A review of wind speed and wind power forecasting with deep neural networks
The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind...
Saved in:
| Published in: | Applied energy Vol. 304; p. 117766 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.12.2021
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts.
•Review and compare deep feature extraction models in terms of computation cost.•Review and discuss various single and hybrid deep models for relationship learning.•Present an overview of intelligent optimizers for model configuration determination.•Summarize challenges and future research directions in wind energy forecasting. |
|---|---|
| AbstractList | The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts. The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts. •Review and compare deep feature extraction models in terms of computation cost.•Review and discuss various single and hybrid deep models for relationship learning.•Present an overview of intelligent optimizers for model configuration determination.•Summarize challenges and future research directions in wind energy forecasting. |
| ArticleNumber | 117766 |
| Author | Zou, Runmin Wang, Yun Liu, Qianyi Liu, Fang Zhang, Lingjun |
| Author_xml | – sequence: 1 givenname: Yun surname: Wang fullname: Wang, Yun email: wangyun19@csu.edu.cn organization: School of Automation, Central South University, Changsha, Hunan Province, China – sequence: 2 givenname: Runmin orcidid: 0000-0003-1747-3448 surname: Zou fullname: Zou, Runmin email: rmzou@csu.edu.cn organization: School of Automation, Central South University, Changsha, Hunan Province, China – sequence: 3 givenname: Fang surname: Liu fullname: Liu, Fang email: liufang@csu.edu.cn organization: School of Automation, Central South University, Changsha, Hunan Province, China – sequence: 4 givenname: Lingjun surname: Zhang fullname: Zhang, Lingjun email: zhanglingjun@hdu.edu.cn organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China – sequence: 5 givenname: Qianyi surname: Liu fullname: Liu, Qianyi email: liu7y@foxmail.com organization: School of Automation, Central South University, Changsha, Hunan Province, China |
| BookMark | eNqFkD1PwzAQhi0EEqXwF1BGlhSfk9ipxECF-BKVWGC2jH0Bl9QOtkvFv8cQWFiY3rvT-9zwHJBd5x0Scgx0BhT46WqmBnQYnj9mjDKYAQjB-Q6ZQCtYOQdod8mEVpSXjMN8nxzEuKI0NxmdkLtFEfDd4rbwXbG1zhRxQDSFytP3OvgthqLzAbWKybrnfE4vhUEcCoeboPocaevDazwke53qIx795JQ8Xl0-XNyUy_vr24vFstRV3aSyxVZQ3TaVQIGNqAwYLbRQT4icNgqe5rUCI6pGd0C7put0zVSrVT1nzADoakpOxr9D8G8bjEmubdTY98qh30TJeMUbaDnlucrHqg4-xoCdHIJdq_Ahgcove3Ilf-3JL3tytJfBsz-gtkkl610Kyvb_4-cjjtlD1htk1BadRmOzyCSNt_-9-ATyxZK7 |
| CitedBy_id | crossref_primary_10_1080_15435075_2024_2400554 crossref_primary_10_3390_fluids7110344 crossref_primary_10_3389_fenrg_2022_1043867 crossref_primary_10_3390_en16237915 crossref_primary_10_1016_j_enconman_2025_119627 crossref_primary_10_1016_j_renene_2022_08_079 crossref_primary_10_1016_j_ijepes_2024_110085 crossref_primary_10_1016_j_energy_2022_123990 crossref_primary_10_3390_w16172449 crossref_primary_10_1016_j_enconman_2022_115540 crossref_primary_10_1177_10692509251337224 crossref_primary_10_1016_j_energy_2025_137654 crossref_primary_10_1016_j_apenergy_2025_126234 crossref_primary_10_1002_ese3_1263 crossref_primary_10_1002_ente_202300889 crossref_primary_10_3390_su14094934 crossref_primary_10_1016_j_oceaneng_2025_120925 crossref_primary_10_1016_j_oceaneng_2024_118471 crossref_primary_10_1016_j_renene_2025_123463 crossref_primary_10_1016_j_renene_2024_119945 crossref_primary_10_1109_TII_2024_3523581 crossref_primary_10_1016_j_enconman_2022_115433 crossref_primary_10_3390_en15124221 crossref_primary_10_1002_tee_23892 crossref_primary_10_1016_j_enconman_2024_118155 crossref_primary_10_3390_math11030499 crossref_primary_10_1016_j_measurement_2024_116500 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_1109_ACCESS_2022_3197215 crossref_primary_10_1155_2022_5731473 crossref_primary_10_1109_TII_2022_3176821 crossref_primary_10_3390_fluids7120367 crossref_primary_10_1016_j_enbuild_2024_114661 crossref_primary_10_1007_s00202_024_02377_w crossref_primary_10_1016_j_ijar_2021_12_013 crossref_primary_10_1016_j_energy_2025_137751 crossref_primary_10_1016_j_jclepro_2023_139944 crossref_primary_10_1016_j_energy_2025_136660 crossref_primary_10_3390_en16207179 crossref_primary_10_1016_j_egyr_2024_11_074 crossref_primary_10_1016_j_eswa_2024_125376 crossref_primary_10_1080_15435075_2023_2281335 crossref_primary_10_1007_s43621_024_00783_5 crossref_primary_10_1002_ese3_1047 crossref_primary_10_3390_en18071771 crossref_primary_10_1016_j_egyr_2022_11_202 crossref_primary_10_1080_10106049_2022_2066198 crossref_primary_10_1016_j_renene_2024_120704 crossref_primary_10_1016_j_energy_2022_124750 crossref_primary_10_1109_ACCESS_2025_3599609 crossref_primary_10_1109_TAI_2025_3547685 crossref_primary_10_3390_en15124361 crossref_primary_10_3389_fenrg_2023_1204343 crossref_primary_10_1016_j_egyr_2024_08_041 crossref_primary_10_1016_j_enconman_2024_118331 crossref_primary_10_1016_j_renene_2025_123550 crossref_primary_10_1038_s41598_024_83836_z crossref_primary_10_1016_j_eswa_2025_126402 crossref_primary_10_1002_we_2906 crossref_primary_10_3389_fenrg_2023_1174910 crossref_primary_10_1109_ACCESS_2025_3586997 crossref_primary_10_1016_j_energy_2025_135666 crossref_primary_10_1016_j_est_2025_117015 crossref_primary_10_1016_j_jclepro_2024_142143 crossref_primary_10_1016_j_jweia_2023_105507 crossref_primary_10_1016_j_engappai_2023_107536 crossref_primary_10_3389_fenrg_2024_1346000 crossref_primary_10_1016_j_apenergy_2024_125176 crossref_primary_10_1016_j_oceaneng_2025_120737 crossref_primary_10_1016_j_renene_2025_123551 crossref_primary_10_1049_cps2_70011 crossref_primary_10_1016_j_asoc_2024_112652 crossref_primary_10_3389_fenrg_2024_1346369 crossref_primary_10_1016_j_energy_2025_135551 crossref_primary_10_3390_sym16040428 crossref_primary_10_3389_fenrg_2024_1391692 crossref_primary_10_22399_ijcesen_429 crossref_primary_10_1016_j_oceaneng_2024_117279 crossref_primary_10_1007_s40808_025_02403_1 crossref_primary_10_1016_j_apenergy_2025_126318 crossref_primary_10_1109_TPEL_2022_3148266 crossref_primary_10_22144_ctujos_2025_075 crossref_primary_10_3390_en15186734 crossref_primary_10_1142_S0218126625503360 crossref_primary_10_1016_j_rser_2024_114781 crossref_primary_10_1049_rpg2_13159 crossref_primary_10_1049_gtd2_70089 crossref_primary_10_1016_j_compbiomed_2022_105529 crossref_primary_10_1016_j_renene_2025_123897 crossref_primary_10_1109_TKDE_2024_3435859 crossref_primary_10_1080_15435075_2023_2301399 crossref_primary_10_3390_electronics12051187 crossref_primary_10_1038_s41598_025_03188_0 crossref_primary_10_1016_j_energy_2024_134042 crossref_primary_10_1016_j_jclepro_2023_139902 crossref_primary_10_1063_5_0238202 crossref_primary_10_1080_19942060_2024_2305318 crossref_primary_10_1016_j_renene_2023_119357 crossref_primary_10_1016_j_advengsoft_2023_103426 crossref_primary_10_1016_j_energy_2024_133072 crossref_primary_10_1016_j_enconman_2024_118122 crossref_primary_10_1016_j_energy_2025_135537 crossref_primary_10_1155_2022_1929350 crossref_primary_10_1016_j_energy_2023_129753 crossref_primary_10_3390_app14114775 crossref_primary_10_1007_s41060_024_00533_w crossref_primary_10_3390_en16062651 crossref_primary_10_1016_j_buildenv_2023_110446 crossref_primary_10_1016_j_apenergy_2025_126419 crossref_primary_10_3390_en17122994 crossref_primary_10_1109_TETCI_2024_3400852 crossref_primary_10_4108_ew_7114 crossref_primary_10_1016_j_apenergy_2023_121049 crossref_primary_10_1155_2022_3345368 crossref_primary_10_1016_j_jclepro_2022_130580 crossref_primary_10_1002_cpe_6900 crossref_primary_10_1063_5_0253497 crossref_primary_10_3390_pr11051429 crossref_primary_10_1080_15435075_2023_2228878 crossref_primary_10_1016_j_eswa_2024_124199 crossref_primary_10_1016_j_renene_2023_119101 crossref_primary_10_1109_TIA_2023_3284784 crossref_primary_10_3390_su151914628 crossref_primary_10_3390_en15249657 crossref_primary_10_3390_su17146577 crossref_primary_10_1109_TIM_2023_3265743 crossref_primary_10_1016_j_epsr_2024_111015 crossref_primary_10_1016_j_mex_2024_103080 crossref_primary_10_3390_su17146339 crossref_primary_10_1016_j_eswa_2023_122645 crossref_primary_10_1016_j_energy_2023_126906 crossref_primary_10_3390_en15186545 crossref_primary_10_3390_pr13030819 crossref_primary_10_1093_ijlct_ctad131 crossref_primary_10_1109_TII_2024_3379668 crossref_primary_10_3390_en18020246 crossref_primary_10_1016_j_apenergy_2024_124035 crossref_primary_10_1016_j_renene_2024_122155 crossref_primary_10_1371_journal_pone_0306566 crossref_primary_10_1016_j_apenergy_2023_122155 crossref_primary_10_1155_2022_5895560 crossref_primary_10_3390_electronics14132566 crossref_primary_10_1016_j_heliyon_2024_e26088 crossref_primary_10_1016_j_ijepes_2023_109073 crossref_primary_10_1080_15435075_2024_2399189 crossref_primary_10_1111_coin_70078 crossref_primary_10_3390_electronics11020206 crossref_primary_10_3390_en18071713 crossref_primary_10_3390_atmos16010067 crossref_primary_10_1016_j_energy_2025_136054 crossref_primary_10_3390_en16031085 crossref_primary_10_3390_en16227610 crossref_primary_10_3390_en16093792 crossref_primary_10_1109_TII_2023_3296869 crossref_primary_10_1016_j_eswa_2025_127436 crossref_primary_10_1007_s10483_025_3291_6 crossref_primary_10_1016_j_energy_2025_137229 crossref_primary_10_1016_j_renene_2025_124028 crossref_primary_10_1109_TIM_2024_3470949 crossref_primary_10_48084_etasr_10296 crossref_primary_10_1016_j_jenvman_2023_119878 crossref_primary_10_1021_acsaem_5c00785 crossref_primary_10_3390_app15052443 crossref_primary_10_1016_j_energy_2025_137225 crossref_primary_10_1186_s43067_023_00091_4 crossref_primary_10_1063_5_0268894 crossref_primary_10_1016_j_atmosres_2023_106841 crossref_primary_10_1007_s00521_024_10618_z crossref_primary_10_3390_en15186642 crossref_primary_10_1007_s40866_024_00193_6 crossref_primary_10_1038_s41598_022_08842_5 crossref_primary_10_1016_j_epsr_2022_107886 crossref_primary_10_2478_amns_2024_3419 crossref_primary_10_1016_j_ijepes_2024_110229 crossref_primary_10_1016_j_enconman_2025_119555 crossref_primary_10_1016_j_enpol_2023_113845 crossref_primary_10_1016_j_engappai_2024_107906 crossref_primary_10_1080_17445302_2023_2260941 crossref_primary_10_1016_j_epsr_2025_111669 crossref_primary_10_1016_j_enconman_2023_116760 crossref_primary_10_1016_j_enconman_2025_119673 crossref_primary_10_1016_j_energy_2024_130782 crossref_primary_10_1016_j_energy_2023_128068 crossref_primary_10_1016_j_energy_2025_138327 crossref_primary_10_1016_j_enbuild_2025_115307 crossref_primary_10_1016_j_rser_2022_113046 crossref_primary_10_1016_j_renene_2024_121087 crossref_primary_10_3390_electronics12214443 crossref_primary_10_1016_j_apenergy_2025_126615 crossref_primary_10_1016_j_jclepro_2022_132326 crossref_primary_10_3390_app14103962 crossref_primary_10_1038_s41598_025_00741_9 crossref_primary_10_1016_j_ress_2023_109235 crossref_primary_10_1109_TIM_2025_3588929 crossref_primary_10_1016_j_energy_2024_130770 crossref_primary_10_1016_j_rser_2023_113792 crossref_primary_10_1007_s10489_022_04360_z crossref_primary_10_1016_j_apenergy_2022_119608 crossref_primary_10_1016_j_enconman_2024_119142 crossref_primary_10_32604_cmes_2023_027124 crossref_primary_10_3390_electronics11030459 crossref_primary_10_1016_j_renene_2025_124008 crossref_primary_10_3390_atmos16070859 crossref_primary_10_1016_j_jweia_2025_106035 crossref_primary_10_1016_j_egyr_2023_05_229 crossref_primary_10_1016_j_energy_2025_138538 crossref_primary_10_1016_j_apenergy_2023_122185 crossref_primary_10_1016_j_oceaneng_2025_122518 crossref_primary_10_1016_j_segan_2024_101517 crossref_primary_10_1007_s12145_023_01044_1 crossref_primary_10_1016_j_apenergy_2024_124129 crossref_primary_10_1049_rpg2_12572 crossref_primary_10_3390_w15081548 crossref_primary_10_1016_j_rineng_2025_107285 crossref_primary_10_1038_s41598_025_98212_8 crossref_primary_10_1371_journal_pone_0327523 crossref_primary_10_1016_j_energy_2023_129496 crossref_primary_10_1016_j_apenergy_2022_120601 crossref_primary_10_1016_j_energy_2024_130401 crossref_primary_10_1016_j_energy_2024_133911 crossref_primary_10_1016_j_renene_2025_123388 crossref_primary_10_1016_j_rineng_2024_103626 crossref_primary_10_1016_j_egyr_2022_05_110 crossref_primary_10_1016_j_oceaneng_2025_120451 crossref_primary_10_1016_j_energy_2022_123600 crossref_primary_10_1016_j_ejor_2024_03_005 crossref_primary_10_1016_j_renene_2023_119604 crossref_primary_10_1016_j_energy_2022_123848 crossref_primary_10_1016_j_energy_2025_136497 crossref_primary_10_1016_j_ijhydene_2022_10_271 crossref_primary_10_1016_j_ijepes_2025_110732 crossref_primary_10_1016_j_egyr_2022_12_048 crossref_primary_10_3390_atmos14010071 crossref_primary_10_1016_j_energy_2025_138514 crossref_primary_10_1016_j_apenergy_2024_123375 crossref_primary_10_1063_5_0212699 crossref_primary_10_1177_09576509221125863 crossref_primary_10_1016_j_oceaneng_2025_122541 crossref_primary_10_1109_TIA_2024_3354218 crossref_primary_10_3390_atmos16070763 crossref_primary_10_1016_j_ijepes_2025_110703 crossref_primary_10_1109_ACCESS_2022_3202970 crossref_primary_10_1177_09576509241271873 crossref_primary_10_1016_j_energy_2024_131951 crossref_primary_10_1016_j_segan_2025_101949 crossref_primary_10_1016_j_energy_2023_127173 crossref_primary_10_3390_app13179888 crossref_primary_10_1038_s41598_024_65140_y crossref_primary_10_1111_1477_8947_12461 crossref_primary_10_1016_j_renene_2023_119863 crossref_primary_10_1016_j_egyr_2025_02_046 crossref_primary_10_3390_su15108032 crossref_primary_10_1016_j_energy_2024_131142 crossref_primary_10_1016_j_enconman_2023_117440 crossref_primary_10_32604_ee_2023_042635 crossref_primary_10_1016_j_energy_2024_133208 crossref_primary_10_3390_en15041510 crossref_primary_10_1088_1755_1315_1245_1_012034 crossref_primary_10_1080_27684830_2025_2482311 crossref_primary_10_1029_2023JD040134 crossref_primary_10_1007_s11227_025_07376_7 crossref_primary_10_1061_JLEED9_EYENG_6163 crossref_primary_10_3390_en16124562 crossref_primary_10_1016_j_apenergy_2022_118796 crossref_primary_10_3390_en16114507 crossref_primary_10_3390_en16145383 crossref_primary_10_3390_en16145381 crossref_primary_10_3390_en16031370 crossref_primary_10_1016_j_apenergy_2021_118029 crossref_primary_10_1080_15435075_2025_2490560 crossref_primary_10_1016_j_renene_2022_12_040 crossref_primary_10_1016_j_renene_2022_04_061 crossref_primary_10_1080_15435075_2024_2382351 crossref_primary_10_3390_s23104905 crossref_primary_10_3390_w14111794 crossref_primary_10_1051_e3sconf_202343301008 crossref_primary_10_1016_j_energy_2025_135916 crossref_primary_10_1093_ijlct_ctae061 crossref_primary_10_1007_s11831_024_10182_8 crossref_primary_10_1016_j_apenergy_2024_123589 crossref_primary_10_1016_j_ijepes_2024_109897 crossref_primary_10_1038_s41598_024_78303_8 crossref_primary_10_1002_joc_8070 crossref_primary_10_1016_j_egyai_2025_100513 crossref_primary_10_3390_en17153655 crossref_primary_10_1016_j_apenergy_2023_120815 crossref_primary_10_3389_fenrg_2024_1342517 crossref_primary_10_3390_app14166889 crossref_primary_10_1016_j_enconman_2023_117460 crossref_primary_10_1016_j_ijhydene_2022_05_130 crossref_primary_10_3390_designs8010010 crossref_primary_10_1016_j_enconman_2023_117342 crossref_primary_10_1016_j_enconman_2022_116296 crossref_primary_10_1177_27533735251363415 crossref_primary_10_3390_su16177721 crossref_primary_10_1016_j_eswa_2024_123516 crossref_primary_10_1016_j_seta_2023_103314 crossref_primary_10_1016_j_energy_2023_127933 crossref_primary_10_3390_en17235848 crossref_primary_10_1088_1742_6596_2479_1_012037 crossref_primary_10_1016_j_enganabound_2022_05_001 crossref_primary_10_32604_cmc_2023_032533 crossref_primary_10_3389_fenrg_2023_1252067 crossref_primary_10_3390_su17073239 crossref_primary_10_1016_j_energy_2024_132320 crossref_primary_10_3390_en16031459 crossref_primary_10_3724_j_1006_8775_2024_035 crossref_primary_10_3390_en18030580 crossref_primary_10_1155_er_3534500 crossref_primary_10_20965_jaciii_2025_p0592 crossref_primary_10_1038_s41598_025_94082_2 crossref_primary_10_1016_j_eswa_2023_122477 crossref_primary_10_1093_ijlct_ctaf019 crossref_primary_10_1016_j_colsurfa_2022_129115 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1155_int_1649220 crossref_primary_10_3390_jmse12030424 crossref_primary_10_1016_j_enconman_2023_117880 crossref_primary_10_1016_j_energy_2024_131345 crossref_primary_10_3390_en16135014 crossref_primary_10_1007_s42452_025_06478_4 crossref_primary_10_1016_j_energy_2022_126034 crossref_primary_10_1080_17455030_2023_2165735 crossref_primary_10_1016_j_ijepes_2025_111097 crossref_primary_10_1016_j_renene_2022_09_114 crossref_primary_10_1016_j_renene_2022_11_042 crossref_primary_10_1016_j_eswa_2025_129472 crossref_primary_10_3390_su151813572 crossref_primary_10_1016_j_egyr_2022_11_051 crossref_primary_10_3233_HIS_230004 crossref_primary_10_1016_j_apenergy_2022_119683 crossref_primary_10_1007_s41324_025_00604_5 crossref_primary_10_1016_j_energy_2024_133511 crossref_primary_10_3390_en16052094 crossref_primary_10_3390_en18112969 crossref_primary_10_3390_en15020605 