2019
Liu, Sun, Ouyang (bib11) 2010; 43
Mollazade, Jörissen, Nüchter (bib23) 2021; 291
Tian, Wang, Yang, Chen, Ma (bib31) 2016
Xu, Lin, Biren, Peng, Tang (bib34) 2019; 28
Drucker (10.1016/j.jfoodeng.2022.111305_bib4) 1997
Metilli (10.1016/j.jfoodeng.2022.111305_bib24) 2022; 335
Xu (10.1016/j.jfoodeng.2022.111305_bib34) 2019; 28
He (10.1016/j.jfoodeng.2022.111305_bib9) 2022; 16
Li (10.1016/j.jfoodeng.2022.111305_bib15) 2019; 50
Louedec (10.1016/j.jfoodeng.2022.111305_bib20) 2021
Holman (10.1016/j.jfoodeng.2022.111305_bib7) 2021; 179
Stordrange (10.1016/j.jfoodeng.2022.111305_bib27) 2002; 16
Xu (10.1016/j.jfoodeng.2022.111305_bib36) 2020; 19
Prasanth (10.1016/j.jfoodeng.2022.111305_bib26) 2018; 31
Xu (10.1016/j.jfoodeng.2022.111305_bib35) 2020; 51
Chiang (10.1016/j.jfoodeng.2022.111305_bib2) 2001
Mladenov (10.1016/j.jfoodeng.2022.111305_bib21) 2020; 59
Liu (10.1016/j.jfoodeng.2022.111305_bib11) 2010; 43
(10.1016/j.jfoodeng.2022.111305_bib12) 2013
Zhuang (10.1016/j.jfoodeng.2022.111305_bib38) 2022; 316
Tian (10.1016/j.jfoodeng.2022.111305_bib31) 2016
He (10.1016/j.jfoodeng.2022.111305_bib8) 2022
Zhu (10.1016/j.jfoodeng.2022.111305_bib39) 2021; 44
Lee (10.1016/j.jfoodeng.2022.111305_bib14) 2019; 28
Mollazade (10.1016/j.jfoodeng.2022.111305_bib23) 2021; 291
Xu (10.1016/j.jfoodeng.2022.111305_bib33) 2016; 32
Cover (10.1016/j.jfoodeng.2022.111305_bib1) 1967; 13
Edelsbrunner (10.1016/j.jfoodeng.2022.111305_bib6) 1983; 29
Leng (10.1016/j.jfoodeng.2022.111305_bib19) 2021; 175
Tamaki (10.1016/j.jfoodeng.2022.111305_bib30) 2011; 59
Liu (10.1016/j.jfoodeng.2022.111305_bib17) 2020; 321
Shin (10.1016/j.jfoodeng.2022.111305_bib28) 2021; 352
(10.1016/j.jfoodeng.2022.111305_bib25) 2015
Sun (10.1016/j.jfoodeng.2022.111305_bib29) 2021; 42
(10.1016/j.jfoodeng.2022.111305_bib10) 2015
Zhao (10.1016/j.jfoodeng.2022.111305_bib37) 2021; 179
Miknis (10.1016/j.jfoodeng.2022.111305_bib22) 2015
Chen (10.1016/j.jfoodeng.2022.111305_bib3) 2019; 19
Li (10.1016/j.jfoodeng.2022.111305_bib16) 2019; 287
Wold (10.1016/j.jfoodeng.2022.111305_bib32) 2001; 58
Li (10.1016/j.jfoodeng.2022.111305_bib13) 2018; 145
Lu (10.1016/j.jfoodeng.2022.111305_bib18) 2020; 51
Ding (10.1016/j.jfoodeng.2022.111305_bib5) 2019
References_xml – volume: 44
  year: 2021
  ident: bib39
  article-title: Comparison of mutton freshness grade discrimination based on hyperspectral imaging, near infrared spectroscopy and their fusion information
  publication-title: J. Food Process. Eng.
– start-page: 190
  year: 2021
  ident: bib20
  article-title: 3D shape sensing and deep learning-based segmentation of strawberries
  publication-title: Comput. Electron. Agric.
– volume: 335
  year: 2022
  ident: bib24
  article-title: Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine learning
  publication-title: J. Food Eng.
– volume: 31
  start-page: 893
  year: 2018
  end-page: 906
  ident: bib26
  article-title: Collision detection during planning for sheet metal bending by bounding volume hierarchy approaches
  publication-title: Int. J. Comput. Integrated Manuf.