crossref_primary_10_1016_j_apenergy_2022_120565 crossref_primary_10_3390_en15197256 crossref_primary_10_1016_j_enconman_2024_118904 crossref_primary_10_1016_j_isci_2025_112360 crossref_primary_10_1016_j_renene_2021_10_070 crossref_primary_10_1109_ACCESS_2024_3517144 crossref_primary_10_1016_j_egyr_2025_07_005 crossref_primary_10_1016_j_energy_2024_133515 crossref_primary_10_3390_en14227564 crossref_primary_10_1016_j_energy_2022_126283 crossref_primary_10_3390_en17102395 crossref_primary_10_1016_j_energy_2025_138275 crossref_primary_10_1016_j_apenergy_2024_123303 crossref_primary_10_1016_j_marpolbul_2023_115077 crossref_primary_10_1016_j_energy_2024_130352 crossref_primary_10_1016_j_energy_2024_132895 crossref_primary_10_1016_j_eswa_2024_124766 crossref_primary_10_3390_en17143547 crossref_primary_10_3389_fmars_2025_1495822 crossref_primary_10_3724_j_1006_8775_2025_031 crossref_primary_10_1016_j_energy_2024_131448 crossref_primary_10_1080_15567036_2023_2276901 crossref_primary_10_1016_j_enconman_2022_116138 crossref_primary_10_1016_j_energy_2024_132899 crossref_primary_10_3389_fenrg_2023_1211360 crossref_primary_10_1016_j_enganabound_2022_04_006 crossref_primary_10_1109_TKDE_2022_3188335 crossref_primary_10_1016_j_apenergy_2024_123777 crossref_primary_10_3390_app13169100 crossref_primary_10_1029_2024GL112124 crossref_primary_10_1155_2022_4122074 crossref_primary_10_3390_atmos16030266 crossref_primary_10_2139_ssrn_5253079 crossref_primary_10_1016_j_renene_2024_121280 crossref_primary_10_3390_electronics13204032 crossref_primary_10_1016_j_energy_2023_129079 crossref_primary_10_1016_j_egyr_2023_09_013 crossref_primary_10_1109_TSG_2024_3447162 crossref_primary_10_1016_j_egyr_2022_08_271 crossref_primary_10_1155_2022_5121762 crossref_primary_10_1007_s43937_022_00011_z crossref_primary_10_1016_j_apenergy_2024_123882 crossref_primary_10_1016_j_ins_2024_120150 crossref_primary_10_1016_j_ress_2024_110037 crossref_primary_10_3390_en15030861 crossref_primary_10_1016_j_energy_2025_136199 crossref_primary_10_1016_j_segan_2024_101363 crossref_primary_10_1016_j_apenergy_2025_126060 crossref_primary_10_1016_j_enganabound_2022_03_022 crossref_primary_10_1016_j_renene_2025_123876 crossref_primary_10_1016_j_atmosres_2022_106586 crossref_primary_10_1016_j_asoc_2023_110279 crossref_primary_10_32604_cmes_2023_044467 crossref_primary_10_1016_j_energy_2022_123595 crossref_primary_10_3390_e25040647 crossref_primary_10_1002_we_2783 crossref_primary_10_1016_j_ins_2024_121736 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1016_j_energy_2023_130184 crossref_primary_10_1016_j_energy_2023_127430 crossref_primary_10_1007_s40436_025_00552_1 crossref_primary_10_1109_TSG_2023_3325390 crossref_primary_10_3389_fenrg_2023_1032867 crossref_primary_10_3390_en17215391 crossref_primary_10_3390_en17051215 crossref_primary_10_3390_su151914171 crossref_primary_10_1016_j_renene_2025_123618 crossref_primary_10_1016_j_neucom_2024_127466 crossref_primary_10_1109_ACCESS_2024_3507154 crossref_primary_10_1186_s42162_025_00546_0 crossref_primary_10_1016_j_apenergy_2023_121749 crossref_primary_10_1016_j_energy_2023_129847 crossref_primary_10_3390_math13182924 crossref_primary_10_1002_tee_24204 crossref_primary_10_1002_we_70057 crossref_primary_10_1016_j_energy_2024_133023 crossref_primary_10_70322_sesr_2025_10004 crossref_primary_10_1016_j_energy_2023_130078 crossref_primary_10_1016_j_renene_2023_119391 crossref_primary_10_1111_exsy_13830 crossref_primary_10_1109_JETCAS_2023_3252667 crossref_primary_10_1177_0309524X231191163 crossref_primary_10_1080_21642583_2024_2399057 crossref_primary_10_3390_en16052317 crossref_primary_10_1016_j_aei_2023_102177 crossref_primary_10_1016_j_renene_2025_123966 crossref_primary_10_3390_forecast5030031 crossref_primary_10_1016_j_inoche_2023_111827 crossref_primary_10_3390_fluids9040084 crossref_primary_10_1016_j_apenergy_2024_123616 crossref_primary_10_1109_TPWRS_2023_3304898 crossref_primary_10_3389_fenrg_2022_959333 crossref_primary_10_3390_pr11113247 crossref_primary_10_1016_j_energy_2025_134884 crossref_primary_10_1016_j_renene_2025_123965 crossref_primary_10_3390_forecast6040044 crossref_primary_10_1080_15435075_2024_2326052 crossref_primary_10_1007_s40747_022_00879_3 crossref_primary_10_32604_ee_2023_040887 crossref_primary_10_1016_j_ijar_2022_07_002 crossref_primary_10_3390_en16176394 crossref_primary_10_1007_s12559_024_10284_2 crossref_primary_10_1109_ACCESS_2024_3392899 crossref_primary_10_3390_en15176287 crossref_primary_10_3390_su16010333 crossref_primary_10_1016_j_apenergy_2024_122759 crossref_primary_10_1016_j_techsoc_2023_102352 crossref_primary_10_1016_j_aej_2025_08_009 crossref_primary_10_1016_j_energy_2022_125208 crossref_primary_10_1063_5_0221646 crossref_primary_10_3390_electronics12173683 crossref_primary_10_1016_j_apenergy_2025_126261 crossref_primary_10_1016_j_energy_2025_134612 crossref_primary_10_1016_j_suscom_2024_101054 crossref_primary_10_1109_TSTE_2024_3435936 crossref_primary_10_3390_jmse11071440 crossref_primary_10_1016_j_renene_2025_122983 crossref_primary_10_1016_j_apenergy_2025_125295 crossref_primary_10_1016_j_compeleceng_2024_109715 crossref_primary_10_3390_s24155035 crossref_primary_10_1016_j_apenergy_2024_122624 crossref_primary_10_1016_j_apenergy_2023_122502 crossref_primary_10_1007_s00024_025_03823_x crossref_primary_10_1007_s00202_024_02685_1 crossref_primary_10_3390_en17133158 crossref_primary_10_1016_j_energy_2024_133356 crossref_primary_10_1016_j_seta_2023_103101 crossref_primary_10_3390_computers12100206 crossref_primary_10_1016_j_energy_2022_124384 crossref_primary_10_1007_s13198_022_01754_7 crossref_primary_10_1016_j_renene_2022_08_044 crossref_primary_10_1016_j_energy_2023_126778 crossref_primary_10_1016_j_energy_2022_125342 crossref_primary_10_1016_j_engappai_2024_107891 crossref_primary_10_1007_s10462_024_10728_z crossref_primary_10_1016_j_asoc_2024_112007 crossref_primary_10_1016_j_eswa_2023_119967 crossref_primary_10_1016_j_istruc_2023_105286 crossref_primary_10_3390_electronics11060946 crossref_primary_10_1016_j_apenergy_2024_124915 crossref_primary_10_1016_j_epsr_2023_109890 crossref_primary_10_1007_s43621_024_00615_6 crossref_primary_10_1049_gtd2_12996 crossref_primary_10_1016_j_energy_2024_131164 crossref_primary_10_3390_systems13070579 crossref_primary_10_1016_j_renene_2024_121311 crossref_primary_10_3390_jmse11040879 crossref_primary_10_1007_s11069_024_07050_w crossref_primary_10_1016_j_applthermaleng_2022_118133 crossref_primary_10_3390_ma15041402 crossref_primary_10_1016_j_apenergy_2024_122840 crossref_primary_10_1177_1088467X241312592 crossref_primary_10_1051_epjconf_202532605003 crossref_primary_10_1016_j_energy_2024_133577 crossref_primary_10_1063_5_0254859 crossref_primary_10_1016_j_seta_2023_103486 crossref_primary_10_1109_TIM_2023_3329105 crossref_primary_10_1007_s42835_022_01143_x crossref_primary_10_1016_j_energy_2022_126100 crossref_primary_10_1007_s12273_025_1243_9 crossref_primary_10_1109_TIM_2025_3586271 crossref_primary_10_1109_TSTE_2022_3175916 crossref_primary_10_3390_en17061270 crossref_primary_10_1109_TSTE_2025_3540541 crossref_primary_10_1007_s00521_024_10766_2 crossref_primary_10_1016_j_cej_2024_158878 crossref_primary_10_1109_TIM_2025_3545992 crossref_primary_10_1016_j_energy_2024_133580 crossref_primary_10_3390_en18102632 crossref_primary_10_1109_ACCESS_2025_3580485 crossref_primary_10_4018_JGIM_300741 crossref_primary_10_1016_j_apenergy_2024_122838 |
| Cites_doi | 10.1016/j.renene.2020.03.042 10.1016/j.enconman.2018.10.108 10.1016/j.apenergy.2015.08.014 10.1016/j.renene.2020.03.168 10.1016/j.asoc.2020.106996 10.1016/j.enconman.2019.06.041 10.1016/j.renene.2019.04.157 10.1051/matecconf/202030905011 10.1016/j.energy.2014.08.064 10.1016/j.energy.2020.118441 10.1109/ACCESS.2020.3027977 10.1016/j.rser.2008.02.002 10.1016/j.energy.2020.117081 10.1016/j.enconman.2017.06.021 10.1016/j.apenergy.2018.10.080 10.1016/j.enconman.2019.02.018 10.1016/j.knosys.2020.106468 10.1016/j.renene.2013.08.011 10.1016/j.enconman.2021.114002 10.1016/j.renene.2018.03.035 10.1109/TNN.2010.2096824 10.1016/j.enconman.2019.112418 10.1016/j.enconman.2018.04.021 10.1109/TSTE.2011.2114680 10.1016/j.neucom.2014.09.090 10.1109/TPWRS.2020.2971607 10.1109/TIE.2020.3009604 10.1016/j.scs.2020.102052 10.1016/j.enconman.2019.06.024 10.1016/j.jclepro.2018.07.164 10.1016/j.enconman.2019.02.086 10.1109/TPWRS.2016.2628873 10.1016/j.renene.2021.02.117 10.1016/j.renene.2020.08.077 10.1016/j.apenergy.2019.04.188 10.1063/1.5139689 10.1016/j.apenergy.2017.01.043 10.1016/j.enconman.2017.11.053 10.1109/JIOT.2019.2913176 10.1109/TSTE.2015.2434387 10.1016/j.apenergy.2019.05.044 10.1016/j.apenergy.2018.08.114 10.1016/j.apenergy.2012.03.054 10.1016/j.energy.2019.116300 10.1016/j.renene.2008.09.006 10.1016/j.renene.2015.07.004 10.1016/j.renene.2017.09.078 10.1109/TSTE.2019.2926147 10.1109/ACCESS.2020.3011060 10.1016/j.energy.2019.02.194 10.1088/1742-6596/1087/2/022034 10.1016/j.apenergy.2019.113686 10.1007/s12652-018-0886-0 10.1016/j.ymssp.2020.107398 10.1016/j.enconman.2019.112239 10.1016/j.renene.2014.11.011 10.1109/ACCESS.2019.2929542 10.1016/j.aei.2018.02.006 10.1016/j.renene.2014.09.058 10.1016/j.energy.2020.119515 10.1016/j.renene.2016.05.023 10.1007/978-3-319-73013-4_23 10.1016/j.renene.2007.01.014 10.1109/ACCESS.2020.3022872 10.1109/TPWRS.2017.2787667 10.1016/j.apenergy.2019.114345 10.1016/j.energy.2018.09.118 10.1016/j.enconman.2020.112524 10.1016/j.scs.2020.102275 10.1049/iet-rpg.2018.5781 10.1016/j.enconman.2019.112461 10.1016/j.renene.2021.04.091 10.1016/j.apenergy.2018.07.084 10.1016/j.renene.2019.06.047 10.1016/j.enconman.2018.03.098 10.1145/1390156.1390294 10.1016/j.renene.2020.09.078 10.1109/ACCESS.2018.2818108 10.1016/j.renene.2019.04.154 10.1016/j.apenergy.2017.04.008 10.1016/j.apenergy.2021.116842 10.1016/j.enconman.2020.113324 10.1109/ACCESS.2020.2982839 10.1016/j.aei.2021.101290 10.1016/j.enconman.2018.10.068 10.1016/j.renene.2018.12.047 10.1016/j.knosys.2020.106396 10.1016/j.ins.2020.12.032 10.1016/j.enconman.2020.113559 10.1109/ACCESS.2020.2980562 10.1109/TII.2020.3004436 10.1016/j.apenergy.2018.02.070 10.1049/iet-rpg.2010.0052 10.1016/j.neucom.2019.08.108 10.1109/TSTE.2018.2820198 10.1016/j.apenergy.2016.06.098 10.1016/j.energy.2017.02.150 10.1109/TPWRS.2015.2468586 10.1016/j.rser.2012.02.044 10.1016/j.apenergy.2021.116851 10.1016/j.artint.2019.103176 10.1016/j.enconman.2020.113098 10.1016/j.enconman.2017.01.022 10.1016/j.apenergy.2018.11.063 10.1016/j.energy.2018.11.128 10.1016/j.asoc.2020.106917 10.1016/j.apenergy.2018.09.037 10.1016/j.renene.2020.10.119 10.1109/TSTE.2015.2441747 10.1016/j.renene.2019.05.039 10.1016/j.knosys.2019.05.009 10.1016/j.rser.2014.03.033 10.1016/j.energy.2020.119299 10.1016/j.rser.2013.12.054 10.1016/j.renene.2011.06.023 10.1109/TIA.2020.2992945 10.1109/TSTE.2013.2253140 10.1016/j.asoc.2019.105799 10.1016/j.apenergy.2019.03.044 10.1109/TSTE.2018.2844102 10.1016/j.enconman.2020.112824 10.1016/j.enconman.2017.08.014 10.1016/j.renene.2021.03.020 10.1109/TSTE.2019.2897136 10.1016/j.renene.2017.11.089 10.1016/j.apenergy.2019.114259 10.1016/j.egypro.2018.11.043 10.1109/TNN.2011.2162110 10.1016/j.neucom.2019.07.058 10.1016/j.renene.2016.03.103 10.1016/j.rser.2019.109422 10.1016/j.energy.2018.09.180 10.1016/j.enconman.2021.113917 10.1016/j.apenergy.2016.11.111 10.1016/j.renene.2019.12.047 10.1016/j.enconman.2020.113500 10.1016/j.enconman.2014.09.060 10.1016/j.energy.2020.119361 10.1162/neco.1997.9.8.1735 10.1016/j.enconman.2019.05.007 10.1016/j.renene.2016.10.030 10.1109/TSTE.2020.2988683 10.1016/j.renene.2020.10.126 10.1016/j.neucom.2020.10.093 10.1049/iet-rpg.2018.5917 10.1016/j.enconman.2017.10.085 10.1016/j.rser.2018.09.046 10.1016/j.measurement.2019.106971 10.1016/j.asoc.2019.105550 10.1016/j.energy.2020.118371 10.1109/78.650093 10.1016/j.apm.2019.07.001 10.1016/j.enconman.2018.01.010 10.1016/j.apenergy.2016.08.108 10.3390/en11071638 10.1016/j.enconman.2018.02.012 10.1109/TSTE.2019.2954107 10.1016/j.ijepes.2020.106056 10.1016/j.asoc.2020.106476 10.1016/j.enconman.2018.07.070 10.1016/j.enconman.2019.05.020 10.1016/j.energy.2020.117794 10.1049/iet-rpg.2019.1238 10.1016/j.enconman.2018.11.006 10.1016/j.rser.2014.12.012 10.1016/j.enconman.2019.06.083 10.1016/j.energy.2016.10.040 10.1016/j.rser.2014.01.033 10.1016/j.enconman.2018.10.089 10.1016/j.renene.2017.10.075 10.1016/j.enconman.2017.09.034 10.1016/j.apenergy.2019.01.010 10.1016/j.future.2018.09.054 10.1049/iet-rpg.2015.0477 10.1016/j.rser.2016.01.114 10.1109/TII.2017.2730846 10.1016/j.apm.2020.07.019 10.1016/j.enconman.2018.04.099 10.1016/j.enconman.2018.04.082 10.1016/j.enconman.2016.06.053 10.1109/ACCESS.2020.3046001 10.1016/j.enconman.2020.113456 10.1142/S0218001416500117 10.1016/j.rser.2015.04.081 10.1016/j.apenergy.2019.114137 10.1016/j.apenergy.2015.02.032 10.1016/j.enconman.2017.10.021 10.1016/j.enconman.2018.10.008 10.1016/j.renene.2019.03.041 10.1016/j.energy.2015.08.039 10.1016/j.asoc.2017.05.031 10.1016/j.renene.2018.07.083 10.1002/we.2564 10.1109/TII.2020.2967822 10.1016/j.jclepro.2020.121817 10.1016/j.apenergy.2015.01.038 10.1016/j.renene.2018.10.043 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.117766 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_117766 S0306261921011053 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-8e870c8537e7e573d1dc7c7abee605a1b94a1d735cf10f5ffc42a8ca4922d11c3 |
| ISICitedReferencesCount | 602 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701874500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Wed Oct 01 13:07:53 EDT 2025 Sat Nov 29 07:17:56 EST 2025 Tue Nov 18 20:57:14 EST 2025 Fri Feb 23 02:40:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature extraction Deep neural network Relationship learning Data pre-processing Wind power forecasting Wind speed forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-8e870c8537e7e573d1dc7c7abee605a1b94a1d735cf10f5ffc42a8ca4922d11c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1747-3448 |
| PQID | 2636518606 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636518606 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_citationtrail_10_1016_j_apenergy_2021_117766 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117766 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Han, Zhang, Wang, Bao, Jing (b188) 2019; 13 Liu, Zhang, Kong, Lee (b98) 2020; 397 Yan, Wu (b215) 2020; 8 Pei, Qin, Zhang, Yao, Wang, Wang, Liu, Jiang, Zhou, Yi (b216) 2019; 196 Qureshi, Khan, Zameer, Usman (b59) 2017; 58 Qin, Li, Liang, Lee, Zhang, Gu, Zhang, Wu, Rodriguez (b201) 2019; 236 Chen, Zeng, Zhou, Du, Lu (b57) 2018; 165 Liu, Qin, Zhang, Pei, Jiang, Feng, Zhou (b179) 2020; 260 Kisvari, Lin, Liu (b203) 2021; 163 Liu, Hu, You, Chan (b159) 2014 Khodayar, Wang (b208) 2018; 10 Biswas, Sinha (b192) 2020 Wang, Li, Runmin, Foley, Alkez, Song, Hu, Srinivasan (b3) 2020; 12 Yang, Wang (b239) 2018; 230 Peng, Zhang, Zhou, Nazir (b113) 2020; 156 Wang, Zhang, Chen (b154) 2017; 32 Jiajun, Chuanjin, Yongle, Huoyue (b169) 2020; 205 Moreno, dos Santos Coelho (b120) 2018; 126 Khodayar, Teshnehlab (b155) 2015 Zu, Song (b93) 2018; 1087 Xiao, Wang, Dong, Wu (b77) 2015; 44 Hu, Wang, Lv (b210) 2020; 154 Liu, Chen, Lv, Wu, Liu (b21) 2019; 195 Fu, Wang, Tan, Zhang (b40) 2020; 205 Sun, Zhao (b199) 2020; 8 Song, Wang, Lu (b43) 2018; 215 Liu, Cao, Zhang, Wang, Huang, Luo (b162) 2020; 121 Liu, Jiang, Zhang, Niu (b103) 2020; 259 Sun, Zhou, Chen, Jia, Tayyab, Peng (b112) 2018; 165 Zhang, Liu (b175) 2020; 226 Xiang, Qiu, Hao, Cao (b194) 2020; 309 Khodayar, Kaynak, Khodayar (b157) 2017; 13 Li, Chang, Tseng, Liu, Lim (b61) 2020; 270 Liu, Ding, Bai (b218) 2021; 233 Lin, Pai, Ting (b165) 2019; 7 Wang, Li, Fu, Tang (b206) 2020; PP Dalto, Matuško, Vašak (b147) 2015 Riahy, Abedi (b15) 2008; 33 Afrasiabi, Mohammadi, Rastegar, Afrasiabi (b86) 2020; 17 Yu, Gao, Yu, Lu, Xu, Zhao, Zhang, Zhang, Zhang (b186) 2019; 93 Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust features with denoising autoencoders. In Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (b20) 2016; 85 Liu, Chen (b4) 2019; 249 Zhang, Wang, Wang (b27) 2014; 32 Ouyang, Huang, He, Tang (b131) 2020; 145 Zhang, Li, Zhang (b87) 2020 Higashiyama, Fujimoto, Hayashi (b88) 2018; 155 (b69) 2021 Shi, Chen, Wang, Yeung, Wong, Woo (b196) 2015; 28 Yuan, Chen, Jiang, Yuan (b24) 2019; 82 He, Shao, Zhong, Zhao (b172) 2020; 207 Khosravi, Nahavandi, Creighton, Atiya (b29) 2011; 22 Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (b91) 2010; 11 Liu, Chen (b58) 2019; 254 Kiranyaz, Avci, Abdeljaber, Ince, Gabbouj, Inman (b183) 2021; 151 Wan, Liu, Ren, Guo, Yu, Hu (b49) 2016; 30 Liu, Li, Duan, Chen (b79) 2020; 224 Lee, Zhao, Dutton, Backwell, Fiestas, Qiao, Balachandran, Lim, Liang, Clarke (b6) 2020 Wang, Wang, Yang (b37) 2019; 143 Wu, Wang, Chen, Du, Yang (b66) 2020; 146 Memarzadeh, Keynia (b143) 2020; 213 Hu, Liu, You, Chan (b166) 2015 Banik, Behera, Sarathkumar, Goswami (b26) 2020; 14 Wang, Wang (b224) 2021; 216 Chen, Dong, Wang, Su, Han, Zhou, Zhang, Zhao, Bao (b62) 2021; 227 Wen (b229) 2020; 94 Tascikaraoglu, Uzunoglu (b76) 2014; 34 Zhang, Yan, Infield, Liu, Lien (b16) 2019; 241 Yan, Liu, Xu, Jia (b122) 2020; 225 Sun, Qiao, Wei, Wang (b151) 2017; 197 Xiao, Shao, Jin, Wu (b60) 2021; 99 Zhang, Liu, Yan, Han, Li, Long (b207) 2020; 35 Peng, Peng, Fu, Lu, Tang, Wang, Li (b94) 2020; 207 Zhu, Li, Mo, Wu (b171) 2017 Yu, Han, Yang, Yang (b19) 2020; 56 Ahmad, Zhang, Yan (b83) 2020; 55 Li, Wang, Hu, Liu (b96) 2019 Wang, Li, Wang, Peng, Jiang, Liu (b178) 2017; 188 Zhao, Jiang, Liu, Yu, Chang (b23) 2020; 203 Liang, Nguyen, Jin (b56) 2018 Jiao, Huang, Ma, Han, Tian (b158) 2018; 6 Hu, Heng, Wen, Zhao (b25) 2020; 162 Chen, Liu (b52) 2021; 48 Liu, Tian, Liang, Li (b123) 2015; 157 Behera, Misra, Sillitti (b225) 2021; 554 Niu, Wang, Zhang, Du (b121) 2018; 118 Xiaosheng, Bo, Fan, Gaofeng, Zheng, Kai (b135) 2018 Amjady, Keynia, Zareipour (b144) 2011; 2 Zhang, Pan, Chen, Han, Zhao, Zhang (b231) 2020; 156 Jahangir, Tayarani, Gougheri, Golkar, Ahmadian, Elkamel (b95) 2020; 68 Schuster, Paliwal (b191) 2002; 45 Wang, Yang (b234) 2021; 171 Li, Wu, Liu (b187) 2018; 167 Liu, Hajiali, Torabi, Ahmadi, Simoes (b150) 2018; 9 Yan, Ouyang (b13) 2019; 180 Niu, Yu, Tang, Wu, Reformat (b47) 2020; 196 Li, Wang, Goel (b145) 2015; 6 Hinton (b163) 2012 Zendehboudi, Baseer, Saidur (b75) 2018; 199 Jujie, Yaning (b189) 2018; 230 Guo, Zhao, Lu, Wang (b102) 2012; 37 Ren, Suganthan, Srikanth (b78) 2015; 50 Lei, Shiyan, Chuanwen, Hongling, Yan (b32) 2009; 13 Huang, Xing, Cai, Yu, Qi, Lin (b146) 2018; 11 Jiang, Wang, Wang (b226) 2017; 119 Han, Meng, Hu, Chu (b33) 2017; 148 Liu, Mi, Li (b174) 2018; 166 Cho, Van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b202) 2014 Araya, Valle, Allende (b185) 2019 Altan, Karasu, Zio (b236) 2021; 100 Chollet (b240) 2015 Ding, Zhou, Xie, Wu, Nakanishi, Yokoyama (b48) 2019; 365 Jaseena, Kovoor (b156) 2020; 12 Woo, Park, Park, Manuel (b214) 2019; 11 Liu, Mi, Li (b109) 2018; 156 Zhu, Chen, Shi, Zhu, Bai, Duan, Liu (b53) 2019; 11 Nielsen, Madsen (b68) 2000 Wang, Zhang, Wu, Wang (b230) 2016; 94 Wang, Hu, Srinivasan, Wang (b8) 2018; 10 Yang, Fang, Song, Su, Yang, Huang, Joo (b5) 2021; 24 Zhang, Le, Liao, Zheng, Li (b170) 2019; 168 Ahmed, Khalid (b81) 2019; 100 Wen, Gu, Ma, Jin (b209) 2019 Jung, Broadwater (b12) 2014; 31 Yu, Liu, Li, Lu, Yu, Wang, Li (b177) 2019; 238 Liu, Yu, Wu, Duan, Yan (b211) 2020; 202 Feng, Cui, Hodge, Zhang (b138) 2017; 190 Ibrahim, Alsheikh, Al-Hindawi, Al-Dahidi, Elmoaqet (b198) 2020; 2020 Yu, Li, Bao, Tang, Zhai (b205) 2018; 178 Wang, Li, Li, Yao, Wu (b132) 2021; 292 Marugán, Márquez, Perez, Ruiz-Hernández (b74) 2018; 228 Zhang, Qu, Zhang, Mao, Ma, Fan (b117) 2017; 136 Deo, Ghorbani, Samadianfard, Maraseni, Bilgili, Biazar (b233) 2018; 116 Dong, Sun, Li (b119) 2017; 102 Yang, Chen (b212) 2019; 277 Hong, Rioflorido (b173) 2019; 250 Cassola, Burlando (b42) 2012; 99 Luo, Li, Wang, Hu (b65) 2021; 89 Leng, Li, Zhu, Tang, Zhang, Ghadimi (b153) 2018; 36 Okumus, Dinler (b82) 2016; 123 (b7) 2021 Mi, Liu, Li (b114) 2019; 180 Wang, Hu, Li, Foley, Srinivasan (b1) 2019; 116 Elkin, Witherspoon (b73) 2021 Song, Tang, Ji, Todo (b139) 2020; 201 He, Chen, Shang, Li, Li, Xu (b221) 2019; 76 Ssekulima, Anwar, Al Hinai, El Moursi (b85) 2016; 10 Qian, Pei, Zareipour, Chen (b80) 2019; 235 Notchenko A, Kapushev E, Burnaev E. Sparse 3D convolutional neural networks for large-scale shape retrieval. In Hochreiter, Schmidhuber (b184) 1997; 9 Yunus, Thiringer, Chen (b34) 2015; 31 Severiano, e Silva, Cohen, Guimarães (b41) 2021; 171 Xiang, Li, Hu, Zhang (b124) 2020; 220 Zhu, Yuan, Xu, Luo, Zhang (b148) 2019; 198 Khosravi, Nahavandi (b28) 2013; 4 Peng, Zhou, Zhang, Zheng (b128) 2017; 153 Prósper, Otero-Casal, Fernández, Miguez-Macho (b17) 2019; 135 Hu, Chen (b63) 2018; 173 Fu, Wang, Li, Tan (b232) 2019; 187 Harbola, Coors (b90) 2019; 195 Zhang, Chen, Xiao, Zhang, Feng (b213) 2021; 174 Fu, Zhang, Wang, Wen, Fang, Zou (b228) 2021; 164 Kavasseri, Seetharaman (b35) 2009; 34 Wang, Wang, Jiang (b227) 2015; 143 Wu, Xiao (b108) 2019; 85 Qu, Mao, Zhang, Zhang, Li (b116) 2019; 133 Wilms, Cupelli, Monti, Gross (b197) 2019 Wang, Wang, Li, Peng, Liu (b22) 2016; 182 Han, Jing, Zhang, Gao (b110) 2019; 189 Wei, Yi-Ming, Zhao, Weigang, Zhongyue (b14) 2016; 178 Monteiro, Bessa, Miranda, Botterud, Wang, Conzelmann (b71) 2009 Chen, Zeng, Lu, Weng (b190) 2019; 6 Wei, Wang, Niu, Li (b222) 2021; 292 Moreno, Mariani, Coelho (b127) 2021; 164 Al-Shabandar, Jaddoa, Liatsis, Hussain (b223) 2021; 3 2016. Santhosh, Venkaiah, Kumar (b115) 2018; 168 Jiang, Liu, Niu, Zhang (b219) 2021; 217 Shi, Guo, Zheng (b51) 2012; 16 Mahmoud, Dong, Ma (b238) 2018; 126 Li, Zhu, Yang, Li (b118) 2019; 174 Zhang, Wei, Zhao, Liu, Zhu, Zhang (b142) 2016; 96 Moreno, da Silva, Mariani, dos Santos Coelho (b111) 2020; 213 Wang, Wang, Wei (b38) 2015; 91 Ghaderi, Sanandaji, Ghaderi (b55) 2017 Wang, Xiong (b99) 2014; 76 Kong, Liu, Shi, Lee (b149) 2015; 169 Liu, Mi, Li, Duan, Xu (b204) 2019; 143 Liu, Mi, Li (b39) 2018; 159 Wang, Song, Liu, Hou (b2) 2016; 60 Wu, Wu, Zhu (b137) 2019; 13 Landberg (b67) 2000 Zhang, Chen, Gan, Chen (b164) 2015; 6 Maatallah, Achuthan, Janoyan, Marzocca (b36) 2015; 145 Wu, Xia, Xiao, Liu (b126) 2020; 261 Liu, Tian, Li (b105) 2015; 89 Mezaache, Bouzgou (b50) 2018 Saeed, Li, Danish, Rubaiee, Tang, Gan, Ahmed (b193) 2020; 8 Hu, Hu, Gökmen, Li, Huang, Chen (b140) 2019; 140 Mehrkanoon (b180) 2019; 179 Khalid, Javaid (b84) 2020; 61 Wang, Wang, Srinivasan, Hu (b100) 2019; 132 Tao, Chen, Qiu (b167) 2014 Wang, Yang, Du, Niu (b64) 2018; 163 He, Li, Wang, Yao (b133) 2021; 430 Yan, Zhang, Liu, Han, Li, Lu (b18) 2018; 33 Mi, Liu, Li (b125) 2017; 151 Liu, Mi, Li (b106) 2018; 155 Chen, He, Shang, Li, Li, Xu (b220) 2019; 179 Sabzehgar, Amirhosseini, Rasouli (b10) 2020; 32 Liang, Xie, Fan, Meng (b217) 2020; 8 (b72) 2021 Wang, Heng, Xiao, Wang (b237) 2017; 125 Liu, Niu, Wang, Fan (b141) 2014; 62 Chen, Duan, Cai, Liu, Hu (b9) 2011; 5 Mezaache, Bouzgou, Raymond (b152) 2016 Khosravi, Nahavandi, Creighton, Atiya (b31) 2010; 22 Ju, Sun, Chen, Zhang, Zhu, Rehman (b89) 2019 Zhang, Peng, Pan, Liu (b107) 2019; 180 Soman, Zareipour, Malik, Mandal (b11) 2010 Chen, Li, Zhang, Li (b195) 2020; 8 Osório, Matias, Catalão (b104) 2015; 75 Yin, Dong, Chen, Ge, Lai, Vaccaro, Meng (b235) 2017; 150 Yang, Shi, Liu (b97) 2021; 218 Neshat, Nezhad, Abbasnejad, Mirjalili, Tjernberg, Garcia, Alexander, Wagner (b46) 2021; 236 2008, p. 1096–103. Jahangir, Golkar, Alhameli, Mazouz, Ahmadian, Elkamel (b136) 2020; 38 Li, Wang, Chen, Zou (b101) 2020; 210 Chen, Zhang, Zhang, Peng, Cai (b54) 2019; 185 Liu, Duan, Wu, Li, Dong (b129) 2019; 148 Woo, Park, Park (b200) 2018 Hong, Satriani (b176) 2020 Trebing, Mehrkanoon (b181) 2020 Saufi, Ahmad, Leong, Lim (b161) 2020; 16 He, Nie, Guo, Wang (b44) 2020; 8 Li, Tang, Xue, Saeed, Hu (b92) 2019; 11 Wang, Qin, Zhou, Jiang (b130) 2015; 76 Wang, Qi, Liu, Song (b168) 2018; 165 Giebel, Landberg, Kariniotakis, Brownsword (b70) 2003 Yin, Duan, Shen, Qu (b160) 2017 Zhang, Qin, Liu, Yao, Yu, Lu, Jiang, Feng (b30) 2019; 196 Song, Xie, He, Dang (b45) 2020 Liu (10.1016/j.apenergy.2021.117766_b103) 2020; 259 Jung (10.1016/j.apenergy.2021.117766_b12) 2014; 31 Lin (10.1016/j.apenergy.2021.117766_b165) 2019; 7 Wang (10.1016/j.apenergy.2021.117766_b8) 2018; 10 Wang (10.1016/j.apenergy.2021.117766_b3) 2020; 12 Zhang (10.1016/j.apenergy.2021.117766_b207) 2020; 35 Wang (10.1016/j.apenergy.2021.117766_b130) 2015; 76 Xiao (10.1016/j.apenergy.2021.117766_b60) 2021; 99 Peng (10.1016/j.apenergy.2021.117766_b94) 2020; 207 Araya (10.1016/j.apenergy.2021.117766_b185) 2019 Chen (10.1016/j.apenergy.2021.117766_b54) 2019; 185 Liu (10.1016/j.apenergy.2021.117766_b129) 2019; 148 Chollet (10.1016/j.apenergy.2021.117766_b240) 2015 Khodayar (10.1016/j.apenergy.2021.117766_b208) 2018; 10 Al-Shabandar (10.1016/j.apenergy.2021.117766_b223) 2021; 3 Qian (10.1016/j.apenergy.2021.117766_b80) 2019; 235 Yang (10.1016/j.apenergy.2021.117766_b97) 2021; 218 Liu (10.1016/j.apenergy.2021.117766_b179) 2020; 260 Song (10.1016/j.apenergy.2021.117766_b139) 2020; 201 Qu (10.1016/j.apenergy.2021.117766_b116) 2019; 133 Marugán (10.1016/j.apenergy.2021.117766_b74) 2018; 228 Jiang (10.1016/j.apenergy.2021.117766_b219) 2021; 217 Deo (10.1016/j.apenergy.2021.117766_b233) 2018; 116 Schuster (10.1016/j.apenergy.2021.117766_b191) 2002; 45 Khodayar (10.1016/j.apenergy.2021.117766_b155) 2015 Sabzehgar (10.1016/j.apenergy.2021.117766_b10) 2020; 32 Liu (10.1016/j.apenergy.2021.117766_b162) 2020; 121 Amjady (10.1016/j.apenergy.2021.117766_b144) 2011; 2 Soman (10.1016/j.apenergy.2021.117766_b11) 2010 Santhosh (10.1016/j.apenergy.2021.117766_b115) 2018; 168 Ju (10.1016/j.apenergy.2021.117766_b89) 2019 Zhang (10.1016/j.apenergy.2021.117766_b117) 2017; 136 Okumus (10.1016/j.apenergy.2021.117766_b82) 2016; 123 Liu (10.1016/j.apenergy.2021.117766_b211) 2020; 202 Niu (10.1016/j.apenergy.2021.117766_b47) 2020; 196 Cho (10.1016/j.apenergy.2021.117766_b202) 2014 Liu (10.1016/j.apenergy.2021.117766_b106) 2018; 155 Wilms (10.1016/j.apenergy.2021.117766_b197) 2019 Qin (10.1016/j.apenergy.2021.117766_b201) 2019; 236 Khosravi (10.1016/j.apenergy.2021.117766_b31) 2010; 22 Wang (10.1016/j.apenergy.2021.117766_b230) 2016; 94 Chen (10.1016/j.apenergy.2021.117766_b9) 2011; 5 Kavasseri (10.1016/j.apenergy.2021.117766_b35) 2009; 34 Zendehboudi (10.1016/j.apenergy.2021.117766_b75) 2018; 199 Yan (10.1016/j.apenergy.2021.117766_b18) 2018; 33 Yu (10.1016/j.apenergy.2021.117766_b186) 2019; 93 Zhang (10.1016/j.apenergy.2021.117766_b231) 2020; 156 Zhao (10.1016/j.apenergy.2021.117766_b23) 2020; 203 Cassola (10.1016/j.apenergy.2021.117766_b42) 2012; 99 Li (10.1016/j.apenergy.2021.117766_b118) 2019; 174 Zhang (10.1016/j.apenergy.2021.117766_b142) 2016; 96 Yan (10.1016/j.apenergy.2021.117766_b215) 2020; 8 Wang (10.1016/j.apenergy.2021.117766_b64) 2018; 163 Niu (10.1016/j.apenergy.2021.117766_b121) 2018; 118 Liu (10.1016/j.apenergy.2021.117766_b98) 2020; 397 Fu (10.1016/j.apenergy.2021.117766_b232) 2019; 187 Wang (10.1016/j.apenergy.2021.117766_b168) 2018; 165 Wang (10.1016/j.apenergy.2021.117766_b132) 2021; 292 Yuan (10.1016/j.apenergy.2021.117766_b24) 2019; 82 Qureshi (10.1016/j.apenergy.2021.117766_b59) 2017; 58 Guo (10.1016/j.apenergy.2021.117766_b102) 2012; 37 Liu (10.1016/j.apenergy.2021.117766_b159) 2014 Liu (10.1016/j.apenergy.2021.117766_b123) 2015; 157 Ahmed (10.1016/j.apenergy.2021.117766_b81) 2019; 100 Zhang (10.1016/j.apenergy.2021.117766_b175) 2020; 226 Wan (10.1016/j.apenergy.2021.117766_b49) 2016; 30 Zhu (10.1016/j.apenergy.2021.117766_b53) 2019; 11 Hu (10.1016/j.apenergy.2021.117766_b63) 2018; 173 Mehrkanoon (10.1016/j.apenergy.2021.117766_b180) 2019; 179 Wen (10.1016/j.apenergy.2021.117766_b229) 2020; 94 Song (10.1016/j.apenergy.2021.117766_b43) 2018; 215 Osório (10.1016/j.apenergy.2021.117766_b104) 2015; 75 Zhang (10.1016/j.apenergy.2021.117766_b213) 2021; 174 Ding (10.1016/j.apenergy.2021.117766_b48) 2019; 365 Wang (10.1016/j.apenergy.2021.117766_b234) 2021; 171 Kiranyaz (10.1016/j.apenergy.2021.117766_b183) 2021; 151 Fu (10.1016/j.apenergy.2021.117766_b228) 2021; 164 Higashiyama (10.1016/j.apenergy.2021.117766_b88) 2018; 155 Wei (10.1016/j.apenergy.2021.117766_b222) 2021; 292 Wang (10.1016/j.apenergy.2021.117766_b224) 2021; 216 Ahmad (10.1016/j.apenergy.2021.117766_b83) 2020; 55 Mi (10.1016/j.apenergy.2021.117766_b114) 2019; 180 He (10.1016/j.apenergy.2021.117766_b133) 2021; 430 Wang (10.1016/j.apenergy.2021.117766_b2) 2016; 60 Sun (10.1016/j.apenergy.2021.117766_b112) 2018; 165 Monteiro (10.1016/j.apenergy.2021.117766_b71) 2009 Yang (10.1016/j.apenergy.2021.117766_b5) 2021; 24 Giebel (10.1016/j.apenergy.2021.117766_b70) 2003 Liu (10.1016/j.apenergy.2021.117766_b105) 2015; 89 Peng (10.1016/j.apenergy.2021.117766_b113) 2020; 156 Chen (10.1016/j.apenergy.2021.117766_b62) 2021; 227 Hong (10.1016/j.apenergy.2021.117766_b173) 2019; 250 Wang (10.1016/j.apenergy.2021.117766_b237) 2017; 125 Liu (10.1016/j.apenergy.2021.117766_b141) 2014; 62 Hu (10.1016/j.apenergy.2021.117766_b166) 2015 Yan (10.1016/j.apenergy.2021.117766_b122) 2020; 225 Mezaache (10.1016/j.apenergy.2021.117766_b50) 2018 Jiang (10.1016/j.apenergy.2021.117766_b226) 2017; 119 Khalid (10.1016/j.apenergy.2021.117766_b84) 2020; 61 Leng (10.1016/j.apenergy.2021.117766_b153) 2018; 36 Mahmoud (10.1016/j.apenergy.2021.117766_b238) 2018; 126 Wu (10.1016/j.apenergy.2021.117766_b66) 2020; 146 He (10.1016/j.apenergy.2021.117766_b221) 2019; 76 Hu (10.1016/j.apenergy.2021.117766_b140) 2019; 140 Ibrahim (10.1016/j.apenergy.2021.117766_b198) 2020; 2020 Hu (10.1016/j.apenergy.2021.117766_b210) 2020; 154 Wang (10.1016/j.apenergy.2021.117766_b22) 2016; 182 Banik (10.1016/j.apenergy.2021.117766_b26) 2020; 14 Wu (10.1016/j.apenergy.2021.117766_b108) 2019; 85 Feng (10.1016/j.apenergy.2021.117766_b138) 2017; 190 Tascikaraoglu (10.1016/j.apenergy.2021.117766_b76) 2014; 34 Zhang (10.1016/j.apenergy.2021.117766_b170) 2019; 168 Zhu (10.1016/j.apenergy.2021.117766_b171) 2017 Liang (10.1016/j.apenergy.2021.117766_b217) 2020; 8 Liu (10.1016/j.apenergy.2021.117766_b39) 2018; 159 Afrasiabi (10.1016/j.apenergy.2021.117766_b86) 2020; 17 Tao (10.1016/j.apenergy.2021.117766_b167) 2014 Jahangir (10.1016/j.apenergy.2021.117766_b136) 2020; 38 Han (10.1016/j.apenergy.2021.117766_b33) 2017; 148 Ghaderi (10.1016/j.apenergy.2021.117766_b55) 2017 Santamaría-Bonfil (10.1016/j.apenergy.2021.117766_b20) 2016; 85 Khosravi (10.1016/j.apenergy.2021.117766_b29) 2011; 22 Shi (10.1016/j.apenergy.2021.117766_b51) 2012; 16 Landberg (10.1016/j.apenergy.2021.117766_b67) 2000 Han (10.1016/j.apenergy.2021.117766_b188) 2019; 13 Liu (10.1016/j.apenergy.2021.117766_b4) 2019; 249 Wei (10.1016/j.apenergy.2021.117766_b14) 2016; 178 Liu (10.1016/j.apenergy.2021.117766_b79) 2020; 224 Xiao (10.1016/j.apenergy.2021.117766_b77) 2015; 44 Zhang (10.1016/j.apenergy.2021.117766_b164) 2015; 6 He (10.1016/j.apenergy.2021.117766_b172) 2020; 207 Yu (10.1016/j.apenergy.2021.117766_b177) 2019; 238 Wang (10.1016/j.apenergy.2021.117766_b206) 2020; PP Mezaache (10.1016/j.apenergy.2021.117766_b152) 2016 Saufi (10.1016/j.apenergy.2021.117766_b161) 2020; 16 Hu (10.1016/j.apenergy.2021.117766_b25) 2020; 162 Chen (10.1016/j.apenergy.2021.117766_b220) 2019; 179 Kong (10.1016/j.apenergy.2021.117766_b149) 2015; 169 Yin (10.1016/j.apenergy.2021.117766_b160) 2017 Chen (10.1016/j.apenergy.2021.117766_b52) 2021; 48 Yang (10.1016/j.apenergy.2021.117766_b212) 2019; 277 Li (10.1016/j.apenergy.2021.117766_b187) 2018; 167 Sun (10.1016/j.apenergy.2021.117766_b151) 2017; 197 Elkin (10.1016/j.apenergy.2021.117766_b73) 2021 Liu (10.1016/j.apenergy.2021.117766_b174) 2018; 166 Liu (10.1016/j.apenergy.2021.117766_b150) 2018; 9 Mi (10.1016/j.apenergy.2021.117766_b125) 2017; 151 Hinton (10.1016/j.apenergy.2021.117766_b163) 2012 Biswas (10.1016/j.apenergy.2021.117766_b192) 2020 Yu (10.1016/j.apenergy.2021.117766_b205) 2018; 178 Hochreiter (10.1016/j.apenergy.2021.117766_b184) 1997; 9 Li (10.1016/j.apenergy.2021.117766_b61) 2020; 270 10.1016/j.apenergy.2021.117766_b134 He (10.1016/j.apenergy.2021.117766_b44) 2020; 8 Shi (10.1016/j.apenergy.2021.117766_b196) 2015; 28 Li (10.1016/j.apenergy.2021.117766_b101) 2020; 210 Lei (10.1016/j.apenergy.2021.117766_b32) 2009; 13 Li (10.1016/j.apenergy.2021.117766_b92) 2019; 11 Severiano (10.1016/j.apenergy.2021.117766_b41) 2021; 171 Xiang (10.1016/j.apenergy.2021.117766_b124) 2020; 220 Liu (10.1016/j.apenergy.2021.117766_b218) 2021; 233 Pei (10.1016/j.apenergy.2021.117766_b216) 2019; 196 Jujie (10.1016/j.apenergy.2021.117766_b189) 2018; 230 (10.1016/j.apenergy.2021.117766_b72) 2021 Altan (10.1016/j.apenergy.2021.117766_b236) 2021; 100 Zhang (10.1016/j.apenergy.2021.117766_b107) 2019; 180 Wen (10.1016/j.apenergy.2021.117766_b209) 2019 Song (10.1016/j.apenergy.2021.117766_b45) 2020 Neshat (10.1016/j.apenergy.2021.117766_b46) 2021; 236 (10.1016/j.apenergy.2021.117766_b7) 2021 Chen (10.1016/j.apenergy.2021.117766_b190) 2019; 6 Harbola (10.1016/j.apenergy.2021.117766_b90) 2019; 195 Wu (10.1016/j.apenergy.2021.117766_b126) 2020; 261 Wang (10.1016/j.apenergy.2021.117766_b178) 2017; 188 Khodayar (10.1016/j.apenergy.2021.117766_b157) 2017; 13 Dong (10.1016/j.apenergy.2021.117766_b119) 2017; 102 Fu (10.1016/j.apenergy.2021.117766_b40) 2020; 205 Zhang (10.1016/j.apenergy.2021.117766_b30) 2019; 196 Moreno (10.1016/j.apenergy.2021.117766_b111) 2020; 213 Li (10.1016/j.apenergy.2021.117766_b96) 2019 Wang (10.1016/j.apenergy.2021.117766_b1) 2019; 116 Vincent (10.1016/j.apenergy.2021.117766_b91) 2010; 11 Xiaosheng (10.1016/j.apenergy.2021.117766_b135) 2018 10.1016/j.apenergy.2021.117766_b182 Khosravi (10.1016/j.apenergy.2021.117766_b28) 2013; 4 Yan (10.1016/j.apenergy.2021.117766_b13) 2019; 180 Moreno (10.1016/j.apenergy.2021.117766_b120) 2018; 126 Saeed (10.1016/j.apenergy.2021.117766_b193) 2020; 8 Lee (10.1016/j.apenergy.2021.117766_b6) 2020 Zhu (10.1016/j.apenergy.2021.117766_b148) 2019; 198 Behera (10.1016/j.apenergy.2021.117766_b225) 2021; 554 Maatallah (10.1016/j.apenergy.2021.117766_b36) 2015; 145 Nielsen (10.1016/j.apenergy.2021.117766_b68) 2000 Moreno (10.1016/j.apenergy.2021.117766_b127) 2021; 164 Wang (10.1016/j.apenergy.2021.117766_b227) 2015; 143 Ren (10.1016/j.apenergy.2021.117766_b78) 2015; 50 Yang (10.1016/j.apenergy.2021.117766_b239) 2 |