– start-page: 71
  year: 2001
  end-page: 84
  ident: bib2
  article-title: Partial least squares
  publication-title: Fault Detection and Diagnosis in Industrial Systems
– volume: 179
  year: 2021
  ident: bib7
  article-title: The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef
  publication-title: Meat Sci.
– start-page: 153
  year: 2015
  end-page: 156
  ident: bib22
  article-title: Near real-time point cloud processing using the PCL
  publication-title: 2015 International Conference on Systems Signal and Image Processing
– start-page: 155
  year: 1997
  end-page: 161
  ident: bib4
  article-title: Support vector regression machines
  publication-title: Paper Presented at the 10th Annual Conference on Neural Information Processing Systems (NIPS)
– volume: 59
  start-page: 6346
  year: 2011
  end-page: 6352
  ident: bib30
  article-title: Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy
  publication-title: J. Agric. Food Chem.
– volume: 32
  start-page: 267
  year: 2016
  end-page: 272
  ident: bib33
  article-title: Analysis of texture parameters and determination of freshness index of beef in low temperature storage
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 316
  year: 2022
  ident: bib38
  article-title: Detection of frozen pork freshness by fluorescence hyperspectral image
  publication-title: J. Food Eng.
– year: 2022
  ident: bib8
  article-title: Determination of total volatile basic nitrogen (TVB-N) content in beef based on airflow and multipoint laser technique
  publication-title: Food Anal. Methods
– volume: 19
  start-page: 100
  year: 2020
  end-page: 112
  ident: bib36
  article-title: Multi-mechanical properties comprehensive evaluation by single excitation mode using controlled laser air-force detection (CLAFD) technique
  publication-title: Soft. Mater
– volume: 13
  start-page: 21-+
  year: 1967
  ident: bib1
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theor.
– volume: 175
  year: 2021
  ident: bib19
  article-title: Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: comparison of SVR and PLS model
  publication-title: Meat Sci.
– start-page: 76
  year: 2013
  end-page: 77
  ident: bib12
  publication-title: Rheological Properties of Viscoelastic Food. Physical Properties of Foods
– volume: 51
  start-page: 324
  year: 2020
  end-page: 331
  ident: bib18
  article-title: Beef tenderness detection based on pulse air-puff combined with structural light 3D imaging
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 59
  start-page: 108
  year: 2020
  end-page: 119
  ident: bib21
  article-title: Model-based approach for assessment of freshness and safety of meat and dairy products using a simple method for hyperspectral analysis
  publication-title: J. Food. Nutr. Res.
– start-page: 2844
  year: 2019
  end-page: 2853
  ident: bib5
  article-title: Learning RoI transformer for oriented object detection in aerial images
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 51
  start-page: 457
  year: 2020
  end-page: 465
  ident: bib35
  article-title: Chicken tenderness evaluation method based on controllable airflow laser detection technology
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 321
  year: 2020
  ident: bib17
  article-title: Non-destructive determination of chemical and microbial spoilage indicators of beef for freshness evaluation using front-face synchronous fluorescence spectroscopy
  publication-title: Food Chem.
– volume: 179
  year: 2021
  ident: bib37
  article-title: Early detection of moldy apple core based on time-frequency images of vibro-acoustic signals
  publication-title: Postharvest Biol. Technol.
– start-page: 41
  year: 2015
  ident: bib10
  publication-title: Rheological Mechanical Properties of Food. Physical Properties of Foods1st
– volume: 28
  start-page: 1899
  year: 2019
  end-page: 1906
  ident: bib14
  article-title: Development of a freshness indicator for monitoring the quality of beef during storage
  publication-title: Food Sci. Biotechnol.
– volume: 16
  start-page: 3095
  year: 2022
  end-page: 3105
  ident: bib9
  article-title: Combination of airflow and multi-point laser ranging technique for the prediction of total volatile basic nitrogen content in beef
  publication-title: J. Food Meas. Char.
– volume: 145
  start-page: 367
  year: 2018
  end-page: 374
  ident: bib13
  article-title: A feasibility study of rapid nondestructive detection of total volatile basic nitrogen (TVB-N) content in beef based on airflow and laser ranging technique
  publication-title: Meat Sci.
– volume: 287
  start-page: 126
  year: 2019
  end-page: 132
  ident: bib16
  article-title: Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique
  publication-title: Food Chem.
– volume: 19
  start-page: 605
  year: 2019
  ident: bib3
  article-title: Freshness evaluation of three kinds of meats based on the electronic nose
  publication-title: Sensors
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib32
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 16
  start-page: 529
  year: 2002
  end-page: 541
  ident: bib27
  article-title: Feasibility study of NIR for surveillance of a pharmaceutical process, including a study of different preprocessing techniques
  publication-title: J. Chemometr.