| References_xml | – volume: 62 start-page: 592 year: 2014 end-page: 597 ident: b141 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew Energy – volume: 6 start-page: 1447 year: 2015 end-page: 1456 ident: b145 article-title: Wind power forecasting using neural network ensembles with feature selection publication-title: IEEE Trans Sustain Energy – volume: 166 start-page: 120 year: 2018 end-page: 131 ident: b174 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers Manage – volume: 91 start-page: 556 year: 2015 end-page: 572 ident: b38 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy – volume: 10 start-page: 670 year: 2018 end-page: 681 ident: b208 article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting publication-title: IEEE Trans Sustain Energy – volume: 202 year: 2020 ident: b211 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy – volume: 11 start-page: 1370 year: 2019 end-page: 1380 ident: b92 article-title: Short-term wind speed interval prediction based on ensemble GRU model publication-title: IEEE Trans Sustain Energy – volume: 173 start-page: 123 year: 2018 end-page: 142 ident: b63 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers Manage – start-page: 1657 year: 2015 end-page: 1663 ident: b147 article-title: Deep neural networks for ultra-short-term wind forecasting publication-title: 2015 ieee international conference on industrial technology (icit) – volume: 33 start-page: 3276 year: 2018 end-page: 3284 ident: b18 article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping publication-title: IEEE Trans Power Syst – year: 2020 ident: b6 article-title: Global wind report 2019 – start-page: 368 year: 2015 ident: b166 article-title: Continuous RBM based deep neural network for wind speed forecasting in Hong Kong publication-title: Proceedings of the international conference on image processing, computer vision, and pattern recognition (ipcv) – volume: 102 start-page: 241 year: 2017 end-page: 257 ident: b119 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China publication-title: Renew Energy – volume: 116 year: 2019 ident: b1 article-title: Approaches to wind power curve modeling: A review and discussion publication-title: Renew Sustain Energy Rev – volume: 195 start-page: 328 year: 2019 end-page: 345 ident: b21 article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods publication-title: Energy Convers Manage – volume: 31 start-page: 2546 year: 2015 end-page: 2556 ident: b34 article-title: Arima-based frequency-decomposed modeling of wind speed time series publication-title: IEEE Trans Power Syst – volume: 164 start-page: 1508 year: 2021 end-page: 1526 ident: b127 article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in brazilian northeast publication-title: Renew Energy – volume: 13 start-page: 1690 year: 2019 end-page: 1700 ident: b188 article-title: Multi-step wind power forecast based on VMD-LSTM publication-title: IET Renew Power Gener – volume: 156 start-page: 498 year: 2018 end-page: 514 ident: b109 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network publication-title: Energy Convers Manage – volume: 236 year: 2021 ident: b46 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm publication-title: Energy Convers Manage – volume: 2 start-page: 265 year: 2011 end-page: 276 ident: b144 article-title: Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization publication-title: IEEE Trans Sustain Energy – volume: 11 year: 2010 ident: b91 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. publication-title: J Mach Learn Res – volume: 10 start-page: 885 year: 2016 end-page: 989 ident: b85 article-title: Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review publication-title: IET Renew Power Gener – volume: 85 year: 2019 ident: b108 article-title: A secondary decomposition based hybrid structure with meteorological analysis for deterministic and probabilistic wind speed forecasting publication-title: Appl Soft Comput – volume: 119 start-page: 561 year: 2017 end-page: 577 ident: b226 article-title: Short-term wind speed forecasting using a hybrid model publication-title: Energy – volume: 270 year: 2020 ident: b61 article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm publication-title: J Cleaner Prod – start-page: 1 year: 2010 end-page: 8 ident: b11 article-title: A review of wind power and wind speed forecasting methods with different time horizons publication-title: North american power symposium (naps), 2010 – volume: 185 start-page: 783 year: 2019 end-page: 799 ident: b54 article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting publication-title: Energy Convers Manage – volume: 8 start-page: 165612 year: 2020 end-page: 165630 ident: b217 article-title: A combined model based on ceemdan, permutation entropy, gated recurrent unit network, and an improved bat algorithm for wind speed forecasting publication-title: IEEE Access – volume: 179 start-page: 13 year: 2019 end-page: 29 ident: b220 article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of nrel publication-title: Energy Convers Manage – volume: 189 year: 2019 ident: b110 article-title: Wind power forecast based on improved long short term memory network publication-title: Energy – volume: 218 year: 2021 ident: b97 article-title: Day-ahead wind power forecasting based on the clustering of equivalent power curves publication-title: Energy – volume: 82 year: 2019 ident: b24 article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model publication-title: Appl Soft Comput – volume: 100 year: 2021 ident: b236 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput – volume: 145 start-page: 270 year: 2020 end-page: 281 ident: b131 article-title: Chaotic wind power time series prediction via switching data-driven modes publication-title: Renew Energy – volume: 1087 year: 2018 ident: b93 article-title: Short-term wind power prediction method based on wavelet packet decomposition and improved GRU publication-title: J Phys Conf Ser – volume: 6 start-page: 1416 year: 2015 end-page: 1425 ident: b164 article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting publication-title: IEEE Trans Sustain Energy – start-page: 1 year: 2014 end-page: 4 ident: b167 article-title: Wind power prediction and pattern feature based on deep learning method publication-title: 2014 ieee pes asia-pacific power and energy engineering conference (appeec) – volume: 28 start-page: 802 year: 2015 end-page: 810 ident: b196 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv Neural Inf Process Syst – volume: 85 start-page: 790 year: 2016 end-page: 809 ident: b20 article-title: Wind speed forecasting for wind farms: A method based on support vector regression publication-title: Renew Energy – volume: 17 start-page: 720 year: 2020 end-page: 727 ident: b86 article-title: Advanced deep learning approach for probabilistic wind speed forecasting publication-title: IEEE Trans Ind Inf – year: 2000 ident: b67 article-title: Prediktor-an on-line prediction system publication-title: Wind power for the 21st century: euwec special topic conference and exhibition – volume: 10 start-page: 16 year: 2018 end-page: 25 ident: b8 article-title: Wind power curve modeling and wind power forecasting with inconsistent data publication-title: IEEE Trans Sustain Energy – volume: 236 start-page: 262 year: 2019 end-page: 272 ident: b201 article-title: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal publication-title: Appl Energy – volume: 50 start-page: 82 year: 2015 end-page: 91 ident: b78 article-title: Ensemble methods for wind and solar power forecasting–a state-of-the-art review publication-title: Renew Sustain Energy Rev – volume: 143 start-page: 472 year: 2015 end-page: 488 ident: b227 article-title: The study and application of a novel hybrid forecasting model - a case study of wind speed forecasting in China publication-title: Appl Energy – volume: 60 start-page: 960 year: 2016 end-page: 981 ident: b2 article-title: Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models publication-title: Renew Sustain Energy Rev – volume: 188 start-page: 56 year: 2017 end-page: 70 ident: b178 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl Energy – volume: 93 start-page: 33 year: 2019 end-page: 42 ident: b186 article-title: Lstm-efg for wind power forecasting based on sequential correlation features publication-title: Future Gener Comput Syst – year: 2009 ident: b71 article-title: Wind power forecasting: State-of-the-art 2009 – start-page: 4561 year: 2018 end-page: 4564 ident: b56 article-title: A multi-variable stacked long-short term memory network for wind speed forecasting publication-title: 2018 ieee international conference on big data (big data) – volume: 75 start-page: 301 year: 2015 end-page: 307 ident: b104 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy – volume: 227 year: 2021 ident: b62 article-title: Short-term wind speed predicting framework based on eemd-ga-lstm method under large scaled wind history publication-title: Energy Convers Manage – volume: 48 year: 2021 ident: b52 article-title: Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning publication-title: Adv Eng Inform – volume: 397 start-page: 393 year: 2020 end-page: 403 ident: b98 article-title: Wind speed forecasting using deep neural network with feature selection publication-title: Neurocomputing – volume: 159 start-page: 54 year: 2018 end-page: 64 ident: b39 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm publication-title: Energy Convers Manage – year: 2020 ident: b176 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy – reference: Notchenko A, Kapushev E, Burnaev E. Sparse 3D convolutional neural networks for large-scale shape retrieval. In – volume: 44 start-page: 271 year: 2015 end-page: 288 ident: b77 article-title: Combined forecasting models for wind energy forecasting: A case study in China publication-title: Renew Sustain Energy Rev – volume: 195 start-page: 70 year: 2019 end-page: 75 ident: b90 article-title: One dimensional convolutional neural network architectures for wind prediction publication-title: Energy Convers Manage – volume: 217 year: 2021 ident: b219 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy – volume: 8 start-page: 67955 year: 2020 end-page: 67973 ident: b195 article-title: Short-term wind speed forecasting with principle-subordinate predictor based on conv-LSTM and improved BPNN publication-title: IEEE Access – volume: 292 year: 2021 ident: b132 article-title: Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration publication-title: Appl Energy – volume: 168 start-page: 558 year: 2019 end-page: 572 ident: b170 article-title: A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing publication-title: Energy – volume: 36 start-page: 20 year: 2018 end-page: 30 ident: b153 article-title: A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting publication-title: Adv Eng Inform – volume: 56 start-page: 6117 year: 2020 end-page: 6127 ident: b19 article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression publication-title: IEEE Trans Ind Appl – volume: 34 start-page: 243 year: 2014 end-page: 254 ident: b76 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev – volume: 94 year: 2020 ident: b229 article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine publication-title: Appl Soft Comput – volume: 249 start-page: 392 year: 2019 end-page: 408 ident: b4 article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review publication-title: Appl Energy – volume: 38 year: 2020 ident: b136 article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN publication-title: Sustain Energy Technol Assess – volume: 116 start-page: 309 year: 2018 end-page: 323 ident: b233 article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data publication-title: Renew Energy – start-page: 1 year: 2019 ident: b89 article-title: A model combining convolutional neural network and lightgbm algorithm for ultra-short-term wind power forecasting publication-title: IEEE Access – volume: 151 year: 2021 ident: b183 article-title: 1d convolutional neural networks and applications: A survey publication-title: Mech Syst Signal Process – volume: 259 year: 2020 ident: b103 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Appl Energy – volume: 228 start-page: 1822 year: 2018 end-page: 1836 ident: b74 article-title: A survey of artificial neural network in wind energy systems publication-title: Appl Energy – volume: 230 start-page: 429 year: 2018 end-page: 443 ident: b189 article-title: Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy publication-title: Appl Energy – volume: 213 year: 2020 ident: b111 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers Manage – volume: 89 start-page: 1 year: 2015 end-page: 11 ident: b105 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage – volume: 89 start-page: 49 year: 2021 end-page: 72 ident: b65 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Appl Math Model – volume: 12 start-page: 191 year: 2020 end-page: 201 ident: b3 article-title: Sparse heteroscedastic multiple spline regression models for wind turbine power curve modeling publication-title: IEEE Trans Sustain Energy – reference: , 2016. – year: 2021 ident: b69 article-title: Wind power forecasting software: – volume: 261 year: 2020 ident: b126 article-title: Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting publication-title: Appl Energy – volume: 126 start-page: 736 year: 2018 end-page: 754 ident: b120 article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system publication-title: Renew Energy – volume: 150 start-page: 108 year: 2017 end-page: 121 ident: b235 article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization publication-title: Energy Convers Manage – volume: 207 year: 2020 ident: b94 article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting publication-title: Energy Convers Manage – volume: 32 year: 2020 ident: b10 article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods publication-title: J Build Eng – volume: 13 start-page: 2770 year: 2017 end-page: 2779 ident: b157 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inf – volume: 210 year: 2020 ident: b101 article-title: BayesIan robust multi-extreme learning machine publication-title: Knowl-Based Syst – start-page: 1 year: 2018 end-page: 5 ident: b200 article-title: Predicting wind turbine power and load outputs by multi-task convolutional LSTM model publication-title: 2018 ieee power & energy society general meeting (pesgm) – volume: 100 start-page: 9 year: 2019 end-page: 21 ident: b81 article-title: A review on the selected applications of forecasting models in renewable power systems publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 762 year: 2014 end-page: 777 ident: b12 article-title: Current status and future advances for wind speed and power forecasting publication-title: Renew Sustain Energy Rev – volume: 16 start-page: 6263 year: 2020 end-page: 6271 ident: b161 article-title: Gearbox fault diagnosis using a deep learning model with limited data sample publication-title: IEEE Trans Ind Inf – volume: 157 start-page: 183 year: 2015 end-page: 194 ident: b123 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy – volume: 365 start-page: 54 year: 2019 end-page: 61 ident: b48 article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting publication-title: Neurocomputing – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: b32 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev – volume: 250 start-page: 530 year: 2019 end-page: 539 ident: b173 article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting publication-title: Appl Energy – volume: 207 year: 2020 ident: b172 article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions publication-title: Knowl-Based Syst – start-page: 1724 year: 2014 end-page: 1734 ident: b202 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation publication-title: EMNLP 2014 - 2014 conference on empirical methods in natural language processing, proceedings of the conference – volume: PP start-page: 1 year: 2020 end-page: 14 ident: b206 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Trans Neural Netw Learn Syst – volume: 224 year: 2020 ident: b79 article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications publication-title: Energy Convers Manage – volume: 22 start-page: 337 year: 2010 end-page: 346 ident: b31 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Trans Neural Netw – year: 2021 ident: b72 article-title: AleaSoft: Energy forecasting – volume: 154 start-page: 598 year: 2020 end-page: 613 ident: b210 article-title: Forecasting energy consumption and wind power generation using deep echo state network publication-title: Renew Energy – volume: 235 start-page: 939 year: 2019 end-page: 953 ident: b80 article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications publication-title: Appl Energy – start-page: 131 year: 2017 end-page: 135 ident: b171 article-title: Wind power prediction based on a convolutional neural network publication-title: 2017 international conference on circuits, devices and systems (iccds) – volume: 126 start-page: 254 year: 2018 end-page: 269 ident: b238 article-title: An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine publication-title: Renew Energy – volume: 165 start-page: 939 year: 2018 end-page: 957 ident: b112 article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine publication-title: Energy – volume: 163 start-page: 134 year: 2018 end-page: 150 ident: b64 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers Manage – volume: 68 start-page: 8298 year: 2020 end-page: 8309 ident: b95 article-title: Deep learning-based forecasting approach in smart grids with micro-clustering and bi-directional LSTM network publication-title: IEEE Trans Ind Electron – volume: 13 start-page: 2062 year: 2019 end-page: 2069 ident: b137 article-title: Data-driven wind speed forecasting using deep feature extraction and LSTM publication-title: IET Renew Power Gener – volume: 76 start-page: 717 year: 2019 end-page: 740 ident: b221 article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm publication-title: Appl Math Model – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b42 article-title: Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output publication-title: Appl Energy – volume: 11 start-page: 2294 year: 2019 end-page: 2304 ident: b214 article-title: Wind field-based short-term turbine response forecasting by stacked dilated convolutional lstms publication-title: IEEE Trans Sustain Energy – start-page: 1 year: 2014 ident: b159 article-title: Deep neural network based feature representation for weather forecasting publication-title: Proceedings on the international conference on artificial intelligence (icai) – volume: 22 start-page: 1341 year: 2011 end-page: 1356 ident: b29 article-title: Comprehensive review of neural network-based prediction intervals and new advances publication-title: IEEE Trans Neural Netw – volume: 260 year: 2020 ident: b179 article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model publication-title: Appl Energy – start-page: 713 year: 2020 end-page: 720 ident: b181 article-title: Wind speed prediction using multidimensional convolutional neural networks publication-title: 2020 ieee symposium series on computational intelligence (ssci) – volume: 220 year: 2020 ident: b124 article-title: Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method publication-title: Energy Convers Manage – volume: 156 start-page: 804 year: 2020 end-page: 819 ident: b113 article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting publication-title: Renew Energy – volume: 196 start-page: 779 year: 2019 end-page: 792 ident: b216 article-title: Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network publication-title: Energy Convers Manage – volume: 155 start-page: 350 year: 2018 end-page: 358 ident: b88 article-title: Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks publication-title: Energy Procedia – start-page: 1 year: 2015 end-page: 5 ident: b155 article-title: Robust deep neural network for wind speed prediction publication-title: 2015 4th iranian joint congress on fuzzy and intelligent systems (cfis) – volume: 14 start-page: 2657 year: 2020 end-page: 2667 ident: b26 article-title: Uncertain wind power forecasting using LSTM-based prediction interval publication-title: IET Renew Power Gener – volume: 143 start-page: 1172 year: 2019 end-page: 1192 ident: b37 article-title: A novel non-linear combination system for short-term wind speed forecast publication-title: Renew Energy – volume: 133 start-page: 919 year: 2019 end-page: 929 ident: b116 article-title: Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network publication-title: Renew Energy – volume: 213 year: 2020 ident: b143 article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets publication-title: Energy Convers Manage – volume: 292 year: 2021 ident: b222 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Appl Energy – volume: 241 start-page: 229 year: 2019 end-page: 244 ident: b16 article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and gaussian mixture model publication-title: Appl Energy – volume: 148 start-page: 554 year: 2017 end-page: 568 ident: b33 article-title: Non-parametric hybrid models for wind speed forecasting publication-title: Energy Convers Manage – volume: 203 year: 2020 ident: b23 article-title: Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework publication-title: Energy Convers Manage – volume: 55 year: 2020 ident: b83 article-title: A review on renewable energy and electricity requirement forecasting models for smart grid and buildings publication-title: Sustainable Cities Soc – volume: 180 start-page: 338 year: 2019 end-page: 357 ident: b107 article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine publication-title: Energy Convers Manage – volume: 118 start-page: 213 year: 2018 end-page: 229 ident: b121 article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy publication-title: Renew Energy – volume: 155 start-page: 188 year: 2018 end-page: 200 ident: b106 article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks publication-title: Energy Convers Manage – year: 2020 ident: b87 article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data publication-title: Energy – volume: 6 start-page: 17851 year: 2018 end-page: 17858 ident: b158 article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting publication-title: IEEE Access – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b184 article-title: Long short-term memory publication-title: Neural Comput – volume: 196 start-page: 1395 year: 2019 end-page: 1409 ident: b30 article-title: Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation publication-title: Energy Convers Manage – volume: 180 start-page: 196 year: 2019 end-page: 205 ident: b114 article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine publication-title: Energy Convers Manage – volume: 33 start-page: 35 year: 2008 end-page: 41 ident: b15 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew Energy – year: 2019 ident: b185 article-title: A multi-scale model based on the long short-term memory for day ahead hourly wind speed forecasting publication-title: Pattern Recognit Lett – start-page: 921 year: 2019 end-page: 926 ident: b197 article-title: Exploiting spatio-temporal dependencies for RNN-based wind power forecasts publication-title: IEEE pes gtd grand international conference and exposition asia – volume: 309 start-page: 05011 year: 2020 ident: b194 article-title: Multi-time scale wind speed prediction based on WT-bi-LSTM publication-title: MATEC Web Conf – volume: 174 start-page: 688 year: 2021 end-page: 704 ident: b213 article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism publication-title: Renew Energy – volume: 171 start-page: 764 year: 2021 end-page: 783 ident: b41 article-title: Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems publication-title: Renew Energy – volume: 135 start-page: 674 year: 2019 end-page: 686 ident: b17 article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations publication-title: Renew Energy – volume: 8 start-page: 51482 year: 2020 end-page: 51499 ident: b44 article-title: Research on a novel combination system on the basis of deep learning and swarm intelligence optimization algorithm for wind speed forecasting publication-title: IEEE Access – volume: 145 start-page: 191 year: 2015 end-page: 197 ident: b36 article-title: Recursive wind speed forecasting based on hammerstein auto-regressive model publication-title: Appl Energy – volume: 168 start-page: 482 year: 2018 end-page: 493 ident: b115 article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction publication-title: Energy Convers Manage – volume: 201 year: 2020 ident: b139 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowl-Based Syst – volume: 76 start-page: 91 year: 2015 end-page: 101 ident: b130 article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in xinjiang, China publication-title: Renew Energy – volume: 215 start-page: 643 year: 2018 end-page: 658 ident: b43 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy – year: 2003 ident: b70 article-title: State-of-the-art methods and software tools for short-term prediction of wind energy production publication-title: European wind energy conference and exhibition 2003 – volume: 205 year: 2020 ident: b169 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Convers Manage – year: 2016 ident: b152 article-title: Kernel principal components analysis with extreme learning machines for wind speed prediction publication-title: Seventh international renewable energy congress, irec2016 – start-page: 1580 year: 2017 end-page: 1585 ident: b160 article-title: Stacked sparse autoencoder based fault detection and location method for modular five-level converters publication-title: Iecon 2017-43rd annual conference of the ieee industrial electronics society – volume: 169 start-page: 449 year: 2015 end-page: 456 ident: b149 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neurocomputing – year: 2021 ident: b73 article-title: Machine learning can boost the value of wind energy – reference: , 2008, p. 1096–103. – volume: 216 year: 2021 ident: b224 article-title: Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and rif-based algorithm publication-title: Energy – volume: 197 start-page: 151 year: 2017 end-page: 162 ident: b151 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl Energy – volume: 37 start-page: 241 year: 2012 end-page: 249 ident: b102 article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model publication-title: Renew Energy – volume: 163 start-page: 1895 year: 2021 end-page: 1909 ident: b203 article-title: Wind power forecasting–a data-driven method along with gated recurrent neural network publication-title: Renew Energy – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b230 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and ga-bp neural network method publication-title: Renew Energy – volume: 121 year: 2020 ident: b162 article-title: Short-term wind speed forecasting based on the jaya-SVM model publication-title: Int J Electr Power Energy Syst – volume: 226 year: 2020 ident: b175 article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting publication-title: Energy Convers Manage – volume: 61 year: 2020 ident: b84 article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid publication-title: Sustainable Cities Soc – volume: 140 start-page: 17 year: 2019 end-page: 31 ident: b140 article-title: High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map publication-title: Renew Energy – volume: 8 start-page: 134422 year: 2020 end-page: 134434 ident: b199 article-title: Short-term wind power forecasting based on VMD decomposition, convlstm networks and error analysis publication-title: IEEE Access – start-page: 599 year: 2012 end-page: 619 ident: b163 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Networks: Tricks of the Trade – year: 2015 ident: b240 article-title: Keras – start-page: 1844 year: 2020 end-page: 1850 ident: b45 article-title: Ultra-short-term wind power combination forecasting model based on MEEMD-SAE-Elman publication-title: 2020 IEEE 4th information technology, networking, electronic and automation control conference (itnec), Vol. 1 – volume: 178 start-page: 137 year: 2018 end-page: 145 ident: b205 article-title: A novel framework for wind speed prediction based on recurrent neural networks and support vector machine publication-title: Energy Convers Manage – volume: 164 start-page: 211 year: 2021 end-page: 229 ident: b228 article-title: A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM publication-title: Renew Energy – volume: 16 start-page: 3471 year: 2012 end-page: 3480 ident: b51 article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series publication-title: Renew Sustain Energy Rev – volume: 156 start-page: 1373 year: 2020 end-page: 1388 ident: b231 article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD publication-title: Renew Energy – volume: 45 start-page: 2673 year: 2002 end-page: 2681 ident: b191 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans Signal Process – volume: 8 start-page: 182283 year: 2020 end-page: 182294 ident: b193 article-title: Hybrid bidirectional LSTM model for short-term wind speed interval prediction publication-title: IEEE Access – start-page: 2432 year: 2019 end-page: 2437 ident: b96 article-title: The application of deep neural network algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction publication-title: 2019 ieee 3rd information technology, networking, electronic and automation control conference (itnec) – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: b75 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: J Cleaner Prod – volume: 143 start-page: 842 year: 2019 end-page: 854 ident: b204 article-title: Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression publication-title: Renew Energy – volume: 277 year: 2019 ident: b212 article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods publication-title: Artificial Intelligence – volume: 233 year: 2021 ident: b218 article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the arima to wind speed prediction publication-title: Energy Convers Manage – volume: 32 start-page: 255 year: 2014 end-page: 270 ident: b27 article-title: Review on probabilistic forecasting of wind power generation publication-title: Renew Sustain Energy Rev – volume: 230 start-page: 1108 year: 2018 end-page: 1125 ident: b239 article-title: A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm publication-title: Appl Energy – year: 2021 ident: b7 article-title: Renewable capacity statistics 2021 – reference: Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust features with denoising autoencoders. In – volume: 132 start-page: 43 year: 2019 end-page: 60 ident: b100 article-title: Robust functional regression for wind speed forecasting based on sparse Bayesian learning publication-title: Renew Energy – volume: 153 start-page: 589 year: 2017 end-page: 602 ident: b128 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine publication-title: Energy Convers Manage – volume: 238 start-page: 249 year: 2019 end-page: 257 ident: b177 article-title: Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space publication-title: Appllied Energy – volume: 198 year: 2019 ident: b148 article-title: Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast publication-title: Energy Convers Manage – volume: 8 start-page: 227126 year: 2020 end-page: 227140 ident: b215 article-title: A hybrid short-term wind power prediction model combining data processing, multiple parameters optimization and multi-intelligent models apportion strategy publication-title: IEEE Access – volume: 146 start-page: 149 year: 2020 end-page: 165 ident: b66 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew Energy – volume: 123 start-page: 362 year: 2016 end-page: 371 ident: b82 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage – volume: 7 start-page: 99244 year: 2019 end-page: 99253 ident: b165 article-title: Deep belief networks with genetic algorithms in forecasting wind speed publication-title: IEEE Access – volume: 4 start-page: 849 year: 2013 end-page: 856 ident: b28 article-title: Combined nonparametric prediction intervals for wind power generation publication-title: IEEE Trans Sustain Energy – start-page: 1 year: 2018 end-page: 5 ident: b50 article-title: Auto-encoder with neural networks for wind speed forecasting publication-title: 2018 international conference on communications and electrical engineering (iccee) – volume: 32 start-page: 2673 year: 2017 end-page: 2681 ident: b154 article-title: Short-term electricity price forecasting with stacked denoising autoencoders publication-title: IEEE Trans Power Syst – year: 2017 ident: b55 article-title: Deep forecast: Deep learning-based spatio-temporal forecasting – volume: 554 start-page: 120 year: 2021 end-page: 144 ident: b225 article-title: Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems publication-title: Inform Sci – volume: 180 start-page: 302 year: 2019 end-page: 311 ident: b13 article-title: Advanced wind power prediction based on data-driven error correction publication-title: Energy Convers Manage – volume: 254 year: 2019 ident: b58 article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction publication-title: Appl Energy – volume: 9 start-page: 1919 year: 2018 end-page: 1931 ident: b150 article-title: Novel forecasting model based on improved wavelet transform, informative feature selection, and hybrid support vector machine on wind power forecasting publication-title: J Ambient Intell Humaniz Comput – volume: 5 start-page: 258 year: 2011 end-page: 267 ident: b9 article-title: Smart energy management system for optimal microgrid economic operation publication-title: IET Renew Power Gener – volume: 30 year: 2016 ident: b49 article-title: Day-ahead prediction of wind speed with deep feature learning publication-title: Int J Pattern Recognit Artif Intell – start-page: 