– volume: 43
  start-page: 602
  year: 2010
  end-page: 607
  ident: bib11
  article-title: Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN
  publication-title: LWT--Food Sci. Technol.
– volume: 50
  start-page: 306
  year: 2019
  end-page: 315
  ident: bib15
  article-title: Application of multi-element viscoelastic models to freshness evaluation of beef based on the viscoelasticity principle
  publication-title: J. Texture Stud.
– volume: 291
  year: 2021
  ident: bib23
  article-title: Measuring internal quality traits in egg by 3D laser imaging
  publication-title: J. Food. Eng.
– volume: 28
  start-page: 306
  year: 2019
  end-page: 313
  ident: bib34
  article-title: Evaluation of color and pH of chilled beef with the influences of total volatile basic nitrogen (TVB-N) content using texture analysis technique
  publication-title: Int. Agric. Eng. J.
– start-page: 143
  year: 2016
  end-page: 154
  ident: bib31
  article-title: Study on the mutton freshness using multivariate analysis based on texture characteristics
  publication-title: IFIP Advances in Information and Communication Technology
– volume: 352
  year: 2021
  ident: bib28
  article-title: Rapid and non-destructive spectroscopic method for classifying beef freshness using a deep spectral network fused with myoglobin information
  publication-title: Food Chem.
– volume: 29
  year: 1983
  ident: bib6
  article-title: ON the shape of a set of points in the plane
  publication-title: Ieee. T. Inform. Theory.
– start-page: 240
  year: 2015
  end-page: 241
  ident: bib25
  publication-title: Nondestructive Optical Technology for Agro-Food Quality and Safety Assessment. Optical Detection Technology for Quality and Safety of Poultry Meat and Eggs
– volume: 42
  start-page: 29
  year: 2021
  end-page: 35
  ident: bib29
  article-title: Study on the effect of ice temperature preservation on beef quality
  publication-title: Food Res. Dev.
– start-page: 155
  year: 1997
  ident: 10.1016/j.jfoodeng.2022.111305_bib4
  article-title: Support vector regression machines
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 10.1016/j.jfoodeng.2022.111305_bib32
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– start-page: 41
  year: 2015
  ident: 10.1016/j.jfoodeng.2022.111305_bib10
– start-page: 153
  year: 2015
  ident: 10.1016/j.jfoodeng.2022.111305_bib22
  article-title: Near real-time point cloud processing using the PCL
– volume: 291
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib23
  article-title: Measuring internal quality traits in egg by 3D laser imaging
  publication-title: J. Food. Eng.
  doi: 10.1016/j.jfoodeng.2020.110289
– start-page: 240
  year: 2015
  ident: 10.1016/j.jfoodeng.2022.111305_bib25
– volume: 51
  start-page: 457
  issue: S2
  year: 2020
  ident: 10.1016/j.jfoodeng.2022.111305_bib35
  article-title: Chicken tenderness evaluation method based on controllable airflow laser detection technology
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 28
  start-page: 1899
  issue: 6
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib14
  article-title: Development of a freshness indicator for monitoring the quality of beef during storage
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-019-00633-5
– volume: 28
  start-page: 306
  issue: 2
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib34
  article-title: Evaluation of color and pH of chilled beef with the influences of total volatile basic nitrogen (TVB-N) content using texture analysis technique
  publication-title: Int. Agric. Eng. J.
– volume: 16
  start-page: 529
  year: 2002
  ident: 10.1016/j.jfoodeng.2022.111305_bib27
  article-title: Feasibility study of NIR for surveillance of a pharmaceutical process, including a study of different preprocessing techniques
  publication-title: J. Chemometr.
  doi: 10.1002/cem.754
– volume: 145
  start-page: 367
  year: 2018
  ident: 10.1016/j.jfoodeng.2022.111305_bib13
  article-title: A feasibility study of rapid nondestructive detection of total volatile basic nitrogen (TVB-N) content in beef based on airflow and laser ranging technique
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2018.07.005
– volume: 335
  year: 2022
  ident: 10.1016/j.jfoodeng.2022.111305_bib24
  article-title: Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine learning
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2022.111192
– volume: 59
  start-page: 6346
  issue: 12
  year: 2011
  ident: 10.1016/j.jfoodeng.2022.111305_bib30
  article-title: Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf200078h
– start-page: 71
  year: 2001
  ident: 10.1016/j.jfoodeng.2022.111305_bib2
  article-title: Partial least squares
– volume: 179
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib7
  article-title: The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2021.108551
– volume: 51
  start-page: 324
  issue: 12
  year: 2020
  ident: 10.1016/j.jfoodeng.2022.111305_bib18
  article-title: Beef tenderness detection based on pulse air-puff combined with structural light 3D imaging
  publication-title: Trans. Chin. Soc. Agric. Mach.