1091 year: 2019 end-page: 1096 ident: b209 article-title: Probabilistic wind power forecasting via Bayesian deep learning based prediction intervals publication-title: 2019 ieee 17th international conference on industrial informatics (indin), Vol. 1 – volume: 179 start-page: 120 year: 2019 end-page: 128 ident: b180 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl-Based Syst – volume: 178 start-page: 886 year: 2016 end-page: 901 ident: b14 article-title: One day ahead wind speed forecasting: A resampling-based approach publication-title: Appl Energy – volume: 3 year: 2021 ident: b223 article-title: A deep gated recurrent neural network for petroleum production forecasting publication-title: Mach Learn Appl – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: b35 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy – volume: 165 start-page: 681 year: 2018 end-page: 695 ident: b57 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers Manage – volume: 165 start-page: 840 year: 2018 end-page: 852 ident: b168 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy – volume: 99 year: 2021 ident: b60 article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting publication-title: Appl Soft Comput – volume: 171 start-page: 1418 year: 2021 end-page: 1435 ident: b234 article-title: Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm publication-title: Renew Energy – volume: 136 start-page: 439 year: 2017 end-page: 451 ident: b117 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers Manage – start-page: 945 year: 2018 end-page: 948 ident: b135 article-title: A deep learning approach for wind power prediction based on stacked denoising auto encoders optimized by bat algorithm publication-title: 2018 china international conference on electricity distribution (ciced) – year: 2000 ident: b68 article-title: WPPT - a tool for wind power prediction publication-title: Prediction.Procedings of wind power for the 21st century, kassel, germany, 25-27 september 2000 – volume: 167 start-page: 203 year: 2018 end-page: 219 ident: b187 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers Manage – volume: 430 start-page: 121 year: 2021 end-page: 137 ident: b133 article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression publication-title: Neurocomputing – volume: 24 start-page: 97 year: 2021 end-page: 115 ident: b5 article-title: Review of control strategy of large horizontal-axis wind turbines yaw system publication-title: Wind Energy – volume: 76 start-page: 526 year: 2014 end-page: 541 ident: b99 article-title: A hybrid forecasting model based on outlier detection and fuzzy time series–a case study on hainan wind farm of China publication-title: Energy – volume: 205 year: 2020 ident: b40 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Convers Manage – volume: 196 year: 2020 ident: b47 article-title: Wind power forecasting using attention-based gated recurrent unit network publication-title: Energy – volume: 11 start-page: 509 year: 2019 end-page: 523 ident: b53 article-title: Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction publication-title: IEEE Trans Sustain Energy – volume: 162 start-page: 1208 year: 2020 end-page: 1226 ident: b25 article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm publication-title: Renew Energy – volume: 2020 year: 2020 ident: b198 article-title: Short-time wind speed forecast using artificial learning-based algorithms publication-title: Comput Intell Neuroence – volume: 35 start-page: 2549 year: 2020 end-page: 2560 ident: b207 article-title: Improved deep mixture density network for regional wind power probabilistic forecasting publication-title: IEEE Trans Power Syst – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: b22 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy – year: 2020 ident: b192 article-title: Performances of deep learning models for indian ocean wind speed prediction publication-title: Model Earth Syst Environ – volume: 148 year: 2019 ident: b129 article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network publication-title: Measurement – volume: 58 start-page: 742 year: 2017 end-page: 755 ident: b59 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl Soft Comput – volume: 151 start-page: 709 year: 2017 end-page: 722 ident: b125 article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm publication-title: Energy Convers Manage – volume: 225 year: 2020 ident: b122 article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition publication-title: Energy Convers Manage – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: b237 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – volume: 6 start-page: 6997 year: 2019 end-page: 7010 ident: b190 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM publication-title: IEEE Internet Things J – volume: 96 start-page: 727 year: 2016 end-page: 737 ident: b142 article-title: Short-term wind speed forecasting using empirical mode decomposition and feature selection publication-title: Renew Energy – volume: 187 start-page: 356 year: 2019 end-page: 377 ident: b232 article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM publication-title: Energy Convers Manage – volume: 11 start-page: 1638 year: 2018 ident: b146 article-title: Short-term wind speed forecasting based on low redundancy feature selection publication-title: Energies – volume: 174 start-page: 1219 year: 2019 end-page: 1237 ident: b118 article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization publication-title: Energy – volume: 190 start-page: 1245 year: 2017 end-page: 1257 ident: b138 article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting publication-title: Appl Energy – volume: 12 year: 2020 ident: b156 article-title: A hybrid wind speed forecasting model using stacked autoencoder and LSTM publication-title: J Renew Sustain Energy – volume: 154 start-page: 598 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b210 article-title: Forecasting energy consumption and wind power generation using deep echo state network publication-title: Renew Energy doi: 10.1016/j.renene.2020.03.042 – volume: 180 start-page: 302 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b13 article-title: Advanced wind power prediction based on data-driven error correction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.108 – volume: 157 start-page: 183 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b123 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.014 – volume: 156 start-page: 804 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b113 article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2020.03.168 – volume: 201 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b139 article-title: Evaluating a dendritic neuron model for wind speed forecasting publication-title: Knowl-Based Syst – volume: 100 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b236 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106996 – volume: 196 start-page: 779 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b216 article-title: Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.06.041 – volume: 146 start-page: 149 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b66 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.157 – year: 2003 ident: 10.1016/j.apenergy.2021.117766_b70 article-title: State-of-the-art methods and software tools for short-term prediction of wind energy production – start-page: 1091 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b209 article-title: Probabilistic wind power forecasting via Bayesian deep learning based prediction intervals – volume: 32 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b10 article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods publication-title: J Build Eng – volume: 309 start-page: 05011 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b194 article-title: Multi-time scale wind speed prediction based on WT-bi-LSTM publication-title: MATEC Web Conf doi: 10.1051/matecconf/202030905011 – volume: 76 start-page: 526 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b99 article-title: A hybrid forecasting model based on outlier detection and fuzzy time series–a case study on hainan wind farm of China publication-title: Energy doi: 10.1016/j.energy.2014.08.064 – year: 2020 ident: 10.1016/j.apenergy.2021.117766_b176 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy doi: 10.1016/j.energy.2020.118441 – volume: 8 start-page: 182283 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b193 article-title: Hybrid bidirectional LSTM model for short-term wind speed interval prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027977 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2021.117766_b32 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.02.002 – volume: 196 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b47 article-title: Wind power forecasting using attention-based gated recurrent unit network publication-title: Energy doi: 10.1016/j.energy.2020.117081 – volume: 148 start-page: 554 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b33 article-title: Non-parametric hybrid models for wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.06.021 – volume: 235 start-page: 939 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b80 article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.10.080 – volume: 185 start-page: 783 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b54 article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.018 – volume: 210 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b101 article-title: BayesIan robust multi-extreme learning machine publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106468 – volume: 62 start-page: 592 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b141 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2013.08.011 – volume: 236 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b46 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.114002 – volume: 126 start-page: 254 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b238 article-title: An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine publication-title: Renew Energy doi: 10.1016/j.renene.2018.03.035 – volume: 22 start-page: 337 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2021.117766_b31 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2096824 – volume: 205 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b169 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112418 – volume: 166 start-page: 120 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b174 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.021 – volume: 2 start-page: 265 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2021.117766_b144 article-title: Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2011.2114680 – year: 2017 ident: 10.1016/j.apenergy.2021.117766_b55 – year: 2000 ident: 10.1016/j.apenergy.2021.117766_b67 article-title: Prediktor-an on-line prediction system – volume: 169 start-page: 449 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b149 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.090 – volume: 35 start-page: 2549 issue: 4 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b207 article-title: Improved deep mixture density network for regional wind power probabilistic forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2020.2971607 – volume: 68 start-page: 8298 issue: 9 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b95 article-title: Deep learning-based forecasting approach in smart grids with micro-clustering and bi-directional LSTM network publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.3009604 – volume: 55 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b83 article-title: A review on renewable energy and electricity requirement forecasting models for smart grid and buildings publication-title: Sustainable Cities Soc doi: 10.1016/j.scs.2020.102052 – volume: 196 start-page: 1395 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b30 article-title: Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.06.024 – volume: 199 start-page: 272 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b75 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.07.164 – volume: 187 start-page: 356 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b232 article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.086 – volume: 32 start-page: 2673 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b154 article-title: Short-term electricity price forecasting with stacked denoising autoencoders publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2016.2628873 – volume: 171 start-page: 764 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b41 article-title: Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems publication-title: Renew Energy doi: 10.1016/j.renene.2021.02.117 – volume: 162 start-page: 1208 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b25 article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2020.08.077 – volume: 249 start-page: 392 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b4 article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.188 – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b156 article-title: A hybrid wind speed forecasting model using stacked autoencoder and LSTM publication-title: J Renew Sustain Energy doi: 10.1063/1.5139689 – volume: 190 start-page: 1245 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b138 article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.043 – volume: 156 start-page: 498 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b109 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.11.053 – volume: 6 start-page: 6997 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b190 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2913176 – volume: 6 start-page: 1416 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b164 article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2434387 – volume: 250 start-page: 530 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b173 article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.05.044 – year: 2020 ident: 10.1016/j.apenergy.2021.117766_b192 article-title: Performances of deep learning models for indian ocean wind speed prediction publication-title: Model Earth Syst Environ – volume: 230 start-page: 429 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b189 article-title: Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.114 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.apenergy.2021.117766_b42 article-title: Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 189 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b110 article-title: Wind power forecast based on improved long short term memory network publication-title: Energy doi: 10.1016/j.energy.2019.116300 – volume: 34 start-page: 1388 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2021.117766_b35 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy doi: 10.1016/j.renene.2008.09.006 – volume: 85 start-page: 790 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b20 article-title: Wind speed forecasting for wind farms: A method based on support vector regression publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.004 – volume: 38 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b136 article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN publication-title: Sustain Energy Technol Assess – volume: 116 start-page: 309 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b233 article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data publication-title: Renew Energy doi: 10.1016/j.renene.2017.09.078 – volume: 11 start-page: 1370 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b92 article-title: Short-term wind speed interval prediction based on ensemble GRU model publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2926147 – volume: 2020 issue: 12 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b198 article-title: Short-time wind speed forecast using artificial learning-based algorithms publication-title: Comput Intell Neuroence – volume: 8 start-page: 134422 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b199 article-title: Short-term wind power forecasting based on VMD decomposition, convlstm networks and error analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011060 – volume: 174 start-page: 1219 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b118 article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization publication-title: Energy doi: 10.1016/j.energy.2019.02.194 – volume: 1087 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b93 article-title: Short-term wind power prediction method based on wavelet packet decomposition and improved GRU publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1087/2/022034 – volume: 254 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b58 article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113686 – volume: 9 start-page: 1919 issue: 6 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b150 