– start-page: 143
  year: 2016
  ident: 10.1016/j.jfoodeng.2022.111305_bib31
  article-title: Study on the mutton freshness using multivariate analysis based on texture characteristics
  doi: 10.1007/978-3-319-48354-2_15
– volume: 179
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib37
  article-title: Early detection of moldy apple core based on time-frequency images of vibro-acoustic signals
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2021.111589
– volume: 59
  start-page: 108
  issue: 2
  year: 2020
  ident: 10.1016/j.jfoodeng.2022.111305_bib21
  article-title: Model-based approach for assessment of freshness and safety of meat and dairy products using a simple method for hyperspectral analysis
  publication-title: J. Food. Nutr. Res.
– volume: 50
  start-page: 306
  issue: 4
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib15
  article-title: Application of multi-element viscoelastic models to freshness evaluation of beef based on the viscoelasticity principle
  publication-title: J. Texture Stud.
  doi: 10.1111/jtxs.12409
– volume: 175
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib19
  article-title: Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: comparison of SVR and PLS model
  publication-title: Meat Sci.
– volume: 16
  start-page: 3095
  issue: 4
  year: 2022
  ident: 10.1016/j.jfoodeng.2022.111305_bib9
  article-title: Combination of airflow and multi-point laser ranging technique for the prediction of total volatile basic nitrogen content in beef
  publication-title: J. Food Meas. Char.
  doi: 10.1007/s11694-022-01388-0
– volume: 43
  start-page: 602
  issue: 4
  year: 2010
  ident: 10.1016/j.jfoodeng.2022.111305_bib11
  article-title: Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN
  publication-title: LWT--Food Sci. Technol.
  doi: 10.1016/j.lwt.2009.10.008
– start-page: 76
  year: 2013
  ident: 10.1016/j.jfoodeng.2022.111305_bib12
– start-page: 190
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib20
  article-title: 3D shape sensing and deep learning-based segmentation of strawberries
  publication-title: Comput. Electron. Agric.
– volume: 19
  start-page: 100
  issue: 1
  year: 2020
  ident: 10.1016/j.jfoodeng.2022.111305_bib36
  article-title: Multi-mechanical properties comprehensive evaluation by single excitation mode using controlled laser air-force detection (CLAFD) technique
  publication-title: Soft. Mater
  doi: 10.1080/1539445X.2020.1770283
– volume: 13
  start-page: 21-+
  issue: 1
  year: 1967
  ident: 10.1016/j.jfoodeng.2022.111305_bib1
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.1967.1053964
– year: 2022
  ident: 10.1016/j.jfoodeng.2022.111305_bib8
  article-title: Determination of total volatile basic nitrogen (TVB-N) content in beef based on airflow and multipoint laser technique
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-022-02360-w
– volume: 352
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib28
  article-title: Rapid and non-destructive spectroscopic method for classifying beef freshness using a deep spectral network fused with myoglobin information
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129329
– start-page: 2844
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib5
  article-title: Learning RoI transformer for oriented object detection in aerial images
– volume: 42
  start-page: 29
  issue: 11
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib29
  article-title: Study on the effect of ice temperature preservation on beef quality
  publication-title: Food Res. Dev.
– volume: 29
  issue: 4
  year: 1983
  ident: 10.1016/j.jfoodeng.2022.111305_bib6
  article-title: ON the shape of a set of points in the plane
  publication-title: Ieee. T. Inform. Theory.
  doi: 10.1109/TIT.1983.1056714
– volume: 321
  year: 2020
  ident: 10.1016/j.jfoodeng.2022.111305_bib17
  article-title: Non-destructive determination of chemical and microbial spoilage indicators of beef for freshness evaluation using front-face synchronous fluorescence spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126628
– volume: 19
  start-page: 605
  issue: 3
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib3
  article-title: Freshness evaluation of three kinds of meats based on the electronic nose
  publication-title: Sensors
  doi: 10.3390/s19030605
– volume: 31
  start-page: 893
  issue: 9
  year: 2018
  ident: 10.1016/j.jfoodeng.2022.111305_bib26
  article-title: Collision detection during planning for sheet metal bending by bounding volume hierarchy approaches
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2018.1466394
– volume: 44
  issue: 4
  year: 2021
  ident: 10.1016/j.jfoodeng.2022.111305_bib39
  article-title: Comparison of mutton freshness grade discrimination based on hyperspectral imaging, near infrared spectroscopy and their fusion information
  publication-title: J. Food Process. Eng.