article-title: Novel forecasting model based on improved wavelet transform, informative feature selection, and hybrid support vector machine on wind power forecasting publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-0886-0 – volume: 151 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b183 article-title: 1d convolutional neural networks and applications: A survey publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107398 – volume: 203 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b23 article-title: Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112239 – volume: 76 start-page: 91 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b130 article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in xinjiang, China publication-title: Renew Energy doi: 10.1016/j.renene.2014.11.011 – volume: 7 start-page: 99244 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b165 article-title: Deep belief networks with genetic algorithms in forecasting wind speed publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929542 – volume: 36 start-page: 20 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b153 article-title: A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.02.006 – volume: 75 start-page: 301 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b104 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.058 – volume: 218 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b97 article-title: Day-ahead wind power forecasting based on the clustering of equivalent power curves publication-title: Energy doi: 10.1016/j.energy.2020.119515 – volume: 96 start-page: 727 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b142 article-title: Short-term wind speed forecasting using empirical mode decomposition and feature selection publication-title: Renew Energy doi: 10.1016/j.renene.2016.05.023 – ident: 10.1016/j.apenergy.2021.117766_b182 doi: 10.1007/978-3-319-73013-4_23 – volume: 33 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2021.117766_b15 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew Energy doi: 10.1016/j.renene.2007.01.014 – volume: 8 start-page: 165612 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b217 article-title: A combined model based on ceemdan, permutation entropy, gated recurrent unit network, and an improved bat algorithm for wind speed forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022872 – volume: 33 start-page: 3276 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b18 article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2787667 – volume: 261 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b126 article-title: Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114345 – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b168 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – volume: 207 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b94 article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112524 – start-page: 4561 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b56 article-title: A multi-variable stacked long-short term memory network for wind speed forecasting – volume: 61 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b84 article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid publication-title: Sustainable Cities Soc doi: 10.1016/j.scs.2020.102275 – volume: 13 start-page: 1690 issue: 10 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b188 article-title: Multi-step wind power forecast based on VMD-LSTM publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2018.5781 – volume: 213 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b111 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers Manage – volume: 205 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b40 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112461 – volume: 28 start-page: 802 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b196 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv Neural Inf Process Syst – volume: 174 start-page: 688 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b213 article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism publication-title: Renew Energy doi: 10.1016/j.renene.2021.04.091 – volume: 228 start-page: 1822 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b74 article-title: A survey of artificial neural network in wind energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.07.084 – volume: 145 start-page: 270 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b131 article-title: Chaotic wind power time series prediction via switching data-driven modes publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.047 – volume: 165 start-page: 681 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b57 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.03.098 – ident: 10.1016/j.apenergy.2021.117766_b134 doi: 10.1145/1390156.1390294 – volume: 164 start-page: 211 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b228 article-title: A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM publication-title: Renew Energy doi: 10.1016/j.renene.2020.09.078 – volume: 6 start-page: 17851 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b158 article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2818108 – volume: 143 start-page: 1172 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b37 article-title: A novel non-linear combination system for short-term wind speed forecast publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.154 – volume: 197 start-page: 151 issue: JUL.1 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b151 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.008 – volume: 292 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b222 article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116842 – volume: 224 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b79 article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113324 – start-page: 945 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b135 article-title: A deep learning approach for wind power prediction based on stacked denoising auto encoders optimized by bat algorithm – volume: 8 start-page: 67955 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b195 article-title: Short-term wind speed forecasting with principle-subordinate predictor based on conv-LSTM and improved BPNN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982839 – volume: PP start-page: 1 issue: 99 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b206 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Trans Neural Netw Learn Syst – volume: 48 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b52 article-title: Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101290 – volume: 179 start-page: 13 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b220 article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of nrel publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.068 – volume: 135 start-page: 674 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b17 article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.047 – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b50 article-title: Auto-encoder with neural networks for wind speed forecasting – volume: 207 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b172 article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106396 – volume: 554 start-page: 120 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b225 article-title: Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems publication-title: Inform Sci doi: 10.1016/j.ins.2020.12.032 – volume: 227 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b62 article-title: Short-term wind speed predicting framework based on eemd-ga-lstm method under large scaled wind history publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113559 – start-page: 368 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b166 article-title: Continuous RBM based deep neural network for wind speed forecasting in Hong Kong – volume: 8 start-page: 51482 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b44 article-title: Research on a novel combination system on the basis of deep learning and swarm intelligence optimization algorithm for wind speed forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980562 – start-page: 2432 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b96 article-title: The application of deep neural network algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction – volume: 17 start-page: 720 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b86 article-title: Advanced deep learning approach for probabilistic wind speed forecasting publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.3004436 – start-page: 1580 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b160 article-title: Stacked sparse autoencoder based fault detection and location method for modular five-level converters – volume: 215 start-page: 643 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b43 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.070 – volume: 5 start-page: 258 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2021.117766_b9 article-title: Smart energy management system for optimal microgrid economic operation publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2010.0052 – volume: 397 start-page: 393 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b98 article-title: Wind speed forecasting using deep neural network with feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.108 – volume: 10 start-page: 16 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b8 article-title: Wind power curve modeling and wind power forecasting with inconsistent data publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2820198 – volume: 178 start-page: 886 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b14 article-title: One day ahead wind speed forecasting: A resampling-based approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.098 – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b237 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 – volume: 31 start-page: 2546 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b34 article-title: Arima-based frequency-decomposed modeling of wind speed time series publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2468586 – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b200 article-title: Predicting wind turbine power and load outputs by multi-task convolutional LSTM model – volume: 16 start-page: 3471 issue: 5 year: 2012 ident: 10.1016/j.apenergy.2021.117766_b51 article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.044 – volume: 292 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b132 article-title: Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116851 – volume: 277 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b212 article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods publication-title: Artificial Intelligence doi: 10.1016/j.artint.2019.103176 – start-page: 1 year: 2010 ident: 10.1016/j.apenergy.2021.117766_b11 article-title: A review of wind power and wind speed forecasting methods with different time horizons – volume: 220 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b124 article-title: Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113098 – volume: 136 start-page: 439 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b117 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.01.022 – volume: 236 start-page: 262 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b201 article-title: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.11.063 – volume: 168 start-page: 558 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b170 article-title: A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing publication-title: Energy doi: 10.1016/j.energy.2018.11.128 – volume: 99 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b60 article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106917 – volume: 230 start-page: 1108 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b239 article-title: A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.037 – year: 2009 ident: 10.1016/j.apenergy.2021.117766_b71 – volume: 163 start-page: 1895 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b203 article-title: Wind power forecasting–a data-driven method along with gated recurrent neural network publication-title: Renew Energy doi: 10.1016/j.renene.2020.10.119 – volume: 6 start-page: 1447 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b145 article-title: Wind power forecasting using neural network ensembles with feature selection publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2441747 – volume: 143 start-page: 842 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b204 article-title: Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression publication-title: Renew Energy doi: 10.1016/j.renene.2019.05.039 – volume: 179 start-page: 120 issue: SEP.1 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b180 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.05.009 – start-page: 1844 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b45 article-title: Ultra-short-term wind power combination forecasting model based on MEEMD-SAE-Elman – volume: 34 start-page: 243 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b76 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.03.033 – volume: 11 issue: 12 year: 2010 ident: 10.1016/j.apenergy.2021.117766_b91 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. publication-title: J Mach Learn Res – volume: 216 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b224 article-title: Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and rif-based algorithm publication-title: Energy doi: 10.1016/j.energy.2020.119299 – volume: 31 start-page: 762 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b12 article-title: Current status and future advances for wind speed and power forecasting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.12.054 – volume: 37 start-page: 241 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2021.117766_b102 article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model publication-title: Renew Energy doi: 10.1016/j.renene.2011.06.023 – volume: 56 start-page: 6117 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b19 article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.2992945 – year: 2019 ident: 10.1016/j.apenergy.2021.117766_b185 article-title: A multi-scale model based on the long short-term memory for day ahead hourly wind speed forecasting publication-title: Pattern Recognit Lett – start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b155 article-title: Robust deep neural network for wind speed prediction – volume: 4 start-page: 849 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2021.117766_b28 article-title: Combined nonparametric prediction intervals for wind power generation publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2013.2253140 – volume: 85 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b108 article-title: A secondary decomposition based hybrid structure with meteorological analysis for deterministic and probabilistic wind speed forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105799 – volume: 241 start-page: 229 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b16 article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and gaussian mixture model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.044 – volume: 10 start-page: 670 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b208 article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2844102 – volume: 213 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b143 article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112824 – volume: 150 start-page: 108 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b235 article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.08.014 – year: 2015 ident: 10.1016/j.apenergy.2021.117766_b240 – volume: 171 start-page: 1418 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b234 article-title: Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.020 – year: 2020 ident: 10.1016/j.apenergy.2021.117766_b6 – volume: 11 start-page: 509 issue: 1 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b53 article-title: Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2897136 – volume: 126 start-page: 736 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b120 article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.089 – volume: 260 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b179 article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114259 – volume: 155 start-page: 350 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b88 article-title: Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.11.043 – start-page: 131 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b171 article-title: Wind power prediction based on a convolutional neural network – volume: 22 start-page: 