  doi: 10.1111/jfpe.13642
– volume: 287
  start-page: 126
  year: 2019
  ident: 10.1016/j.jfoodeng.2022.111305_bib16
  article-title: Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.01.213
– volume: 316
  year: 2022
  ident: 10.1016/j.jfoodeng.2022.111305_bib38
  article-title: Detection of frozen pork freshness by fluorescence hyperspectral image
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2021.110840
– volume: 32
  start-page: 267
  issue: 12
  year: 2016
  ident: 10.1016/j.jfoodeng.2022.111305_bib33
  article-title: Analysis of texture parameters and determination of freshness index of beef in low temperature storage
  publication-title: Trans. Chin. Soc. Agric. Eng.
SSID ssj0005022
Score 2.5060334
Snippet Assessment of beef freshness is critical to ensure a safe and sustainable beef supply chain. This work aims to investigate the feasibility of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111305
SubjectTerms air flow
Airflow-3D machine vision
algorithms
Beef
cameras
computer vision
deformation
Four-element viscoelastic models
freshness
pH value
Point cloud image processing algorithm
prediction
supply chain
total volatile basic nitrogen
TVB-N content
viscoelasticity
Title Nondestructive determination of common indicators of beef for freshness assessment using airflow-three dimensional (3D) machine vision technique and machine learning
URI https://dx.doi.org/10.1016/j.jfoodeng.2022.111305
https://www.proquest.com/docview/2985956525
Volume 340
WOSCitedRecordID wos000869096200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5770
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005022
  issn: 0260-8774
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgR7QDBAjJuMxAOoSklzz-PEhgYPFYgilacodmyWqk2m9bKK_8OP4N9xjh3HKTANhJCqqHISu9H31T45Puc7hDwPI194jA2dJGGBEwCnHBYJ5oBlEOS5y92hKFSxiXg0SiaT9H2v993kwqxncVUlm0169l-hhjYAG1Nn_wLutlNogO8AOhwBdjj-EfCjuipEIwu7xqyoJt7FmIYw5lzFN-IOjaq1A41MCKkiDiW8fp-q6S9vNTv7K-VQyMtzOasvnCXAD_1iWQAt6YFWqn-E_oW5Cs0UfZ2x3rcCseieNyebQhVfLrGLJeosCyuT2IYMrZRXd1Kuvp6Wdi9LzZofymreufRz4wQfA_c37bUnQicidR0dnm8jvbT3zWTg2HCnhRKOdWFG15V-BkJP4knsA9l0QRIzy_taFeqXFUM7L6aDKT4dPNwAhvZwIfHd0K6RbeTiRxwQx_OUlGwaXCO7XhymMKHuHr49nryz8UWu3sIyP7CTnv770S6zjH6yEZThM75NbjXI0EPNtDukJ6p9csMktC_2yV5H0_Iu-bbNP7rFP1pLqvlHLf-wEflHgX-05R-1_KOKf3SLf7TDP_rCP3pJG3pRzT3aco8C99qThnv3yKc3x-PXJ05TC8ThfhAunUSkeRJ7gZTwgXd2kXhh4eYRC3kcMlG4TAoeS8aKeJizhHOsV88TeNsBkxpF-u6TnaquxANCIwbrFA_SHH0BhRymmEwuZMGEH3NW-AckNDhkvBHKx3ots8xERE4zg1-G-GUavwPyqr3vTEvFXHlHamDOGoNXG7IZsPPKe58ZXmSwIuA2X16JerXIvBQ1C6PQCx_-Q_-PyE37J3xMdoA24gm5ztfLcnH-tCH7D3zH6KA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nondestructive+determination+of+common+indicators+of+beef+for+freshness+assessment+using+airflow-three+dimensional+%283D%29+machine+vision+technique+and+machine+learning&rft.jtitle=Journal+of+food+engineering&rft.au=Luo%2C+Xiuzhi&rft.au=Sun%2C+Qinming&rft.au=Yang%2C+Tianxi&rft.au=He%2C+Ke&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0260-8774&rft.eissn=1873-5770&rft.volume=340&rft_id=info:doi/10.1016%2Fj.jfoodeng.2022.111305&rft.externalDocID=S0260877422003594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-8774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-8774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-8774&client=summon