1341 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2021.117766_b29 article-title: Comprehensive review of neural network-based prediction intervals and new advances publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2162110 – volume: 365 start-page: 54 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b48 article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.058 – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b230 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and ga-bp neural network method publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.103 – volume: 116 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b1 article-title: Approaches to wind power curve modeling: A review and discussion publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109422 – volume: 165 start-page: 939 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b112 article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2018.09.180 – start-page: 921 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b197 article-title: Exploiting spatio-temporal dependencies for RNN-based wind power forecasts – volume: 233 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b218 article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the arima to wind speed prediction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.113917 – volume: 188 start-page: 56 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b178 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.111 – year: 2021 ident: 10.1016/j.apenergy.2021.117766_b69 – volume: 156 start-page: 1373 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b231 article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD publication-title: Renew Energy doi: 10.1016/j.renene.2019.12.047 – volume: 226 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b175 article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113500 – volume: 89 start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b105 article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.09.060 – volume: 217 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b219 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2020.119361 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.apenergy.2021.117766_b184 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 195 start-page: 70 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b90 article-title: One dimensional convolutional neural network architectures for wind prediction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.007 – volume: 102 start-page: 241 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b119 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China publication-title: Renew Energy doi: 10.1016/j.renene.2016.10.030 – volume: 12 start-page: 191 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b3 article-title: Sparse heteroscedastic multiple spline regression models for wind turbine power curve modeling publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2020.2988683 – volume: 164 start-page: 1508 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b127 article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in brazilian northeast publication-title: Renew Energy doi: 10.1016/j.renene.2020.10.126 – year: 2021 ident: 10.1016/j.apenergy.2021.117766_b73 – volume: 430 start-page: 121 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b133 article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.093 – volume: 3 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b223 article-title: A deep gated recurrent neural network for petroleum production forecasting publication-title: Mach Learn Appl – volume: 13 start-page: 2062 issue: 12 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b137 article-title: Data-driven wind speed forecasting using deep feature extraction and LSTM publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2018.5917 – year: 2021 ident: 10.1016/j.apenergy.2021.117766_b7 – volume: 155 start-page: 188 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b106 article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.10.085 – volume: 100 start-page: 9 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b81 article-title: A review on the selected applications of forecasting models in renewable power systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.09.046 – volume: 148 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b129 article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network publication-title: Measurement doi: 10.1016/j.measurement.2019.106971 – volume: 82 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b24 article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105550 – start-page: 1657 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b147 article-title: Deep neural networks for ultra-short-term wind forecasting – year: 2020 ident: 10.1016/j.apenergy.2021.117766_b87 article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data publication-title: Energy doi: 10.1016/j.energy.2020.118371 – volume: 45 start-page: 2673 issue: 11 year: 2002 ident: 10.1016/j.apenergy.2021.117766_b191 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans Signal Process doi: 10.1109/78.650093 – volume: 76 start-page: 717 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b221 article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm publication-title: Appl Math Model doi: 10.1016/j.apm.2019.07.001 – volume: 159 start-page: 54 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b39 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.01.010 – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b22 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.108 – volume: 11 start-page: 1638 issue: 7 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b146 article-title: Short-term wind speed forecasting based on low redundancy feature selection publication-title: Energies doi: 10.3390/en11071638 – volume: 163 start-page: 134 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b64 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.02.012 – start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b167 article-title: Wind power prediction and pattern feature based on deep learning method – volume: 11 start-page: 2294 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b214 article-title: Wind field-based short-term turbine response forecasting by stacked dilated convolutional lstms publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2954107 – volume: 121 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b162 article-title: Short-term wind speed forecasting based on the jaya-SVM model publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106056 – volume: 94 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b229 article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106476 – volume: 173 start-page: 123 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b63 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.07.070 – volume: 195 start-page: 328 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b21 article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.020 – volume: 202 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b211 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy doi: 10.1016/j.energy.2020.117794 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b89 article-title: A model combining convolutional neural network and lightgbm algorithm for ultra-short-term wind power forecasting publication-title: IEEE Access – volume: 14 start-page: 2657 issue: 14 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b26 article-title: Uncertain wind power forecasting using LSTM-based prediction interval publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2019.1238 – volume: 180 start-page: 196 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b114 article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.006 – year: 2021 ident: 10.1016/j.apenergy.2021.117766_b72 – volume: 44 start-page: 271 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b77 article-title: Combined forecasting models for wind energy forecasting: A case study in China publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.12.012 – volume: 198 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b148 article-title: Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.06.083 – volume: 119 start-page: 561 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b226 article-title: Short-term wind speed forecasting using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2016.10.040 – start-page: 713 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b181 article-title: Wind speed prediction using multidimensional convolutional neural networks – volume: 32 start-page: 255 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b27 article-title: Review on probabilistic forecasting of wind power generation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.01.033 – volume: 180 start-page: 338 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b107 article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.089 – volume: 118 start-page: 213 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b121 article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.075 – start-page: 1724 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b202 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume: 151 start-page: 709 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b125 article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.09.034 – volume: 238 start-page: 249 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b177 article-title: Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space publication-title: Appllied Energy doi: 10.1016/j.apenergy.2019.01.010 – year: 2016 ident: 10.1016/j.apenergy.2021.117766_b152 article-title: Kernel principal components analysis with extreme learning machines for wind speed prediction – start-page: 599 year: 2012 ident: 10.1016/j.apenergy.2021.117766_b163 article-title: A practical guide to training restricted Boltzmann machines – volume: 93 start-page: 33 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b186 article-title: Lstm-efg for wind power forecasting based on sequential correlation features publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.09.054 – volume: 10 start-page: 885 issue: 7 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b85 article-title: Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2015.0477 – volume: 60 start-page: 960 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b2 article-title: Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.01.114 – volume: 13 start-page: 2770 issue: 6 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b157 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2730846 – volume: 89 start-page: 49 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b65 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Appl Math Model doi: 10.1016/j.apm.2020.07.019 – volume: 168 start-page: 482 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b115 article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.099 – volume: 167 start-page: 203 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b187 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.082 – volume: 123 start-page: 362 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b82 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.06.053 – volume: 8 start-page: 227126 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b215 article-title: A hybrid short-term wind power prediction model combining data processing, multiple parameters optimization and multi-intelligent models apportion strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3046001 – volume: 225 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b122 article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113456 – volume: 30 issue: 05 year: 2016 ident: 10.1016/j.apenergy.2021.117766_b49 article-title: Day-ahead prediction of wind speed with deep feature learning publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001416500117 – volume: 50 start-page: 82 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b78 article-title: Ensemble methods for wind and solar power forecasting–a state-of-the-art review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.081 – volume: 259 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b103 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114137 – volume: 145 start-page: 191 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b36 article-title: Recursive wind speed forecasting based on hammerstein auto-regressive model publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.032 – volume: 153 start-page: 589 issue: dec. year: 2017 ident: 10.1016/j.apenergy.2021.117766_b128 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.10.021 – volume: 178 start-page: 137 year: 2018 ident: 10.1016/j.apenergy.2021.117766_b205 article-title: A novel framework for wind speed prediction based on recurrent neural networks and support vector machine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.008 – volume: 140 start-page: 17 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b140 article-title: High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.041 – volume: 91 start-page: 556 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b38 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy doi: 10.1016/j.energy.2015.08.039 – volume: 58 start-page: 742 year: 2017 ident: 10.1016/j.apenergy.2021.117766_b59 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.031 – volume: 132 start-page: 43 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b100 article-title: Robust functional regression for wind speed forecasting based on sparse Bayesian learning publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.083 – volume: 24 start-page: 97 issn: 1099-1824 year: 2021 ident: 10.1016/j.apenergy.2021.117766_b5 article-title: Review of control strategy of large horizontal-axis wind turbines yaw system publication-title: Wind Energy doi: 10.1002/we.2564 – volume: 16 start-page: 6263 issue: 10 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b161 article-title: Gearbox fault diagnosis using a deep learning model with limited data sample publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.2967822 – start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2021.117766_b159 article-title: Deep neural network based feature representation for weather forecasting – volume: 270 year: 2020 ident: 10.1016/j.apenergy.2021.117766_b61 article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2020.121817 – volume: 143 start-page: 472 year: 2015 ident: 10.1016/j.apenergy.2021.117766_b227 article-title: The study and application of a novel hybrid forecasting model - a case study of wind speed forecasting in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.038 – year: 2000 ident: 10.1016/j.apenergy.2021.117766_b68 article-title: WPPT - a tool for wind power prediction – volume: 133 start-page: 919 year: 2019 ident: 10.1016/j.apenergy.2021.117766_b116 article-title: Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.043 |
| SSID | ssj0002120 |
| Score | 2.7372415 |
| Snippet | The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117766 |
| SubjectTerms | artificial intelligence data collection Data pre-processing Deep neural network electric power electricity electricity generation Feature extraction Relationship learning wind power Wind power forecasting wind speed Wind speed forecasting |
| Title | A review of wind speed and wind power forecasting with deep neural networks |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.117766 https://www.proquest.com/docview/2636518606 |
| Volume | 304 |
| WOSCitedRecordID | wos000701874500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOCAYT40tGQlymjNpx4uSCVKFWfFSFQycVLpbjOKjVSMPSjP35PMd2EqGhjQOXKLHiJPLvl-fn5_eB0CsNWocuOAkyFvGAUZ4FSSaLgMVZmFGapblN4jrni0WyWqVfRqO3Phbm4oyXZXJ5mVb_FWpoA7BN6Ow_wN09FBrgHECHI8AOxxsBPxmEo_xaG7N4BTNUu0nQXlamLprxLtRK1rvOFptrXR2b7JaAWWl9w-uh5urVVd0GC_Z2eCsrvjYdyb5tmxa3pvyx7v191m3jTLqJcmiqhuXw943r7-wPlBhfDhuB6eOuxnFg1mFDmRqO2XHVbgjHcXClpLZGg82JrOx3n5hnux793OT34xefxex0PhfL6Wr5uvoZmKphZnfdlVC5hfYpj1KQavuTD9PVx24upi4xp__GQYz41a_-m3ryx0Tdah_L--ieWzbgiYX7ARrp8gDdHSSTPECH0z5mEW51Qrt-iD5NsGUE3hbYUAC3jMDACHvZMgIPGIENI7BhBLaMwJ4Rj9DpbLp89z5wNTQCFbJoFyQaBLICnYxrriMe5iRXXHGZaQ0LWUmylEmS8zBSBRkXUVEoRmWiJEspzQlR4SHaK7elfoywSvOQcpLHueZMZ6nUNGSaEpapVDJKj1Dkh04ol2De1Dk5E96TcCP8kAsz5MIO-RF60_WrbIqVa3ukHhnhFEWrAApg17V9X3ooBUhSsz0mS71takHjMI5IAiv6Jze45ym60_8Nz9De7rzRz9FtdbFb1-cvHA9_A8zdl2s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+wind+speed+and+wind+power+forecasting+with+deep+neural+networks&rft.jtitle=Applied+energy&rft.au=Wang%2C+Yun&rft.au=Zou%2C+Runmin&rft.au=Liu%2C+Fang&rft.au=Zhang%2C+Lingjun&rft.date=2021-12-15&rft.issn=0306-2619&rft.volume=304+p.117766-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117766&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |