A review of wind speed and wind power forecasting with deep neural networks

The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 304; s. 117766
Hlavní autori: Wang, Yun, Zou, Runmin, Liu, Fang, Zhang, Lingjun, Liu, Qianyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.12.2021
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts. •Review and compare deep feature extraction models in terms of computation cost.•Review and discuss various single and hybrid deep models for relationship learning.•Present an overview of intelligent optimizers for model configuration determination.•Summarize challenges and future research directions in wind energy forecasting.
AbstractList The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts.
The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts. •Review and compare deep feature extraction models in terms of computation cost.•Review and discuss various single and hybrid deep models for relationship learning.•Present an overview of intelligent optimizers for model configuration determination.•Summarize challenges and future research directions in wind energy forecasting.
ArticleNumber 117766
Author Zou, Runmin
Wang, Yun
Liu, Qianyi
Liu, Fang
Zhang, Lingjun
Author_xml – sequence: 1
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  email: wangyun19@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, Hunan Province, China
– sequence: 2
  givenname: Runmin
  orcidid: 0000-0003-1747-3448
  surname: Zou
  fullname: Zou, Runmin
  email: rmzou@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, Hunan Province, China
– sequence: 3
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  email: liufang@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, Hunan Province, China
– sequence: 4
  givenname: Lingjun
  surname: Zhang
  fullname: Zhang, Lingjun
  email: zhanglingjun@hdu.edu.cn
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China
– sequence: 5
  givenname: Qianyi
  surname: Liu
  fullname: Liu, Qianyi
  email: liu7y@foxmail.com
  organization: School of Automation, Central South University, Changsha, Hunan Province, China
BookMark eNqFkD1PwzAQhi0EEqXwF1BGlhSfk9ipxECF-BKVWGC2jH0Bl9QOtkvFv8cQWFiY3rvT-9zwHJBd5x0Scgx0BhT46WqmBnQYnj9mjDKYAQjB-Q6ZQCtYOQdod8mEVpSXjMN8nxzEuKI0NxmdkLtFEfDd4rbwXbG1zhRxQDSFytP3OvgthqLzAbWKybrnfE4vhUEcCoeboPocaevDazwke53qIx795JQ8Xl0-XNyUy_vr24vFstRV3aSyxVZQ3TaVQIGNqAwYLbRQT4icNgqe5rUCI6pGd0C7put0zVSrVT1nzADoakpOxr9D8G8bjEmubdTY98qh30TJeMUbaDnlucrHqg4-xoCdHIJdq_Ahgcove3Ilf-3JL3tytJfBsz-gtkkl610Kyvb_4-cjjtlD1htk1BadRmOzyCSNt_-9-ATyxZK7
CitedBy_id crossref_primary_10_1080_15435075_2024_2400554
crossref_primary_10_3390_fluids7110344
crossref_primary_10_3389_fenrg_2022_1043867
crossref_primary_10_3390_en16237915
crossref_primary_10_1016_j_enconman_2025_119627
crossref_primary_10_1016_j_renene_2022_08_079
crossref_primary_10_1016_j_ijepes_2024_110085
crossref_primary_10_1016_j_energy_2022_123990
crossref_primary_10_3390_w16172449
crossref_primary_10_1016_j_enconman_2022_115540
crossref_primary_10_1177_10692509251337224
crossref_primary_10_1016_j_energy_2025_137654
crossref_primary_10_1016_j_apenergy_2025_126234
crossref_primary_10_1002_ese3_1263
crossref_primary_10_1002_ente_202300889
crossref_primary_10_3390_su14094934
crossref_primary_10_1016_j_oceaneng_2025_120925
crossref_primary_10_1016_j_oceaneng_2024_118471
crossref_primary_10_1016_j_renene_2025_123463
crossref_primary_10_1016_j_renene_2024_119945
crossref_primary_10_1109_TII_2024_3523581
crossref_primary_10_1016_j_enconman_2022_115433
crossref_primary_10_3390_en15124221
crossref_primary_10_1002_tee_23892
crossref_primary_10_1016_j_enconman_2024_118155
crossref_primary_10_3390_math11030499
crossref_primary_10_1016_j_measurement_2024_116500
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_1109_ACCESS_2022_3197215
crossref_primary_10_1155_2022_5731473
crossref_primary_10_1109_TII_2022_3176821
crossref_primary_10_3390_fluids7120367
crossref_primary_10_1016_j_enbuild_2024_114661
crossref_primary_10_1007_s00202_024_02377_w
crossref_primary_10_1016_j_ijar_2021_12_013
crossref_primary_10_1016_j_energy_2025_137751
crossref_primary_10_1016_j_jclepro_2023_139944
crossref_primary_10_1016_j_energy_2025_136660
crossref_primary_10_3390_en16207179
crossref_primary_10_1016_j_egyr_2024_11_074
crossref_primary_10_1016_j_eswa_2024_125376
crossref_primary_10_1080_15435075_2023_2281335
crossref_primary_10_1007_s43621_024_00783_5
crossref_primary_10_1002_ese3_1047
crossref_primary_10_3390_en18071771
crossref_primary_10_1016_j_egyr_2022_11_202
crossref_primary_10_1080_10106049_2022_2066198
crossref_primary_10_1016_j_renene_2024_120704
crossref_primary_10_1016_j_energy_2022_124750
crossref_primary_10_1109_ACCESS_2025_3599609
crossref_primary_10_1109_TAI_2025_3547685
crossref_primary_10_3390_en15124361
crossref_primary_10_3389_fenrg_2023_1204343
crossref_primary_10_1016_j_egyr_2024_08_041
crossref_primary_10_1016_j_enconman_2024_118331
crossref_primary_10_1016_j_renene_2025_123550
crossref_primary_10_1038_s41598_024_83836_z
crossref_primary_10_1016_j_eswa_2025_126402
crossref_primary_10_1002_we_2906
crossref_primary_10_3389_fenrg_2023_1174910
crossref_primary_10_1109_ACCESS_2025_3586997
crossref_primary_10_1016_j_energy_2025_135666
crossref_primary_10_1016_j_est_2025_117015
crossref_primary_10_1016_j_jclepro_2024_142143
crossref_primary_10_1016_j_jweia_2023_105507
crossref_primary_10_1016_j_engappai_2023_107536
crossref_primary_10_3389_fenrg_2024_1346000
crossref_primary_10_1016_j_apenergy_2024_125176
crossref_primary_10_1016_j_oceaneng_2025_120737
crossref_primary_10_1016_j_renene_2025_123551
crossref_primary_10_1049_cps2_70011
crossref_primary_10_1016_j_asoc_2024_112652
crossref_primary_10_3389_fenrg_2024_1346369
crossref_primary_10_1016_j_energy_2025_135551
crossref_primary_10_3390_sym16040428
crossref_primary_10_3389_fenrg_2024_1391692
crossref_primary_10_22399_ijcesen_429
crossref_primary_10_1016_j_oceaneng_2024_117279
crossref_primary_10_1007_s40808_025_02403_1
crossref_primary_10_1016_j_apenergy_2025_126318
crossref_primary_10_1109_TPEL_2022_3148266
crossref_primary_10_22144_ctujos_2025_075
crossref_primary_10_3390_en15186734
crossref_primary_10_1142_S0218126625503360
crossref_primary_10_1016_j_rser_2024_114781
crossref_primary_10_1049_rpg2_13159
crossref_primary_10_1049_gtd2_70089
crossref_primary_10_1016_j_compbiomed_2022_105529
crossref_primary_10_1016_j_renene_2025_123897
crossref_primary_10_1109_TKDE_2024_3435859
crossref_primary_10_1080_15435075_2023_2301399
crossref_primary_10_3390_electronics12051187
crossref_primary_10_1038_s41598_025_03188_0
crossref_primary_10_1016_j_energy_2024_134042
crossref_primary_10_1016_j_jclepro_2023_139902
crossref_primary_10_1063_5_0238202
crossref_primary_10_1080_19942060_2024_2305318
crossref_primary_10_1016_j_renene_2023_119357
crossref_primary_10_1016_j_advengsoft_2023_103426
crossref_primary_10_1016_j_energy_2024_133072
crossref_primary_10_1016_j_enconman_2024_118122
crossref_primary_10_1016_j_energy_2025_135537
crossref_primary_10_1155_2022_1929350
crossref_primary_10_1016_j_energy_2023_129753
crossref_primary_10_3390_app14114775
crossref_primary_10_1007_s41060_024_00533_w
crossref_primary_10_3390_en16062651
crossref_primary_10_1016_j_buildenv_2023_110446
crossref_primary_10_1016_j_apenergy_2025_126419
crossref_primary_10_3390_en17122994
crossref_primary_10_1109_TETCI_2024_3400852
crossref_primary_10_4108_ew_7114
crossref_primary_10_1016_j_apenergy_2023_121049
crossref_primary_10_1155_2022_3345368
crossref_primary_10_1016_j_jclepro_2022_130580
crossref_primary_10_1002_cpe_6900
crossref_primary_10_1063_5_0253497
crossref_primary_10_3390_pr11051429
crossref_primary_10_1080_15435075_2023_2228878
crossref_primary_10_1016_j_eswa_2024_124199
crossref_primary_10_1016_j_renene_2023_119101
crossref_primary_10_1109_TIA_2023_3284784
crossref_primary_10_3390_su151914628
crossref_primary_10_3390_en15249657
crossref_primary_10_3390_su17146577
crossref_primary_10_1109_TIM_2023_3265743
crossref_primary_10_1016_j_epsr_2024_111015
crossref_primary_10_1016_j_mex_2024_103080
crossref_primary_10_3390_su17146339
crossref_primary_10_1016_j_eswa_2023_122645
crossref_primary_10_1016_j_energy_2023_126906
crossref_primary_10_3390_en15186545
crossref_primary_10_3390_pr13030819
crossref_primary_10_1093_ijlct_ctad131
crossref_primary_10_1109_TII_2024_3379668
crossref_primary_10_3390_en18020246
crossref_primary_10_1016_j_apenergy_2024_124035
crossref_primary_10_1016_j_renene_2024_122155
crossref_primary_10_1371_journal_pone_0306566
crossref_primary_10_1016_j_apenergy_2023_122155
crossref_primary_10_1155_2022_5895560
crossref_primary_10_3390_electronics14132566
crossref_primary_10_1016_j_heliyon_2024_e26088
crossref_primary_10_1016_j_ijepes_2023_109073
crossref_primary_10_1080_15435075_2024_2399189
crossref_primary_10_1111_coin_70078
crossref_primary_10_3390_electronics11020206
crossref_primary_10_3390_en18071713
crossref_primary_10_3390_atmos16010067
crossref_primary_10_1016_j_energy_2025_136054
crossref_primary_10_3390_en16031085
crossref_primary_10_3390_en16227610
crossref_primary_10_3390_en16093792
crossref_primary_10_1109_TII_2023_3296869
crossref_primary_10_1016_j_eswa_2025_127436
crossref_primary_10_1007_s10483_025_3291_6
crossref_primary_10_1016_j_energy_2025_137229
crossref_primary_10_1016_j_renene_2025_124028
crossref_primary_10_1109_TIM_2024_3470949
crossref_primary_10_48084_etasr_10296
crossref_primary_10_1016_j_jenvman_2023_119878
crossref_primary_10_1021_acsaem_5c00785
crossref_primary_10_3390_app15052443
crossref_primary_10_1016_j_energy_2025_137225
crossref_primary_10_1186_s43067_023_00091_4
crossref_primary_10_1063_5_0268894
crossref_primary_10_1016_j_atmosres_2023_106841
crossref_primary_10_1007_s00521_024_10618_z
crossref_primary_10_3390_en15186642
crossref_primary_10_1007_s40866_024_00193_6
crossref_primary_10_1038_s41598_022_08842_5
crossref_primary_10_1016_j_epsr_2022_107886
crossref_primary_10_2478_amns_2024_3419
crossref_primary_10_1016_j_ijepes_2024_110229
crossref_primary_10_1016_j_enconman_2025_119555
crossref_primary_10_1016_j_enpol_2023_113845
crossref_primary_10_1016_j_engappai_2024_107906
crossref_primary_10_1080_17445302_2023_2260941
crossref_primary_10_1016_j_epsr_2025_111669
crossref_primary_10_1016_j_enconman_2023_116760
crossref_primary_10_1016_j_enconman_2025_119673
crossref_primary_10_1016_j_energy_2024_130782
crossref_primary_10_1016_j_energy_2023_128068
crossref_primary_10_1016_j_energy_2025_138327
crossref_primary_10_1016_j_enbuild_2025_115307
crossref_primary_10_1016_j_rser_2022_113046
crossref_primary_10_1016_j_renene_2024_121087
crossref_primary_10_3390_electronics12214443
crossref_primary_10_1016_j_apenergy_2025_126615
crossref_primary_10_1016_j_jclepro_2022_132326
crossref_primary_10_3390_app14103962
crossref_primary_10_1038_s41598_025_00741_9
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_1109_TIM_2025_3588929
crossref_primary_10_1016_j_energy_2024_130770
crossref_primary_10_1016_j_rser_2023_113792
crossref_primary_10_1007_s10489_022_04360_z
crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1016_j_enconman_2024_119142
crossref_primary_10_32604_cmes_2023_027124
crossref_primary_10_3390_electronics11030459
crossref_primary_10_1016_j_renene_2025_124008
crossref_primary_10_3390_atmos16070859
crossref_primary_10_1016_j_jweia_2025_106035
crossref_primary_10_1016_j_egyr_2023_05_229
crossref_primary_10_1016_j_energy_2025_138538
crossref_primary_10_1016_j_apenergy_2023_122185
crossref_primary_10_1016_j_oceaneng_2025_122518
crossref_primary_10_1016_j_segan_2024_101517
crossref_primary_10_1007_s12145_023_01044_1
crossref_primary_10_1016_j_apenergy_2024_124129
crossref_primary_10_1049_rpg2_12572
crossref_primary_10_3390_w15081548
crossref_primary_10_1016_j_rineng_2025_107285
crossref_primary_10_1038_s41598_025_98212_8
crossref_primary_10_1371_journal_pone_0327523
crossref_primary_10_1016_j_energy_2023_129496
crossref_primary_10_1016_j_apenergy_2022_120601
crossref_primary_10_1016_j_energy_2024_130401
crossref_primary_10_1016_j_energy_2024_133911
crossref_primary_10_1016_j_renene_2025_123388
crossref_primary_10_1016_j_rineng_2024_103626
crossref_primary_10_1016_j_egyr_2022_05_110
crossref_primary_10_1016_j_oceaneng_2025_120451
crossref_primary_10_1016_j_energy_2022_123600
crossref_primary_10_1016_j_ejor_2024_03_005
crossref_primary_10_1016_j_renene_2023_119604
crossref_primary_10_1016_j_energy_2022_123848
crossref_primary_10_1016_j_energy_2025_136497
crossref_primary_10_1016_j_ijhydene_2022_10_271
crossref_primary_10_1016_j_ijepes_2025_110732
crossref_primary_10_1016_j_egyr_2022_12_048
crossref_primary_10_3390_atmos14010071
crossref_primary_10_1016_j_energy_2025_138514
crossref_primary_10_1016_j_apenergy_2024_123375
crossref_primary_10_1063_5_0212699
crossref_primary_10_1177_09576509221125863
crossref_primary_10_1016_j_oceaneng_2025_122541
crossref_primary_10_1109_TIA_2024_3354218
crossref_primary_10_3390_atmos16070763
crossref_primary_10_1016_j_ijepes_2025_110703
crossref_primary_10_1109_ACCESS_2022_3202970
crossref_primary_10_1177_09576509241271873
crossref_primary_10_1016_j_energy_2024_131951
crossref_primary_10_1016_j_segan_2025_101949
crossref_primary_10_1016_j_energy_2023_127173
crossref_primary_10_3390_app13179888
crossref_primary_10_1038_s41598_024_65140_y
crossref_primary_10_1111_1477_8947_12461
crossref_primary_10_1016_j_renene_2023_119863
crossref_primary_10_1016_j_egyr_2025_02_046
crossref_primary_10_3390_su15108032
crossref_primary_10_1016_j_energy_2024_131142
crossref_primary_10_1016_j_enconman_2023_117440
crossref_primary_10_32604_ee_2023_042635
crossref_primary_10_1016_j_energy_2024_133208
crossref_primary_10_3390_en15041510
crossref_primary_10_1088_1755_1315_1245_1_012034
crossref_primary_10_1080_27684830_2025_2482311
crossref_primary_10_1029_2023JD040134
crossref_primary_10_1007_s11227_025_07376_7
crossref_primary_10_1061_JLEED9_EYENG_6163
crossref_primary_10_3390_en16124562
crossref_primary_10_1016_j_apenergy_2022_118796
crossref_primary_10_3390_en16114507
crossref_primary_10_3390_en16145383
crossref_primary_10_3390_en16145381
crossref_primary_10_3390_en16031370
crossref_primary_10_1016_j_apenergy_2021_118029
crossref_primary_10_1080_15435075_2025_2490560
crossref_primary_10_1016_j_renene_2022_12_040
crossref_primary_10_1016_j_renene_2022_04_061
crossref_primary_10_1080_15435075_2024_2382351
crossref_primary_10_3390_s23104905
crossref_primary_10_3390_w14111794
crossref_primary_10_1051_e3sconf_202343301008
crossref_primary_10_1016_j_energy_2025_135916
crossref_primary_10_1093_ijlct_ctae061
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_1016_j_apenergy_2024_123589
crossref_primary_10_1016_j_ijepes_2024_109897
crossref_primary_10_1038_s41598_024_78303_8
crossref_primary_10_1002_joc_8070
crossref_primary_10_1016_j_egyai_2025_100513
crossref_primary_10_3390_en17153655
crossref_primary_10_1016_j_apenergy_2023_120815
crossref_primary_10_3389_fenrg_2024_1342517
crossref_primary_10_3390_app14166889
crossref_primary_10_1016_j_enconman_2023_117460
crossref_primary_10_1016_j_ijhydene_2022_05_130
crossref_primary_10_3390_designs8010010
crossref_primary_10_1016_j_enconman_2023_117342
crossref_primary_10_1016_j_enconman_2022_116296
crossref_primary_10_1177_27533735251363415
crossref_primary_10_3390_su16177721
crossref_primary_10_1016_j_eswa_2024_123516
crossref_primary_10_1016_j_seta_2023_103314
crossref_primary_10_1016_j_energy_2023_127933
crossref_primary_10_3390_en17235848
crossref_primary_10_1088_1742_6596_2479_1_012037
crossref_primary_10_1016_j_enganabound_2022_05_001
crossref_primary_10_32604_cmc_2023_032533
crossref_primary_10_3389_fenrg_2023_1252067
crossref_primary_10_3390_su17073239
crossref_primary_10_1016_j_energy_2024_132320
crossref_primary_10_3390_en16031459
crossref_primary_10_3724_j_1006_8775_2024_035
crossref_primary_10_3390_en18030580
crossref_primary_10_1155_er_3534500
crossref_primary_10_20965_jaciii_2025_p0592
crossref_primary_10_1038_s41598_025_94082_2
crossref_primary_10_1016_j_eswa_2023_122477
crossref_primary_10_1093_ijlct_ctaf019
crossref_primary_10_1016_j_colsurfa_2022_129115
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1155_int_1649220
crossref_primary_10_3390_jmse12030424
crossref_primary_10_1016_j_enconman_2023_117880
crossref_primary_10_1016_j_energy_2024_131345
crossref_primary_10_3390_en16135014
crossref_primary_10_1007_s42452_025_06478_4
crossref_primary_10_1016_j_energy_2022_126034
crossref_primary_10_1080_17455030_2023_2165735
crossref_primary_10_1016_j_ijepes_2025_111097
crossref_primary_10_1016_j_renene_2022_09_114
crossref_primary_10_1016_j_renene_2022_11_042
crossref_primary_10_1016_j_eswa_2025_129472
crossref_primary_10_3390_su151813572
crossref_primary_10_1016_j_egyr_2022_11_051
crossref_primary_10_3233_HIS_230004
crossref_primary_10_1016_j_apenergy_2022_119683
crossref_primary_10_1007_s41324_025_00604_5
crossref_primary_10_1016_j_energy_2024_133511
crossref_primary_10_3390_en16052094
crossref_primary_10_3390_en18112969
crossref_primary_10_3390_en15020605
crossref_primary_10_1016_j_apenergy_2022_120565
crossref_primary_10_3390_en15197256
crossref_primary_10_1016_j_enconman_2024_118904
crossref_primary_10_1016_j_isci_2025_112360
crossref_primary_10_1016_j_renene_2021_10_070
crossref_primary_10_1109_ACCESS_2024_3517144
crossref_primary_10_1016_j_egyr_2025_07_005
crossref_primary_10_1016_j_energy_2024_133515
crossref_primary_10_3390_en14227564
crossref_primary_10_1016_j_energy_2022_126283
crossref_primary_10_3390_en17102395
crossref_primary_10_1016_j_energy_2025_138275
crossref_primary_10_1016_j_apenergy_2024_123303
crossref_primary_10_1016_j_marpolbul_2023_115077
crossref_primary_10_1016_j_energy_2024_130352
crossref_primary_10_1016_j_energy_2024_132895
crossref_primary_10_1016_j_eswa_2024_124766
crossref_primary_10_3390_en17143547
crossref_primary_10_3389_fmars_2025_1495822
crossref_primary_10_3724_j_1006_8775_2025_031
crossref_primary_10_1016_j_energy_2024_131448
crossref_primary_10_1080_15567036_2023_2276901
crossref_primary_10_1016_j_enconman_2022_116138
crossref_primary_10_1016_j_energy_2024_132899
crossref_primary_10_3389_fenrg_2023_1211360
crossref_primary_10_1016_j_enganabound_2022_04_006
crossref_primary_10_1109_TKDE_2022_3188335
crossref_primary_10_1016_j_apenergy_2024_123777
crossref_primary_10_3390_app13169100
crossref_primary_10_1029_2024GL112124
crossref_primary_10_1155_2022_4122074
crossref_primary_10_3390_atmos16030266
crossref_primary_10_2139_ssrn_5253079
crossref_primary_10_1016_j_renene_2024_121280
crossref_primary_10_3390_electronics13204032
crossref_primary_10_1016_j_energy_2023_129079
crossref_primary_10_1016_j_egyr_2023_09_013
crossref_primary_10_1109_TSG_2024_3447162
crossref_primary_10_1016_j_egyr_2022_08_271
crossref_primary_10_1155_2022_5121762
crossref_primary_10_1007_s43937_022_00011_z
crossref_primary_10_1016_j_apenergy_2024_123882
crossref_primary_10_1016_j_ins_2024_120150
crossref_primary_10_1016_j_ress_2024_110037
crossref_primary_10_3390_en15030861
crossref_primary_10_1016_j_energy_2025_136199
crossref_primary_10_1016_j_segan_2024_101363
crossref_primary_10_1016_j_apenergy_2025_126060
crossref_primary_10_1016_j_enganabound_2022_03_022
crossref_primary_10_1016_j_renene_2025_123876
crossref_primary_10_1016_j_atmosres_2022_106586
crossref_primary_10_1016_j_asoc_2023_110279
crossref_primary_10_32604_cmes_2023_044467
crossref_primary_10_1016_j_energy_2022_123595
crossref_primary_10_3390_e25040647
crossref_primary_10_1002_we_2783
crossref_primary_10_1016_j_ins_2024_121736
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_energy_2023_130184
crossref_primary_10_1016_j_energy_2023_127430
crossref_primary_10_1007_s40436_025_00552_1
crossref_primary_10_1109_TSG_2023_3325390
crossref_primary_10_3389_fenrg_2023_1032867
crossref_primary_10_3390_en17215391
crossref_primary_10_3390_en17051215
crossref_primary_10_3390_su151914171
crossref_primary_10_1016_j_renene_2025_123618
crossref_primary_10_1016_j_neucom_2024_127466
crossref_primary_10_1109_ACCESS_2024_3507154
crossref_primary_10_1186_s42162_025_00546_0
crossref_primary_10_1016_j_apenergy_2023_121749
crossref_primary_10_1016_j_energy_2023_129847
crossref_primary_10_3390_math13182924
crossref_primary_10_1002_tee_24204
crossref_primary_10_1002_we_70057
crossref_primary_10_1016_j_energy_2024_133023
crossref_primary_10_70322_sesr_2025_10004
crossref_primary_10_1016_j_energy_2023_130078
crossref_primary_10_1016_j_renene_2023_119391
crossref_primary_10_1111_exsy_13830
crossref_primary_10_1109_JETCAS_2023_3252667
crossref_primary_10_1177_0309524X231191163
crossref_primary_10_1080_21642583_2024_2399057
crossref_primary_10_3390_en16052317
crossref_primary_10_1016_j_aei_2023_102177
crossref_primary_10_1016_j_renene_2025_123966
crossref_primary_10_3390_forecast5030031
crossref_primary_10_1016_j_inoche_2023_111827
crossref_primary_10_3390_fluids9040084
crossref_primary_10_1016_j_apenergy_2024_123616
crossref_primary_10_1109_TPWRS_2023_3304898
crossref_primary_10_3389_fenrg_2022_959333
crossref_primary_10_3390_pr11113247
crossref_primary_10_1016_j_energy_2025_134884
crossref_primary_10_1016_j_renene_2025_123965
crossref_primary_10_3390_forecast6040044
crossref_primary_10_1080_15435075_2024_2326052
crossref_primary_10_1007_s40747_022_00879_3
crossref_primary_10_32604_ee_2023_040887
crossref_primary_10_1016_j_ijar_2022_07_002
crossref_primary_10_3390_en16176394
crossref_primary_10_1007_s12559_024_10284_2
crossref_primary_10_1109_ACCESS_2024_3392899
crossref_primary_10_3390_en15176287
crossref_primary_10_3390_su16010333
crossref_primary_10_1016_j_apenergy_2024_122759
crossref_primary_10_1016_j_techsoc_2023_102352
crossref_primary_10_1016_j_aej_2025_08_009
crossref_primary_10_1016_j_energy_2022_125208
crossref_primary_10_1063_5_0221646
crossref_primary_10_3390_electronics12173683
crossref_primary_10_1016_j_apenergy_2025_126261
crossref_primary_10_1016_j_energy_2025_134612
crossref_primary_10_1016_j_suscom_2024_101054
crossref_primary_10_1109_TSTE_2024_3435936
crossref_primary_10_3390_jmse11071440
crossref_primary_10_1016_j_renene_2025_122983
crossref_primary_10_1016_j_apenergy_2025_125295
crossref_primary_10_1016_j_compeleceng_2024_109715
crossref_primary_10_3390_s24155035
crossref_primary_10_1016_j_apenergy_2024_122624
crossref_primary_10_1016_j_apenergy_2023_122502
crossref_primary_10_1007_s00024_025_03823_x
crossref_primary_10_1007_s00202_024_02685_1
crossref_primary_10_3390_en17133158
crossref_primary_10_1016_j_energy_2024_133356
crossref_primary_10_1016_j_seta_2023_103101
crossref_primary_10_3390_computers12100206
crossref_primary_10_1016_j_energy_2022_124384
crossref_primary_10_1007_s13198_022_01754_7
crossref_primary_10_1016_j_renene_2022_08_044
crossref_primary_10_1016_j_energy_2023_126778
crossref_primary_10_1016_j_energy_2022_125342
crossref_primary_10_1016_j_engappai_2024_107891
crossref_primary_10_1007_s10462_024_10728_z
crossref_primary_10_1016_j_asoc_2024_112007
crossref_primary_10_1016_j_eswa_2023_119967
crossref_primary_10_1016_j_istruc_2023_105286
crossref_primary_10_3390_electronics11060946
crossref_primary_10_1016_j_apenergy_2024_124915
crossref_primary_10_1016_j_epsr_2023_109890
crossref_primary_10_1007_s43621_024_00615_6
crossref_primary_10_1049_gtd2_12996
crossref_primary_10_1016_j_energy_2024_131164
crossref_primary_10_3390_systems13070579
crossref_primary_10_1016_j_renene_2024_121311
crossref_primary_10_3390_jmse11040879
crossref_primary_10_1007_s11069_024_07050_w
crossref_primary_10_1016_j_applthermaleng_2022_118133
crossref_primary_10_3390_ma15041402
crossref_primary_10_1016_j_apenergy_2024_122840
crossref_primary_10_1177_1088467X241312592
crossref_primary_10_1051_epjconf_202532605003
crossref_primary_10_1016_j_energy_2024_133577
crossref_primary_10_1063_5_0254859
crossref_primary_10_1016_j_seta_2023_103486
crossref_primary_10_1109_TIM_2023_3329105
crossref_primary_10_1007_s42835_022_01143_x
crossref_primary_10_1016_j_energy_2022_126100
crossref_primary_10_1007_s12273_025_1243_9
crossref_primary_10_1109_TIM_2025_3586271
crossref_primary_10_1109_TSTE_2022_3175916
crossref_primary_10_3390_en17061270
crossref_primary_10_1109_TSTE_2025_3540541
crossref_primary_10_1007_s00521_024_10766_2
crossref_primary_10_1016_j_cej_2024_158878
crossref_primary_10_1109_TIM_2025_3545992
crossref_primary_10_1016_j_energy_2024_133580
crossref_primary_10_3390_en18102632
crossref_primary_10_1109_ACCESS_2025_3580485
crossref_primary_10_4018_JGIM_300741
crossref_primary_10_1016_j_apenergy_2024_122838
Cites_doi 10.1016/j.renene.2020.03.042
10.1016/j.enconman.2018.10.108
10.1016/j.apenergy.2015.08.014
10.1016/j.renene.2020.03.168
10.1016/j.asoc.2020.106996
10.1016/j.enconman.2019.06.041
10.1016/j.renene.2019.04.157
10.1051/matecconf/202030905011
10.1016/j.energy.2014.08.064
10.1016/j.energy.2020.118441
10.1109/ACCESS.2020.3027977
10.1016/j.rser.2008.02.002
10.1016/j.energy.2020.117081
10.1016/j.enconman.2017.06.021
10.1016/j.apenergy.2018.10.080
10.1016/j.enconman.2019.02.018
10.1016/j.knosys.2020.106468
10.1016/j.renene.2013.08.011
10.1016/j.enconman.2021.114002
10.1016/j.renene.2018.03.035
10.1109/TNN.2010.2096824
10.1016/j.enconman.2019.112418
10.1016/j.enconman.2018.04.021
10.1109/TSTE.2011.2114680
10.1016/j.neucom.2014.09.090
10.1109/TPWRS.2020.2971607
10.1109/TIE.2020.3009604
10.1016/j.scs.2020.102052
10.1016/j.enconman.2019.06.024
10.1016/j.jclepro.2018.07.164
10.1016/j.enconman.2019.02.086
10.1109/TPWRS.2016.2628873
10.1016/j.renene.2021.02.117
10.1016/j.renene.2020.08.077
10.1016/j.apenergy.2019.04.188
10.1063/1.5139689
10.1016/j.apenergy.2017.01.043
10.1016/j.enconman.2017.11.053
10.1109/JIOT.2019.2913176
10.1109/TSTE.2015.2434387
10.1016/j.apenergy.2019.05.044
10.1016/j.apenergy.2018.08.114
10.1016/j.apenergy.2012.03.054
10.1016/j.energy.2019.116300
10.1016/j.renene.2008.09.006
10.1016/j.renene.2015.07.004
10.1016/j.renene.2017.09.078
10.1109/TSTE.2019.2926147
10.1109/ACCESS.2020.3011060
10.1016/j.energy.2019.02.194
10.1088/1742-6596/1087/2/022034
10.1016/j.apenergy.2019.113686
10.1007/s12652-018-0886-0
10.1016/j.ymssp.2020.107398
10.1016/j.enconman.2019.112239
10.1016/j.renene.2014.11.011
10.1109/ACCESS.2019.2929542
10.1016/j.aei.2018.02.006
10.1016/j.renene.2014.09.058
10.1016/j.energy.2020.119515
10.1016/j.renene.2016.05.023
10.1007/978-3-319-73013-4_23
10.1016/j.renene.2007.01.014
10.1109/ACCESS.2020.3022872
10.1109/TPWRS.2017.2787667
10.1016/j.apenergy.2019.114345
10.1016/j.energy.2018.09.118
10.1016/j.enconman.2020.112524
10.1016/j.scs.2020.102275
10.1049/iet-rpg.2018.5781
10.1016/j.enconman.2019.112461
10.1016/j.renene.2021.04.091
10.1016/j.apenergy.2018.07.084
10.1016/j.renene.2019.06.047
10.1016/j.enconman.2018.03.098
10.1145/1390156.1390294
10.1016/j.renene.2020.09.078
10.1109/ACCESS.2018.2818108
10.1016/j.renene.2019.04.154
10.1016/j.apenergy.2017.04.008
10.1016/j.apenergy.2021.116842
10.1016/j.enconman.2020.113324
10.1109/ACCESS.2020.2982839
10.1016/j.aei.2021.101290
10.1016/j.enconman.2018.10.068
10.1016/j.renene.2018.12.047
10.1016/j.knosys.2020.106396
10.1016/j.ins.2020.12.032
10.1016/j.enconman.2020.113559
10.1109/ACCESS.2020.2980562
10.1109/TII.2020.3004436
10.1016/j.apenergy.2018.02.070
10.1049/iet-rpg.2010.0052
10.1016/j.neucom.2019.08.108
10.1109/TSTE.2018.2820198
10.1016/j.apenergy.2016.06.098
10.1016/j.energy.2017.02.150
10.1109/TPWRS.2015.2468586
10.1016/j.rser.2012.02.044
10.1016/j.apenergy.2021.116851
10.1016/j.artint.2019.103176
10.1016/j.enconman.2020.113098
10.1016/j.enconman.2017.01.022
10.1016/j.apenergy.2018.11.063
10.1016/j.energy.2018.11.128
10.1016/j.asoc.2020.106917
10.1016/j.apenergy.2018.09.037
10.1016/j.renene.2020.10.119
10.1109/TSTE.2015.2441747
10.1016/j.renene.2019.05.039
10.1016/j.knosys.2019.05.009
10.1016/j.rser.2014.03.033
10.1016/j.energy.2020.119299
10.1016/j.rser.2013.12.054
10.1016/j.renene.2011.06.023
10.1109/TIA.2020.2992945
10.1109/TSTE.2013.2253140
10.1016/j.asoc.2019.105799
10.1016/j.apenergy.2019.03.044
10.1109/TSTE.2018.2844102
10.1016/j.enconman.2020.112824
10.1016/j.enconman.2017.08.014
10.1016/j.renene.2021.03.020
10.1109/TSTE.2019.2897136
10.1016/j.renene.2017.11.089
10.1016/j.apenergy.2019.114259
10.1016/j.egypro.2018.11.043
10.1109/TNN.2011.2162110
10.1016/j.neucom.2019.07.058
10.1016/j.renene.2016.03.103
10.1016/j.rser.2019.109422
10.1016/j.energy.2018.09.180
10.1016/j.enconman.2021.113917
10.1016/j.apenergy.2016.11.111
10.1016/j.renene.2019.12.047
10.1016/j.enconman.2020.113500
10.1016/j.enconman.2014.09.060
10.1016/j.energy.2020.119361
10.1162/neco.1997.9.8.1735
10.1016/j.enconman.2019.05.007
10.1016/j.renene.2016.10.030
10.1109/TSTE.2020.2988683
10.1016/j.renene.2020.10.126
10.1016/j.neucom.2020.10.093
10.1049/iet-rpg.2018.5917
10.1016/j.enconman.2017.10.085
10.1016/j.rser.2018.09.046
10.1016/j.measurement.2019.106971
10.1016/j.asoc.2019.105550
10.1016/j.energy.2020.118371
10.1109/78.650093
10.1016/j.apm.2019.07.001
10.1016/j.enconman.2018.01.010
10.1016/j.apenergy.2016.08.108
10.3390/en11071638
10.1016/j.enconman.2018.02.012
10.1109/TSTE.2019.2954107
10.1016/j.ijepes.2020.106056
10.1016/j.asoc.2020.106476
10.1016/j.enconman.2018.07.070
10.1016/j.enconman.2019.05.020
10.1016/j.energy.2020.117794
10.1049/iet-rpg.2019.1238
10.1016/j.enconman.2018.11.006
10.1016/j.rser.2014.12.012
10.1016/j.enconman.2019.06.083
10.1016/j.energy.2016.10.040
10.1016/j.rser.2014.01.033
10.1016/j.enconman.2018.10.089
10.1016/j.renene.2017.10.075
10.1016/j.enconman.2017.09.034
10.1016/j.apenergy.2019.01.010
10.1016/j.future.2018.09.054
10.1049/iet-rpg.2015.0477
10.1016/j.rser.2016.01.114
10.1109/TII.2017.2730846
10.1016/j.apm.2020.07.019
10.1016/j.enconman.2018.04.099
10.1016/j.enconman.2018.04.082
10.1016/j.enconman.2016.06.053
10.1109/ACCESS.2020.3046001
10.1016/j.enconman.2020.113456
10.1142/S0218001416500117
10.1016/j.rser.2015.04.081
10.1016/j.apenergy.2019.114137
10.1016/j.apenergy.2015.02.032
10.1016/j.enconman.2017.10.021
10.1016/j.enconman.2018.10.008
10.1016/j.renene.2019.03.041
10.1016/j.energy.2015.08.039
10.1016/j.asoc.2017.05.031
10.1016/j.renene.2018.07.083
10.1002/we.2564
10.1109/TII.2020.2967822
10.1016/j.jclepro.2020.121817
10.1016/j.apenergy.2015.01.038
10.1016/j.renene.2018.10.043
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117766
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117766
S0306261921011053
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-8e870c8537e7e573d1dc7c7abee605a1b94a1d735cf10f5ffc42a8ca4922d11c3
ISICitedReferencesCount 602
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701874500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 13:07:53 EDT 2025
Sat Nov 29 07:17:56 EST 2025
Tue Nov 18 20:57:14 EST 2025
Fri Feb 23 02:40:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Deep neural network
Relationship learning
Data pre-processing
Wind power forecasting
Wind speed forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-8e870c8537e7e573d1dc7c7abee605a1b94a1d735cf10f5ffc42a8ca4922d11c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1747-3448
PQID 2636518606
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636518606
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_citationtrail_10_1016_j_apenergy_2021_117766
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117766
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Zhang, Wang, Bao, Jing (b188) 2019; 13
Liu, Zhang, Kong, Lee (b98) 2020; 397
Yan, Wu (b215) 2020; 8
Pei, Qin, Zhang, Yao, Wang, Wang, Liu, Jiang, Zhou, Yi (b216) 2019; 196
Qureshi, Khan, Zameer, Usman (b59) 2017; 58
Qin, Li, Liang, Lee, Zhang, Gu, Zhang, Wu, Rodriguez (b201) 2019; 236
Chen, Zeng, Zhou, Du, Lu (b57) 2018; 165
Liu, Qin, Zhang, Pei, Jiang, Feng, Zhou (b179) 2020; 260
Kisvari, Lin, Liu (b203) 2021; 163
Liu, Hu, You, Chan (b159) 2014
Khodayar, Wang (b208) 2018; 10
Biswas, Sinha (b192) 2020
Wang, Li, Runmin, Foley, Alkez, Song, Hu, Srinivasan (b3) 2020; 12
Yang, Wang (b239) 2018; 230
Peng, Zhang, Zhou, Nazir (b113) 2020; 156
Wang, Zhang, Chen (b154) 2017; 32
Jiajun, Chuanjin, Yongle, Huoyue (b169) 2020; 205
Moreno, dos Santos Coelho (b120) 2018; 126
Khodayar, Teshnehlab (b155) 2015
Zu, Song (b93) 2018; 1087
Xiao, Wang, Dong, Wu (b77) 2015; 44
Hu, Wang, Lv (b210) 2020; 154
Liu, Chen, Lv, Wu, Liu (b21) 2019; 195
Fu, Wang, Tan, Zhang (b40) 2020; 205
Sun, Zhao (b199) 2020; 8
Song, Wang, Lu (b43) 2018; 215
Liu, Cao, Zhang, Wang, Huang, Luo (b162) 2020; 121
Liu, Jiang, Zhang, Niu (b103) 2020; 259
Sun, Zhou, Chen, Jia, Tayyab, Peng (b112) 2018; 165
Zhang, Liu (b175) 2020; 226
Xiang, Qiu, Hao, Cao (b194) 2020; 309
Khodayar, Kaynak, Khodayar (b157) 2017; 13
Li, Chang, Tseng, Liu, Lim (b61) 2020; 270
Liu, Ding, Bai (b218) 2021; 233
Lin, Pai, Ting (b165) 2019; 7
Wang, Li, Fu, Tang (b206) 2020; PP
Dalto, Matuško, Vašak (b147) 2015
Riahy, Abedi (b15) 2008; 33
Afrasiabi, Mohammadi, Rastegar, Afrasiabi (b86) 2020; 17
Yu, Gao, Yu, Lu, Xu, Zhao, Zhang, Zhang, Zhang (b186) 2019; 93
Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust features with denoising autoencoders. In
Santamaría-Bonfil, Reyes-Ballesteros, Gershenson (b20) 2016; 85
Liu, Chen (b4) 2019; 249
Zhang, Wang, Wang (b27) 2014; 32
Ouyang, Huang, He, Tang (b131) 2020; 145
Zhang, Li, Zhang (b87) 2020
Higashiyama, Fujimoto, Hayashi (b88) 2018; 155
(b69) 2021
Shi, Chen, Wang, Yeung, Wong, Woo (b196) 2015; 28
Yuan, Chen, Jiang, Yuan (b24) 2019; 82
He, Shao, Zhong, Zhao (b172) 2020; 207
Khosravi, Nahavandi, Creighton, Atiya (b29) 2011; 22
Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (b91) 2010; 11
Liu, Chen (b58) 2019; 254
Kiranyaz, Avci, Abdeljaber, Ince, Gabbouj, Inman (b183) 2021; 151
Wan, Liu, Ren, Guo, Yu, Hu (b49) 2016; 30
Liu, Li, Duan, Chen (b79) 2020; 224
Lee, Zhao, Dutton, Backwell, Fiestas, Qiao, Balachandran, Lim, Liang, Clarke (b6) 2020
Wang, Wang, Yang (b37) 2019; 143
Wu, Wang, Chen, Du, Yang (b66) 2020; 146
Memarzadeh, Keynia (b143) 2020; 213
Hu, Liu, You, Chan (b166) 2015
Banik, Behera, Sarathkumar, Goswami (b26) 2020; 14
Wang, Wang (b224) 2021; 216
Chen, Dong, Wang, Su, Han, Zhou, Zhang, Zhao, Bao (b62) 2021; 227
Wen (b229) 2020; 94
Tascikaraoglu, Uzunoglu (b76) 2014; 34
Zhang, Yan, Infield, Liu, Lien (b16) 2019; 241
Yan, Liu, Xu, Jia (b122) 2020; 225
Sun, Qiao, Wei, Wang (b151) 2017; 197
Xiao, Shao, Jin, Wu (b60) 2021; 99
Zhang, Liu, Yan, Han, Li, Long (b207) 2020; 35
Peng, Peng, Fu, Lu, Tang, Wang, Li (b94) 2020; 207
Zhu, Li, Mo, Wu (b171) 2017
Yu, Han, Yang, Yang (b19) 2020; 56
Ahmad, Zhang, Yan (b83) 2020; 55
Li, Wang, Hu, Liu (b96) 2019
Wang, Li, Wang, Peng, Jiang, Liu (b178) 2017; 188
Zhao, Jiang, Liu, Yu, Chang (b23) 2020; 203
Liang, Nguyen, Jin (b56) 2018
Jiao, Huang, Ma, Han, Tian (b158) 2018; 6
Hu, Heng, Wen, Zhao (b25) 2020; 162
Chen, Liu (b52) 2021; 48
Liu, Tian, Liang, Li (b123) 2015; 157
Behera, Misra, Sillitti (b225) 2021; 554
Niu, Wang, Zhang, Du (b121) 2018; 118
Xiaosheng, Bo, Fan, Gaofeng, Zheng, Kai (b135) 2018
Amjady, Keynia, Zareipour (b144) 2011; 2
Zhang, Pan, Chen, Han, Zhao, Zhang (b231) 2020; 156
Jahangir, Tayarani, Gougheri, Golkar, Ahmadian, Elkamel (b95) 2020; 68
Schuster, Paliwal (b191) 2002; 45
Wang, Yang (b234) 2021; 171
Li, Wu, Liu (b187) 2018; 167
Liu, Hajiali, Torabi, Ahmadi, Simoes (b150) 2018; 9
Yan, Ouyang (b13) 2019; 180
Niu, Yu, Tang, Wu, Reformat (b47) 2020; 196
Li, Wang, Goel (b145) 2015; 6
Hinton (b163) 2012
Zendehboudi, Baseer, Saidur (b75) 2018; 199
Jujie, Yaning (b189) 2018; 230
Guo, Zhao, Lu, Wang (b102) 2012; 37
Ren, Suganthan, Srikanth (b78) 2015; 50
Lei, Shiyan, Chuanwen, Hongling, Yan (b32) 2009; 13
Huang, Xing, Cai, Yu, Qi, Lin (b146) 2018; 11
Jiang, Wang, Wang (b226) 2017; 119
Han, Meng, Hu, Chu (b33) 2017; 148
Liu, Mi, Li (b174) 2018; 166
Cho, Van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b202) 2014
Araya, Valle, Allende (b185) 2019
Altan, Karasu, Zio (b236) 2021; 100
Chollet (b240) 2015
Ding, Zhou, Xie, Wu, Nakanishi, Yokoyama (b48) 2019; 365
Jaseena, Kovoor (b156) 2020; 12
Woo, Park, Park, Manuel (b214) 2019; 11
Liu, Mi, Li (b109) 2018; 156
Zhu, Chen, Shi, Zhu, Bai, Duan, Liu (b53) 2019; 11
Nielsen, Madsen (b68) 2000
Wang, Zhang, Wu, Wang (b230) 2016; 94
Wang, Hu, Srinivasan, Wang (b8) 2018; 10
Yang, Fang, Song, Su, Yang, Huang, Joo (b5) 2021; 24
Zhang, Le, Liao, Zheng, Li (b170) 2019; 168
Ahmed, Khalid (b81) 2019; 100
Wen, Gu, Ma, Jin (b209) 2019
Jung, Broadwater (b12) 2014; 31
Yu, Liu, Li, Lu, Yu, Wang, Li (b177) 2019; 238
Liu, Yu, Wu, Duan, Yan (b211) 2020; 202
Feng, Cui, Hodge, Zhang (b138) 2017; 190
Ibrahim, Alsheikh, Al-Hindawi, Al-Dahidi, Elmoaqet (b198) 2020; 2020
Yu, Li, Bao, Tang, Zhai (b205) 2018; 178
Wang, Li, Li, Yao, Wu (b132) 2021; 292
Marugán, Márquez, Perez, Ruiz-Hernández (b74) 2018; 228
Zhang, Qu, Zhang, Mao, Ma, Fan (b117) 2017; 136
Deo, Ghorbani, Samadianfard, Maraseni, Bilgili, Biazar (b233) 2018; 116
Dong, Sun, Li (b119) 2017; 102
Yang, Chen (b212) 2019; 277
Hong, Rioflorido (b173) 2019; 250
Cassola, Burlando (b42) 2012; 99
Luo, Li, Wang, Hu (b65) 2021; 89
Leng, Li, Zhu, Tang, Zhang, Ghadimi (b153) 2018; 36
Okumus, Dinler (b82) 2016; 123
(b7) 2021
Mi, Liu, Li (b114) 2019; 180
Wang, Hu, Li, Foley, Srinivasan (b1) 2019; 116
Elkin, Witherspoon (b73) 2021
Song, Tang, Ji, Todo (b139) 2020; 201
He, Chen, Shang, Li, Li, Xu (b221) 2019; 76
Ssekulima, Anwar, Al Hinai, El Moursi (b85) 2016; 10
Qian, Pei, Zareipour, Chen (b80) 2019; 235
Notchenko A, Kapushev E, Burnaev E. Sparse 3D convolutional neural networks for large-scale shape retrieval. In
Hochreiter, Schmidhuber (b184) 1997; 9
Yunus, Thiringer, Chen (b34) 2015; 31
Severiano, e Silva, Cohen, Guimarães (b41) 2021; 171
Xiang, Li, Hu, Zhang (b124) 2020; 220
Zhu, Yuan, Xu, Luo, Zhang (b148) 2019; 198
Khosravi, Nahavandi (b28) 2013; 4
Peng, Zhou, Zhang, Zheng (b128) 2017; 153
Prósper, Otero-Casal, Fernández, Miguez-Macho (b17) 2019; 135
Hu, Chen (b63) 2018; 173
Fu, Wang, Li, Tan (b232) 2019; 187
Harbola, Coors (b90) 2019; 195
Zhang, Chen, Xiao, Zhang, Feng (b213) 2021; 174
Fu, Zhang, Wang, Wen, Fang, Zou (b228) 2021; 164
Kavasseri, Seetharaman (b35) 2009; 34
Wang, Wang, Jiang (b227) 2015; 143
Wu, Xiao (b108) 2019; 85
Qu, Mao, Zhang, Zhang, Li (b116) 2019; 133
Wilms, Cupelli, Monti, Gross (b197) 2019
Wang, Wang, Li, Peng, Liu (b22) 2016; 182
Han, Jing, Zhang, Gao (b110) 2019; 189
Wei, Yi-Ming, Zhao, Weigang, Zhongyue (b14) 2016; 178
Monteiro, Bessa, Miranda, Botterud, Wang, Conzelmann (b71) 2009
Chen, Zeng, Lu, Weng (b190) 2019; 6
Wei, Wang, Niu, Li (b222) 2021; 292
Moreno, Mariani, Coelho (b127) 2021; 164
Al-Shabandar, Jaddoa, Liatsis, Hussain (b223) 2021; 3
2016.
Santhosh, Venkaiah, Kumar (b115) 2018; 168
Jiang, Liu, Niu, Zhang (b219) 2021; 217
Shi, Guo, Zheng (b51) 2012; 16
Mahmoud, Dong, Ma (b238) 2018; 126
Li, Zhu, Yang, Li (b118) 2019; 174
Zhang, Wei, Zhao, Liu, Zhu, Zhang (b142) 2016; 96
Moreno, da Silva, Mariani, dos Santos Coelho (b111) 2020; 213
Wang, Wang, Wei (b38) 2015; 91
Ghaderi, Sanandaji, Ghaderi (b55) 2017
Wang, Xiong (b99) 2014; 76
Kong, Liu, Shi, Lee (b149) 2015; 169
Liu, Mi, Li, Duan, Xu (b204) 2019; 143
Liu, Mi, Li (b39) 2018; 159
Wang, Song, Liu, Hou (b2) 2016; 60
Wu, Wu, Zhu (b137) 2019; 13
Landberg (b67) 2000
Zhang, Chen, Gan, Chen (b164) 2015; 6
Maatallah, Achuthan, Janoyan, Marzocca (b36) 2015; 145
Wu, Xia, Xiao, Liu (b126) 2020; 261
Liu, Tian, Li (b105) 2015; 89
Mezaache, Bouzgou (b50) 2018
Saeed, Li, Danish, Rubaiee, Tang, Gan, Ahmed (b193) 2020; 8
Hu, Hu, Gökmen, Li, Huang, Chen (b140) 2019; 140
Mehrkanoon (b180) 2019; 179
Khalid, Javaid (b84) 2020; 61
Wang, Wang, Srinivasan, Hu (b100) 2019; 132
Tao, Chen, Qiu (b167) 2014
Wang, Yang, Du, Niu (b64) 2018; 163
He, Li, Wang, Yao (b133) 2021; 430
Yan, Zhang, Liu, Han, Li, Lu (b18) 2018; 33
Mi, Liu, Li (b125) 2017; 151
Liu, Mi, Li (b106) 2018; 155
Chen, He, Shang, Li, Li, Xu (b220) 2019; 179
Sabzehgar, Amirhosseini, Rasouli (b10) 2020; 32
Liang, Xie, Fan, Meng (b217) 2020; 8
(b72) 2021
Wang, Heng, Xiao, Wang (b237) 2017; 125
Liu, Niu, Wang, Fan (b141) 2014; 62
Chen, Duan, Cai, Liu, Hu (b9) 2011; 5
Mezaache, Bouzgou, Raymond (b152) 2016
Khosravi, Nahavandi, Creighton, Atiya (b31) 2010; 22
Ju, Sun, Chen, Zhang, Zhu, Rehman (b89) 2019
Zhang, Peng, Pan, Liu (b107) 2019; 180
Soman, Zareipour, Malik, Mandal (b11) 2010
Chen, Li, Zhang, Li (b195) 2020; 8
Osório, Matias, Catalão (b104) 2015; 75
Yin, Dong, Chen, Ge, Lai, Vaccaro, Meng (b235) 2017; 150
Yang, Shi, Liu (b97) 2021; 218
Neshat, Nezhad, Abbasnejad, Mirjalili, Tjernberg, Garcia, Alexander, Wagner (b46) 2021; 236
2008, p. 1096–103.
Jahangir, Golkar, Alhameli, Mazouz, Ahmadian, Elkamel (b136) 2020; 38
Li, Wang, Chen, Zou (b101) 2020; 210
Chen, Zhang, Zhang, Peng, Cai (b54) 2019; 185
Liu, Duan, Wu, Li, Dong (b129) 2019; 148
Woo, Park, Park (b200) 2018
Hong, Satriani (b176) 2020
Trebing, Mehrkanoon (b181) 2020
Saufi, Ahmad, Leong, Lim (b161) 2020; 16
He, Nie, Guo, Wang (b44) 2020; 8
Li, Tang, Xue, Saeed, Hu (b92) 2019; 11
Wang, Qin, Zhou, Jiang (b130) 2015; 76
Wang, Qi, Liu, Song (b168) 2018; 165
Giebel, Landberg, Kariniotakis, Brownsword (b70) 2003
Yin, Duan, Shen, Qu (b160) 2017
Zhang, Qin, Liu, Yao, Yu, Lu, Jiang, Feng (b30) 2019; 196
Song, Xie, He, Dang (b45) 2020
Liu (10.1016/j.apenergy.2021.117766_b103) 2020; 259
Jung (10.1016/j.apenergy.2021.117766_b12) 2014; 31
Lin (10.1016/j.apenergy.2021.117766_b165) 2019; 7
Wang (10.1016/j.apenergy.2021.117766_b8) 2018; 10
Wang (10.1016/j.apenergy.2021.117766_b3) 2020; 12
Zhang (10.1016/j.apenergy.2021.117766_b207) 2020; 35
Wang (10.1016/j.apenergy.2021.117766_b130) 2015; 76
Xiao (10.1016/j.apenergy.2021.117766_b60) 2021; 99
Peng (10.1016/j.apenergy.2021.117766_b94) 2020; 207
Araya (10.1016/j.apenergy.2021.117766_b185) 2019
Chen (10.1016/j.apenergy.2021.117766_b54) 2019; 185
Liu (10.1016/j.apenergy.2021.117766_b129) 2019; 148
Chollet (10.1016/j.apenergy.2021.117766_b240) 2015
Khodayar (10.1016/j.apenergy.2021.117766_b208) 2018; 10
Al-Shabandar (10.1016/j.apenergy.2021.117766_b223) 2021; 3
Qian (10.1016/j.apenergy.2021.117766_b80) 2019; 235
Yang (10.1016/j.apenergy.2021.117766_b97) 2021; 218
Liu (10.1016/j.apenergy.2021.117766_b179) 2020; 260
Song (10.1016/j.apenergy.2021.117766_b139) 2020; 201
Qu (10.1016/j.apenergy.2021.117766_b116) 2019; 133
Marugán (10.1016/j.apenergy.2021.117766_b74) 2018; 228
Jiang (10.1016/j.apenergy.2021.117766_b219) 2021; 217
Deo (10.1016/j.apenergy.2021.117766_b233) 2018; 116
Schuster (10.1016/j.apenergy.2021.117766_b191) 2002; 45
Khodayar (10.1016/j.apenergy.2021.117766_b155) 2015
Sabzehgar (10.1016/j.apenergy.2021.117766_b10) 2020; 32
Liu (10.1016/j.apenergy.2021.117766_b162) 2020; 121
Amjady (10.1016/j.apenergy.2021.117766_b144) 2011; 2
Soman (10.1016/j.apenergy.2021.117766_b11) 2010
Santhosh (10.1016/j.apenergy.2021.117766_b115) 2018; 168
Ju (10.1016/j.apenergy.2021.117766_b89) 2019
Zhang (10.1016/j.apenergy.2021.117766_b117) 2017; 136
Okumus (10.1016/j.apenergy.2021.117766_b82) 2016; 123
Liu (10.1016/j.apenergy.2021.117766_b211) 2020; 202
Niu (10.1016/j.apenergy.2021.117766_b47) 2020; 196
Cho (10.1016/j.apenergy.2021.117766_b202) 2014
Liu (10.1016/j.apenergy.2021.117766_b106) 2018; 155
Wilms (10.1016/j.apenergy.2021.117766_b197) 2019
Qin (10.1016/j.apenergy.2021.117766_b201) 2019; 236
Khosravi (10.1016/j.apenergy.2021.117766_b31) 2010; 22
Wang (10.1016/j.apenergy.2021.117766_b230) 2016; 94
Chen (10.1016/j.apenergy.2021.117766_b9) 2011; 5
Kavasseri (10.1016/j.apenergy.2021.117766_b35) 2009; 34
Zendehboudi (10.1016/j.apenergy.2021.117766_b75) 2018; 199
Yan (10.1016/j.apenergy.2021.117766_b18) 2018; 33
Yu (10.1016/j.apenergy.2021.117766_b186) 2019; 93
Zhang (10.1016/j.apenergy.2021.117766_b231) 2020; 156
Zhao (10.1016/j.apenergy.2021.117766_b23) 2020; 203
Cassola (10.1016/j.apenergy.2021.117766_b42) 2012; 99
Li (10.1016/j.apenergy.2021.117766_b118) 2019; 174
Zhang (10.1016/j.apenergy.2021.117766_b142) 2016; 96
Yan (10.1016/j.apenergy.2021.117766_b215) 2020; 8
Wang (10.1016/j.apenergy.2021.117766_b64) 2018; 163
Niu (10.1016/j.apenergy.2021.117766_b121) 2018; 118
Liu (10.1016/j.apenergy.2021.117766_b98) 2020; 397
Fu (10.1016/j.apenergy.2021.117766_b232) 2019; 187
Wang (10.1016/j.apenergy.2021.117766_b168) 2018; 165
Wang (10.1016/j.apenergy.2021.117766_b132) 2021; 292
Yuan (10.1016/j.apenergy.2021.117766_b24) 2019; 82
Qureshi (10.1016/j.apenergy.2021.117766_b59) 2017; 58
Guo (10.1016/j.apenergy.2021.117766_b102) 2012; 37
Liu (10.1016/j.apenergy.2021.117766_b159) 2014
Liu (10.1016/j.apenergy.2021.117766_b123) 2015; 157
Ahmed (10.1016/j.apenergy.2021.117766_b81) 2019; 100
Zhang (10.1016/j.apenergy.2021.117766_b175) 2020; 226
Wan (10.1016/j.apenergy.2021.117766_b49) 2016; 30
Zhu (10.1016/j.apenergy.2021.117766_b53) 2019; 11
Hu (10.1016/j.apenergy.2021.117766_b63) 2018; 173
Mehrkanoon (10.1016/j.apenergy.2021.117766_b180) 2019; 179
Wen (10.1016/j.apenergy.2021.117766_b229) 2020; 94
Song (10.1016/j.apenergy.2021.117766_b43) 2018; 215
Osório (10.1016/j.apenergy.2021.117766_b104) 2015; 75
Zhang (10.1016/j.apenergy.2021.117766_b213) 2021; 174
Ding (10.1016/j.apenergy.2021.117766_b48) 2019; 365
Wang (10.1016/j.apenergy.2021.117766_b234) 2021; 171
Kiranyaz (10.1016/j.apenergy.2021.117766_b183) 2021; 151
Fu (10.1016/j.apenergy.2021.117766_b228) 2021; 164
Higashiyama (10.1016/j.apenergy.2021.117766_b88) 2018; 155
Wei (10.1016/j.apenergy.2021.117766_b222) 2021; 292
Wang (10.1016/j.apenergy.2021.117766_b224) 2021; 216
Ahmad (10.1016/j.apenergy.2021.117766_b83) 2020; 55
Mi (10.1016/j.apenergy.2021.117766_b114) 2019; 180
He (10.1016/j.apenergy.2021.117766_b133) 2021; 430
Wang (10.1016/j.apenergy.2021.117766_b2) 2016; 60
Sun (10.1016/j.apenergy.2021.117766_b112) 2018; 165
Monteiro (10.1016/j.apenergy.2021.117766_b71) 2009
Yang (10.1016/j.apenergy.2021.117766_b5) 2021; 24
Giebel (10.1016/j.apenergy.2021.117766_b70) 2003
Liu (10.1016/j.apenergy.2021.117766_b105) 2015; 89
Peng (10.1016/j.apenergy.2021.117766_b113) 2020; 156
Chen (10.1016/j.apenergy.2021.117766_b62) 2021; 227
Hong (10.1016/j.apenergy.2021.117766_b173) 2019; 250
Wang (10.1016/j.apenergy.2021.117766_b237) 2017; 125
Liu (10.1016/j.apenergy.2021.117766_b141) 2014; 62
Hu (10.1016/j.apenergy.2021.117766_b166) 2015
Yan (10.1016/j.apenergy.2021.117766_b122) 2020; 225
Mezaache (10.1016/j.apenergy.2021.117766_b50) 2018
Jiang (10.1016/j.apenergy.2021.117766_b226) 2017; 119
Khalid (10.1016/j.apenergy.2021.117766_b84) 2020; 61
Leng (10.1016/j.apenergy.2021.117766_b153) 2018; 36
Mahmoud (10.1016/j.apenergy.2021.117766_b238) 2018; 126
Wu (10.1016/j.apenergy.2021.117766_b66) 2020; 146
He (10.1016/j.apenergy.2021.117766_b221) 2019; 76
Hu (10.1016/j.apenergy.2021.117766_b140) 2019; 140
Ibrahim (10.1016/j.apenergy.2021.117766_b198) 2020; 2020
Hu (10.1016/j.apenergy.2021.117766_b210) 2020; 154
Wang (10.1016/j.apenergy.2021.117766_b22) 2016; 182
Banik (10.1016/j.apenergy.2021.117766_b26) 2020; 14
Wu (10.1016/j.apenergy.2021.117766_b108) 2019; 85
Feng (10.1016/j.apenergy.2021.117766_b138) 2017; 190
Tascikaraoglu (10.1016/j.apenergy.2021.117766_b76) 2014; 34
Zhang (10.1016/j.apenergy.2021.117766_b170) 2019; 168
Zhu (10.1016/j.apenergy.2021.117766_b171) 2017
Liang (10.1016/j.apenergy.2021.117766_b217) 2020; 8
Liu (10.1016/j.apenergy.2021.117766_b39) 2018; 159
Afrasiabi (10.1016/j.apenergy.2021.117766_b86) 2020; 17
Tao (10.1016/j.apenergy.2021.117766_b167) 2014
Jahangir (10.1016/j.apenergy.2021.117766_b136) 2020; 38
Han (10.1016/j.apenergy.2021.117766_b33) 2017; 148
Ghaderi (10.1016/j.apenergy.2021.117766_b55) 2017
Santamaría-Bonfil (10.1016/j.apenergy.2021.117766_b20) 2016; 85
Khosravi (10.1016/j.apenergy.2021.117766_b29) 2011; 22
Shi (10.1016/j.apenergy.2021.117766_b51) 2012; 16
Landberg (10.1016/j.apenergy.2021.117766_b67) 2000
Han (10.1016/j.apenergy.2021.117766_b188) 2019; 13
Liu (10.1016/j.apenergy.2021.117766_b4) 2019; 249
Wei (10.1016/j.apenergy.2021.117766_b14) 2016; 178
Liu (10.1016/j.apenergy.2021.117766_b79) 2020; 224
Xiao (10.1016/j.apenergy.2021.117766_b77) 2015; 44
Zhang (10.1016/j.apenergy.2021.117766_b164) 2015; 6
He (10.1016/j.apenergy.2021.117766_b172) 2020; 207
Yu (10.1016/j.apenergy.2021.117766_b177) 2019; 238
Wang (10.1016/j.apenergy.2021.117766_b206) 2020; PP
Mezaache (10.1016/j.apenergy.2021.117766_b152) 2016
Saufi (10.1016/j.apenergy.2021.117766_b161) 2020; 16
Hu (10.1016/j.apenergy.2021.117766_b25) 2020; 162
Chen (10.1016/j.apenergy.2021.117766_b220) 2019; 179
Kong (10.1016/j.apenergy.2021.117766_b149) 2015; 169
Yin (10.1016/j.apenergy.2021.117766_b160) 2017
Chen (10.1016/j.apenergy.2021.117766_b52) 2021; 48
Yang (10.1016/j.apenergy.2021.117766_b212) 2019; 277
Li (10.1016/j.apenergy.2021.117766_b187) 2018; 167
Sun (10.1016/j.apenergy.2021.117766_b151) 2017; 197
Elkin (10.1016/j.apenergy.2021.117766_b73) 2021
Liu (10.1016/j.apenergy.2021.117766_b174) 2018; 166
Liu (10.1016/j.apenergy.2021.117766_b150) 2018; 9
Mi (10.1016/j.apenergy.2021.117766_b125) 2017; 151
Hinton (10.1016/j.apenergy.2021.117766_b163) 2012
Biswas (10.1016/j.apenergy.2021.117766_b192) 2020
Yu (10.1016/j.apenergy.2021.117766_b205) 2018; 178
Hochreiter (10.1016/j.apenergy.2021.117766_b184) 1997; 9
Li (10.1016/j.apenergy.2021.117766_b61) 2020; 270
10.1016/j.apenergy.2021.117766_b134
He (10.1016/j.apenergy.2021.117766_b44) 2020; 8
Shi (10.1016/j.apenergy.2021.117766_b196) 2015; 28
Li (10.1016/j.apenergy.2021.117766_b101) 2020; 210
Lei (10.1016/j.apenergy.2021.117766_b32) 2009; 13
Li (10.1016/j.apenergy.2021.117766_b92) 2019; 11
Severiano (10.1016/j.apenergy.2021.117766_b41) 2021; 171
Xiang (10.1016/j.apenergy.2021.117766_b124) 2020; 220
Liu (10.1016/j.apenergy.2021.117766_b218) 2021; 233
Pei (10.1016/j.apenergy.2021.117766_b216) 2019; 196
Jujie (10.1016/j.apenergy.2021.117766_b189) 2018; 230
(10.1016/j.apenergy.2021.117766_b72) 2021
Altan (10.1016/j.apenergy.2021.117766_b236) 2021; 100
Zhang (10.1016/j.apenergy.2021.117766_b107) 2019; 180
Wen (10.1016/j.apenergy.2021.117766_b209) 2019
Song (10.1016/j.apenergy.2021.117766_b45) 2020
Neshat (10.1016/j.apenergy.2021.117766_b46) 2021; 236
(10.1016/j.apenergy.2021.117766_b7) 2021
Chen (10.1016/j.apenergy.2021.117766_b190) 2019; 6
Harbola (10.1016/j.apenergy.2021.117766_b90) 2019; 195
Wu (10.1016/j.apenergy.2021.117766_b126) 2020; 261
Wang (10.1016/j.apenergy.2021.117766_b178) 2017; 188
Khodayar (10.1016/j.apenergy.2021.117766_b157) 2017; 13
Dong (10.1016/j.apenergy.2021.117766_b119) 2017; 102
Fu (10.1016/j.apenergy.2021.117766_b40) 2020; 205
Zhang (10.1016/j.apenergy.2021.117766_b30) 2019; 196
Moreno (10.1016/j.apenergy.2021.117766_b111) 2020; 213
Li (10.1016/j.apenergy.2021.117766_b96) 2019
Wang (10.1016/j.apenergy.2021.117766_b1) 2019; 116
Vincent (10.1016/j.apenergy.2021.117766_b91) 2010; 11
Xiaosheng (10.1016/j.apenergy.2021.117766_b135) 2018
10.1016/j.apenergy.2021.117766_b182
Khosravi (10.1016/j.apenergy.2021.117766_b28) 2013; 4
Yan (10.1016/j.apenergy.2021.117766_b13) 2019; 180
Moreno (10.1016/j.apenergy.2021.117766_b120) 2018; 126
Saeed (10.1016/j.apenergy.2021.117766_b193) 2020; 8
Lee (10.1016/j.apenergy.2021.117766_b6) 2020
Zhu (10.1016/j.apenergy.2021.117766_b148) 2019; 198
Behera (10.1016/j.apenergy.2021.117766_b225) 2021; 554
Maatallah (10.1016/j.apenergy.2021.117766_b36) 2015; 145
Nielsen (10.1016/j.apenergy.2021.117766_b68) 2000
Moreno (10.1016/j.apenergy.2021.117766_b127) 2021; 164
Wang (10.1016/j.apenergy.2021.117766_b227) 2015; 143
Ren (10.1016/j.apenergy.2021.117766_b78) 2015; 50
Yang (10.1016/j.apenergy.2021.117766_b239) 2
References_xml – volume: 62
  start-page: 592
  year: 2014
  end-page: 597
  ident: b141
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew Energy
– volume: 6
  start-page: 1447
  year: 2015
  end-page: 1456
  ident: b145
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans Sustain Energy
– volume: 166
  start-page: 120
  year: 2018
  end-page: 131
  ident: b174
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers Manage
– volume: 91
  start-page: 556
  year: 2015
  end-page: 572
  ident: b38
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
– volume: 10
  start-page: 670
  year: 2018
  end-page: 681
  ident: b208
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
– volume: 202
  year: 2020
  ident: b211
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
– volume: 11
  start-page: 1370
  year: 2019
  end-page: 1380
  ident: b92
  article-title: Short-term wind speed interval prediction based on ensemble GRU model
  publication-title: IEEE Trans Sustain Energy
– volume: 173
  start-page: 123
  year: 2018
  end-page: 142
  ident: b63
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm
  publication-title: Energy Convers Manage
– start-page: 1657
  year: 2015
  end-page: 1663
  ident: b147
  article-title: Deep neural networks for ultra-short-term wind forecasting
  publication-title: 2015 ieee international conference on industrial technology (icit)
– volume: 33
  start-page: 3276
  year: 2018
  end-page: 3284
  ident: b18
  article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping
  publication-title: IEEE Trans Power Syst
– year: 2020
  ident: b6
  article-title: Global wind report 2019
– start-page: 368
  year: 2015
  ident: b166
  article-title: Continuous RBM based deep neural network for wind speed forecasting in Hong Kong
  publication-title: Proceedings of the international conference on image processing, computer vision, and pattern recognition (ipcv)
– volume: 102
  start-page: 241
  year: 2017
  end-page: 257
  ident: b119
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renew Energy
– volume: 116
  year: 2019
  ident: b1
  article-title: Approaches to wind power curve modeling: A review and discussion
  publication-title: Renew Sustain Energy Rev
– volume: 195
  start-page: 328
  year: 2019
  end-page: 345
  ident: b21
  article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods
  publication-title: Energy Convers Manage
– volume: 31
  start-page: 2546
  year: 2015
  end-page: 2556
  ident: b34
  article-title: Arima-based frequency-decomposed modeling of wind speed time series
  publication-title: IEEE Trans Power Syst
– volume: 164
  start-page: 1508
  year: 2021
  end-page: 1526
  ident: b127
  article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in brazilian northeast
  publication-title: Renew Energy
– volume: 13
  start-page: 1690
  year: 2019
  end-page: 1700
  ident: b188
  article-title: Multi-step wind power forecast based on VMD-LSTM
  publication-title: IET Renew Power Gener
– volume: 156
  start-page: 498
  year: 2018
  end-page: 514
  ident: b109
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network
  publication-title: Energy Convers Manage
– volume: 236
  year: 2021
  ident: b46
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm
  publication-title: Energy Convers Manage
– volume: 2
  start-page: 265
  year: 2011
  end-page: 276
  ident: b144
  article-title: Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
  publication-title: IEEE Trans Sustain Energy
– volume: 11
  year: 2010
  ident: b91
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 885
  year: 2016
  end-page: 989
  ident: b85
  article-title: Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review
  publication-title: IET Renew Power Gener
– volume: 85
  year: 2019
  ident: b108
  article-title: A secondary decomposition based hybrid structure with meteorological analysis for deterministic and probabilistic wind speed forecasting
  publication-title: Appl Soft Comput
– volume: 119
  start-page: 561
  year: 2017
  end-page: 577
  ident: b226
  article-title: Short-term wind speed forecasting using a hybrid model
  publication-title: Energy
– volume: 270
  year: 2020
  ident: b61
  article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm
  publication-title: J Cleaner Prod
– start-page: 1
  year: 2010
  end-page: 8
  ident: b11
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North american power symposium (naps), 2010
– volume: 185
  start-page: 783
  year: 2019
  end-page: 799
  ident: b54
  article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 8
  start-page: 165612
  year: 2020
  end-page: 165630
  ident: b217
  article-title: A combined model based on ceemdan, permutation entropy, gated recurrent unit network, and an improved bat algorithm for wind speed forecasting
  publication-title: IEEE Access
– volume: 179
  start-page: 13
  year: 2019
  end-page: 29
  ident: b220
  article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of nrel
  publication-title: Energy Convers Manage
– volume: 189
  year: 2019
  ident: b110
  article-title: Wind power forecast based on improved long short term memory network
  publication-title: Energy
– volume: 218
  year: 2021
  ident: b97
  article-title: Day-ahead wind power forecasting based on the clustering of equivalent power curves
  publication-title: Energy
– volume: 82
  year: 2019
  ident: b24
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
– volume: 100
  year: 2021
  ident: b236
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
– volume: 145
  start-page: 270
  year: 2020
  end-page: 281
  ident: b131
  article-title: Chaotic wind power time series prediction via switching data-driven modes
  publication-title: Renew Energy
– volume: 1087
  year: 2018
  ident: b93
  article-title: Short-term wind power prediction method based on wavelet packet decomposition and improved GRU
  publication-title: J Phys Conf Ser
– volume: 6
  start-page: 1416
  year: 2015
  end-page: 1425
  ident: b164
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
– start-page: 1
  year: 2014
  end-page: 4
  ident: b167
  article-title: Wind power prediction and pattern feature based on deep learning method
  publication-title: 2014 ieee pes asia-pacific power and energy engineering conference (appeec)
– volume: 28
  start-page: 802
  year: 2015
  end-page: 810
  ident: b196
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv Neural Inf Process Syst
– volume: 85
  start-page: 790
  year: 2016
  end-page: 809
  ident: b20
  article-title: Wind speed forecasting for wind farms: A method based on support vector regression
  publication-title: Renew Energy
– volume: 17
  start-page: 720
  year: 2020
  end-page: 727
  ident: b86
  article-title: Advanced deep learning approach for probabilistic wind speed forecasting
  publication-title: IEEE Trans Ind Inf
– year: 2000
  ident: b67
  article-title: Prediktor-an on-line prediction system
  publication-title: Wind power for the 21st century: euwec special topic conference and exhibition
– volume: 10
  start-page: 16
  year: 2018
  end-page: 25
  ident: b8
  article-title: Wind power curve modeling and wind power forecasting with inconsistent data
  publication-title: IEEE Trans Sustain Energy
– volume: 236
  start-page: 262
  year: 2019
  end-page: 272
  ident: b201
  article-title: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal
  publication-title: Appl Energy
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: b78
  article-title: Ensemble methods for wind and solar power forecasting–a state-of-the-art review
  publication-title: Renew Sustain Energy Rev
– volume: 143
  start-page: 472
  year: 2015
  end-page: 488
  ident: b227
  article-title: The study and application of a novel hybrid forecasting model - a case study of wind speed forecasting in China
  publication-title: Appl Energy
– volume: 60
  start-page: 960
  year: 2016
  end-page: 981
  ident: b2
  article-title: Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models
  publication-title: Renew Sustain Energy Rev
– volume: 188
  start-page: 56
  year: 2017
  end-page: 70
  ident: b178
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
– volume: 93
  start-page: 33
  year: 2019
  end-page: 42
  ident: b186
  article-title: Lstm-efg for wind power forecasting based on sequential correlation features
  publication-title: Future Gener Comput Syst
– year: 2009
  ident: b71
  article-title: Wind power forecasting: State-of-the-art 2009
– start-page: 4561
  year: 2018
  end-page: 4564
  ident: b56
  article-title: A multi-variable stacked long-short term memory network for wind speed forecasting
  publication-title: 2018 ieee international conference on big data (big data)
– volume: 75
  start-page: 301
  year: 2015
  end-page: 307
  ident: b104
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
– volume: 227
  year: 2021
  ident: b62
  article-title: Short-term wind speed predicting framework based on eemd-ga-lstm method under large scaled wind history
  publication-title: Energy Convers Manage
– volume: 48
  year: 2021
  ident: b52
  article-title: Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning
  publication-title: Adv Eng Inform
– volume: 397
  start-page: 393
  year: 2020
  end-page: 403
  ident: b98
  article-title: Wind speed forecasting using deep neural network with feature selection
  publication-title: Neurocomputing
– volume: 159
  start-page: 54
  year: 2018
  end-page: 64
  ident: b39
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm
  publication-title: Energy Convers Manage
– year: 2020
  ident: b176
  article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network
  publication-title: Energy
– reference: Notchenko A, Kapushev E, Burnaev E. Sparse 3D convolutional neural networks for large-scale shape retrieval. In
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: b77
  article-title: Combined forecasting models for wind energy forecasting: A case study in China
  publication-title: Renew Sustain Energy Rev
– volume: 195
  start-page: 70
  year: 2019
  end-page: 75
  ident: b90
  article-title: One dimensional convolutional neural network architectures for wind prediction
  publication-title: Energy Convers Manage
– volume: 217
  year: 2021
  ident: b219
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
– volume: 8
  start-page: 67955
  year: 2020
  end-page: 67973
  ident: b195
  article-title: Short-term wind speed forecasting with principle-subordinate predictor based on conv-LSTM and improved BPNN
  publication-title: IEEE Access
– volume: 292
  year: 2021
  ident: b132
  article-title: Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration
  publication-title: Appl Energy
– volume: 168
  start-page: 558
  year: 2019
  end-page: 572
  ident: b170
  article-title: A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing
  publication-title: Energy
– volume: 36
  start-page: 20
  year: 2018
  end-page: 30
  ident: b153
  article-title: A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting
  publication-title: Adv Eng Inform
– volume: 56
  start-page: 6117
  year: 2020
  end-page: 6127
  ident: b19
  article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression
  publication-title: IEEE Trans Ind Appl
– volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b76
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
– volume: 94
  year: 2020
  ident: b229
  article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine
  publication-title: Appl Soft Comput
– volume: 249
  start-page: 392
  year: 2019
  end-page: 408
  ident: b4
  article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review
  publication-title: Appl Energy
– volume: 38
  year: 2020
  ident: b136
  article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN
  publication-title: Sustain Energy Technol Assess
– volume: 116
  start-page: 309
  year: 2018
  end-page: 323
  ident: b233
  article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data
  publication-title: Renew Energy
– start-page: 1
  year: 2019
  ident: b89
  article-title: A model combining convolutional neural network and lightgbm algorithm for ultra-short-term wind power forecasting
  publication-title: IEEE Access
– volume: 151
  year: 2021
  ident: b183
  article-title: 1d convolutional neural networks and applications: A survey
  publication-title: Mech Syst Signal Process
– volume: 259
  year: 2020
  ident: b103
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Appl Energy
– volume: 228
  start-page: 1822
  year: 2018
  end-page: 1836
  ident: b74
  article-title: A survey of artificial neural network in wind energy systems
  publication-title: Appl Energy
– volume: 230
  start-page: 429
  year: 2018
  end-page: 443
  ident: b189
  article-title: Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy
  publication-title: Appl Energy
– volume: 213
  year: 2020
  ident: b111
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Convers Manage
– volume: 89
  start-page: 1
  year: 2015
  end-page: 11
  ident: b105
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– volume: 89
  start-page: 49
  year: 2021
  end-page: 72
  ident: b65
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Appl Math Model
– volume: 12
  start-page: 191
  year: 2020
  end-page: 201
  ident: b3
  article-title: Sparse heteroscedastic multiple spline regression models for wind turbine power curve modeling
  publication-title: IEEE Trans Sustain Energy
– reference: , 2016.
– year: 2021
  ident: b69
  article-title: Wind power forecasting software:
– volume: 261
  year: 2020
  ident: b126
  article-title: Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting
  publication-title: Appl Energy
– volume: 126
  start-page: 736
  year: 2018
  end-page: 754
  ident: b120
  article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system
  publication-title: Renew Energy
– volume: 150
  start-page: 108
  year: 2017
  end-page: 121
  ident: b235
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers Manage
– volume: 207
  year: 2020
  ident: b94
  article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 32
  year: 2020
  ident: b10
  article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods
  publication-title: J Build Eng
– volume: 13
  start-page: 2770
  year: 2017
  end-page: 2779
  ident: b157
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans Ind Inf
– volume: 210
  year: 2020
  ident: b101
  article-title: BayesIan robust multi-extreme learning machine
  publication-title: Knowl-Based Syst
– start-page: 1
  year: 2018
  end-page: 5
  ident: b200
  article-title: Predicting wind turbine power and load outputs by multi-task convolutional LSTM model
  publication-title: 2018 ieee power & energy society general meeting (pesgm)
– volume: 100
  start-page: 9
  year: 2019
  end-page: 21
  ident: b81
  article-title: A review on the selected applications of forecasting models in renewable power systems
  publication-title: Renew Sustain Energy Rev
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: b12
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 16
  start-page: 6263
  year: 2020
  end-page: 6271
  ident: b161
  article-title: Gearbox fault diagnosis using a deep learning model with limited data sample
  publication-title: IEEE Trans Ind Inf
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b123
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
– volume: 365
  start-page: 54
  year: 2019
  end-page: 61
  ident: b48
  article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting
  publication-title: Neurocomputing
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b32
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 250
  start-page: 530
  year: 2019
  end-page: 539
  ident: b173
  article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting
  publication-title: Appl Energy
– volume: 207
  year: 2020
  ident: b172
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowl-Based Syst
– start-page: 1724
  year: 2014
  end-page: 1734
  ident: b202
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: EMNLP 2014 - 2014 conference on empirical methods in natural language processing, proceedings of the conference
– volume: PP
  start-page: 1
  year: 2020
  end-page: 14
  ident: b206
  article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 224
  year: 2020
  ident: b79
  article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications
  publication-title: Energy Convers Manage
– volume: 22
  start-page: 337
  year: 2010
  end-page: 346
  ident: b31
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw
– year: 2021
  ident: b72
  article-title: AleaSoft: Energy forecasting
– volume: 154
  start-page: 598
  year: 2020
  end-page: 613
  ident: b210
  article-title: Forecasting energy consumption and wind power generation using deep echo state network
  publication-title: Renew Energy
– volume: 235
  start-page: 939
  year: 2019
  end-page: 953
  ident: b80
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
– start-page: 131
  year: 2017
  end-page: 135
  ident: b171
  article-title: Wind power prediction based on a convolutional neural network
  publication-title: 2017 international conference on circuits, devices and systems (iccds)
– volume: 126
  start-page: 254
  year: 2018
  end-page: 269
  ident: b238
  article-title: An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine
  publication-title: Renew Energy
– volume: 165
  start-page: 939
  year: 2018
  end-page: 957
  ident: b112
  article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine
  publication-title: Energy
– volume: 163
  start-page: 134
  year: 2018
  end-page: 150
  ident: b64
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers Manage
– volume: 68
  start-page: 8298
  year: 2020
  end-page: 8309
  ident: b95
  article-title: Deep learning-based forecasting approach in smart grids with micro-clustering and bi-directional LSTM network
  publication-title: IEEE Trans Ind Electron
– volume: 13
  start-page: 2062
  year: 2019
  end-page: 2069
  ident: b137
  article-title: Data-driven wind speed forecasting using deep feature extraction and LSTM
  publication-title: IET Renew Power Gener
– volume: 76
  start-page: 717
  year: 2019
  end-page: 740
  ident: b221
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Appl Math Model
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b42
  article-title: Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output
  publication-title: Appl Energy
– volume: 11
  start-page: 2294
  year: 2019
  end-page: 2304
  ident: b214
  article-title: Wind field-based short-term turbine response forecasting by stacked dilated convolutional lstms
  publication-title: IEEE Trans Sustain Energy
– start-page: 1
  year: 2014
  ident: b159
  article-title: Deep neural network based feature representation for weather forecasting
  publication-title: Proceedings on the international conference on artificial intelligence (icai)
– volume: 22
  start-page: 1341
  year: 2011
  end-page: 1356
  ident: b29
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Trans Neural Netw
– volume: 260
  year: 2020
  ident: b179
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Appl Energy
– start-page: 713
  year: 2020
  end-page: 720
  ident: b181
  article-title: Wind speed prediction using multidimensional convolutional neural networks
  publication-title: 2020 ieee symposium series on computational intelligence (ssci)
– volume: 220
  year: 2020
  ident: b124
  article-title: Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
  publication-title: Energy Convers Manage
– volume: 156
  start-page: 804
  year: 2020
  end-page: 819
  ident: b113
  article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting
  publication-title: Renew Energy
– volume: 196
  start-page: 779
  year: 2019
  end-page: 792
  ident: b216
  article-title: Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network
  publication-title: Energy Convers Manage
– volume: 155
  start-page: 350
  year: 2018
  end-page: 358
  ident: b88
  article-title: Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks
  publication-title: Energy Procedia
– start-page: 1
  year: 2015
  end-page: 5
  ident: b155
  article-title: Robust deep neural network for wind speed prediction
  publication-title: 2015 4th iranian joint congress on fuzzy and intelligent systems (cfis)
– volume: 14
  start-page: 2657
  year: 2020
  end-page: 2667
  ident: b26
  article-title: Uncertain wind power forecasting using LSTM-based prediction interval
  publication-title: IET Renew Power Gener
– volume: 143
  start-page: 1172
  year: 2019
  end-page: 1192
  ident: b37
  article-title: A novel non-linear combination system for short-term wind speed forecast
  publication-title: Renew Energy
– volume: 133
  start-page: 919
  year: 2019
  end-page: 929
  ident: b116
  article-title: Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network
  publication-title: Renew Energy
– volume: 213
  year: 2020
  ident: b143
  article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
  publication-title: Energy Convers Manage
– volume: 292
  year: 2021
  ident: b222
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Appl Energy
– volume: 241
  start-page: 229
  year: 2019
  end-page: 244
  ident: b16
  article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and gaussian mixture model
  publication-title: Appl Energy
– volume: 148
  start-page: 554
  year: 2017
  end-page: 568
  ident: b33
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 203
  year: 2020
  ident: b23
  article-title: Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework
  publication-title: Energy Convers Manage
– volume: 55
  year: 2020
  ident: b83
  article-title: A review on renewable energy and electricity requirement forecasting models for smart grid and buildings
  publication-title: Sustainable Cities Soc
– volume: 180
  start-page: 338
  year: 2019
  end-page: 357
  ident: b107
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers Manage
– volume: 118
  start-page: 213
  year: 2018
  end-page: 229
  ident: b121
  article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy
  publication-title: Renew Energy
– volume: 155
  start-page: 188
  year: 2018
  end-page: 200
  ident: b106
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks
  publication-title: Energy Convers Manage
– year: 2020
  ident: b87
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
– volume: 6
  start-page: 17851
  year: 2018
  end-page: 17858
  ident: b158
  article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting
  publication-title: IEEE Access
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b184
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 196
  start-page: 1395
  year: 2019
  end-page: 1409
  ident: b30
  article-title: Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation
  publication-title: Energy Convers Manage
– volume: 180
  start-page: 196
  year: 2019
  end-page: 205
  ident: b114
  article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine
  publication-title: Energy Convers Manage
– volume: 33
  start-page: 35
  year: 2008
  end-page: 41
  ident: b15
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
– year: 2019
  ident: b185
  article-title: A multi-scale model based on the long short-term memory for day ahead hourly wind speed forecasting
  publication-title: Pattern Recognit Lett
– start-page: 921
  year: 2019
  end-page: 926
  ident: b197
  article-title: Exploiting spatio-temporal dependencies for RNN-based wind power forecasts
  publication-title: IEEE pes gtd grand international conference and exposition asia
– volume: 309
  start-page: 05011
  year: 2020
  ident: b194
  article-title: Multi-time scale wind speed prediction based on WT-bi-LSTM
  publication-title: MATEC Web Conf
– volume: 174
  start-page: 688
  year: 2021
  end-page: 704
  ident: b213
  article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism
  publication-title: Renew Energy
– volume: 171
  start-page: 764
  year: 2021
  end-page: 783
  ident: b41
  article-title: Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems
  publication-title: Renew Energy
– volume: 135
  start-page: 674
  year: 2019
  end-page: 686
  ident: b17
  article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations
  publication-title: Renew Energy
– volume: 8
  start-page: 51482
  year: 2020
  end-page: 51499
  ident: b44
  article-title: Research on a novel combination system on the basis of deep learning and swarm intelligence optimization algorithm for wind speed forecasting
  publication-title: IEEE Access
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: b36
  article-title: Recursive wind speed forecasting based on hammerstein auto-regressive model
  publication-title: Appl Energy
– volume: 168
  start-page: 482
  year: 2018
  end-page: 493
  ident: b115
  article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
  publication-title: Energy Convers Manage
– volume: 201
  year: 2020
  ident: b139
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowl-Based Syst
– volume: 76
  start-page: 91
  year: 2015
  end-page: 101
  ident: b130
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in xinjiang, China
  publication-title: Renew Energy
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: b43
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
– year: 2003
  ident: b70
  article-title: State-of-the-art methods and software tools for short-term prediction of wind energy production
  publication-title: European wind energy conference and exhibition 2003
– volume: 205
  year: 2020
  ident: b169
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Convers Manage
– year: 2016
  ident: b152
  article-title: Kernel principal components analysis with extreme learning machines for wind speed prediction
  publication-title: Seventh international renewable energy congress, irec2016
– start-page: 1580
  year: 2017
  end-page: 1585
  ident: b160
  article-title: Stacked sparse autoencoder based fault detection and location method for modular five-level converters
  publication-title: Iecon 2017-43rd annual conference of the ieee industrial electronics society
– volume: 169
  start-page: 449
  year: 2015
  end-page: 456
  ident: b149
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neurocomputing
– year: 2021
  ident: b73
  article-title: Machine learning can boost the value of wind energy
– reference: , 2008, p. 1096–103.
– volume: 216
  year: 2021
  ident: b224
  article-title: Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and rif-based algorithm
  publication-title: Energy
– volume: 197
  start-page: 151
  year: 2017
  end-page: 162
  ident: b151
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl Energy
– volume: 37
  start-page: 241
  year: 2012
  end-page: 249
  ident: b102
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew Energy
– volume: 163
  start-page: 1895
  year: 2021
  end-page: 1909
  ident: b203
  article-title: Wind power forecasting–a data-driven method along with gated recurrent neural network
  publication-title: Renew Energy
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b230
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and ga-bp neural network method
  publication-title: Renew Energy
– volume: 121
  year: 2020
  ident: b162
  article-title: Short-term wind speed forecasting based on the jaya-SVM model
  publication-title: Int J Electr Power Energy Syst
– volume: 226
  year: 2020
  ident: b175
  article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 61
  year: 2020
  ident: b84
  article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid
  publication-title: Sustainable Cities Soc
– volume: 140
  start-page: 17
  year: 2019
  end-page: 31
  ident: b140
  article-title: High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map
  publication-title: Renew Energy
– volume: 8
  start-page: 134422
  year: 2020
  end-page: 134434
  ident: b199
  article-title: Short-term wind power forecasting based on VMD decomposition, convlstm networks and error analysis
  publication-title: IEEE Access
– start-page: 599
  year: 2012
  end-page: 619
  ident: b163
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Networks: Tricks of the Trade
– year: 2015
  ident: b240
  article-title: Keras
– start-page: 1844
  year: 2020
  end-page: 1850
  ident: b45
  article-title: Ultra-short-term wind power combination forecasting model based on MEEMD-SAE-Elman
  publication-title: 2020 IEEE 4th information technology, networking, electronic and automation control conference (itnec), Vol. 1
– volume: 178
  start-page: 137
  year: 2018
  end-page: 145
  ident: b205
  article-title: A novel framework for wind speed prediction based on recurrent neural networks and support vector machine
  publication-title: Energy Convers Manage
– volume: 164
  start-page: 211
  year: 2021
  end-page: 229
  ident: b228
  article-title: A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM
  publication-title: Renew Energy
– volume: 16
  start-page: 3471
  year: 2012
  end-page: 3480
  ident: b51
  article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series
  publication-title: Renew Sustain Energy Rev
– volume: 156
  start-page: 1373
  year: 2020
  end-page: 1388
  ident: b231
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
– volume: 45
  start-page: 2673
  year: 2002
  end-page: 2681
  ident: b191
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans Signal Process
– volume: 8
  start-page: 182283
  year: 2020
  end-page: 182294
  ident: b193
  article-title: Hybrid bidirectional LSTM model for short-term wind speed interval prediction
  publication-title: IEEE Access
– start-page: 2432
  year: 2019
  end-page: 2437
  ident: b96
  article-title: The application of deep neural network algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction
  publication-title: 2019 ieee 3rd information technology, networking, electronic and automation control conference (itnec)
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: b75
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: J Cleaner Prod
– volume: 143
  start-page: 842
  year: 2019
  end-page: 854
  ident: b204
  article-title: Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression
  publication-title: Renew Energy
– volume: 277
  year: 2019
  ident: b212
  article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods
  publication-title: Artificial Intelligence
– volume: 233
  year: 2021
  ident: b218
  article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the arima to wind speed prediction
  publication-title: Energy Convers Manage
– volume: 32
  start-page: 255
  year: 2014
  end-page: 270
  ident: b27
  article-title: Review on probabilistic forecasting of wind power generation
  publication-title: Renew Sustain Energy Rev
– volume: 230
  start-page: 1108
  year: 2018
  end-page: 1125
  ident: b239
  article-title: A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm
  publication-title: Appl Energy
– year: 2021
  ident: b7
  article-title: Renewable capacity statistics 2021
– reference: Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust features with denoising autoencoders. In
– volume: 132
  start-page: 43
  year: 2019
  end-page: 60
  ident: b100
  article-title: Robust functional regression for wind speed forecasting based on sparse Bayesian learning
  publication-title: Renew Energy
– volume: 153
  start-page: 589
  year: 2017
  end-page: 602
  ident: b128
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine
  publication-title: Energy Convers Manage
– volume: 238
  start-page: 249
  year: 2019
  end-page: 257
  ident: b177
  article-title: Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space
  publication-title: Appllied Energy
– volume: 198
  year: 2019
  ident: b148
  article-title: Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast
  publication-title: Energy Convers Manage
– volume: 8
  start-page: 227126
  year: 2020
  end-page: 227140
  ident: b215
  article-title: A hybrid short-term wind power prediction model combining data processing, multiple parameters optimization and multi-intelligent models apportion strategy
  publication-title: IEEE Access
– volume: 146
  start-page: 149
  year: 2020
  end-page: 165
  ident: b66
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew Energy
– volume: 123
  start-page: 362
  year: 2016
  end-page: 371
  ident: b82
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
– volume: 7
  start-page: 99244
  year: 2019
  end-page: 99253
  ident: b165
  article-title: Deep belief networks with genetic algorithms in forecasting wind speed
  publication-title: IEEE Access
– volume: 4
  start-page: 849
  year: 2013
  end-page: 856
  ident: b28
  article-title: Combined nonparametric prediction intervals for wind power generation
  publication-title: IEEE Trans Sustain Energy
– start-page: 1
  year: 2018
  end-page: 5
  ident: b50
  article-title: Auto-encoder with neural networks for wind speed forecasting
  publication-title: 2018 international conference on communications and electrical engineering (iccee)
– volume: 32
  start-page: 2673
  year: 2017
  end-page: 2681
  ident: b154
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans Power Syst
– year: 2017
  ident: b55
  article-title: Deep forecast: Deep learning-based spatio-temporal forecasting
– volume: 554
  start-page: 120
  year: 2021
  end-page: 144
  ident: b225
  article-title: Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems
  publication-title: Inform Sci
– volume: 180
  start-page: 302
  year: 2019
  end-page: 311
  ident: b13
  article-title: Advanced wind power prediction based on data-driven error correction
  publication-title: Energy Convers Manage
– volume: 254
  year: 2019
  ident: b58
  article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction
  publication-title: Appl Energy
– volume: 9
  start-page: 1919
  year: 2018
  end-page: 1931
  ident: b150
  article-title: Novel forecasting model based on improved wavelet transform, informative feature selection, and hybrid support vector machine on wind power forecasting
  publication-title: J Ambient Intell Humaniz Comput
– volume: 5
  start-page: 258
  year: 2011
  end-page: 267
  ident: b9
  article-title: Smart energy management system for optimal microgrid economic operation
  publication-title: IET Renew Power Gener
– volume: 30
  year: 2016
  ident: b49
  article-title: Day-ahead prediction of wind speed with deep feature learning
  publication-title: Int J Pattern Recognit Artif Intell
– start-page: 1091
  year: 2019
  end-page: 1096
  ident: b209
  article-title: Probabilistic wind power forecasting via Bayesian deep learning based prediction intervals
  publication-title: 2019 ieee 17th international conference on industrial informatics (indin), Vol. 1
– volume: 179
  start-page: 120
  year: 2019
  end-page: 128
  ident: b180
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl-Based Syst
– volume: 178
  start-page: 886
  year: 2016
  end-page: 901
  ident: b14
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl Energy
– volume: 3
  year: 2021
  ident: b223
  article-title: A deep gated recurrent neural network for petroleum production forecasting
  publication-title: Mach Learn Appl
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b35
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: b57
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers Manage
– volume: 165
  start-page: 840
  year: 2018
  end-page: 852
  ident: b168
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
– volume: 99
  year: 2021
  ident: b60
  article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting
  publication-title: Appl Soft Comput
– volume: 171
  start-page: 1418
  year: 2021
  end-page: 1435
  ident: b234
  article-title: Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm
  publication-title: Renew Energy
– volume: 136
  start-page: 439
  year: 2017
  end-page: 451
  ident: b117
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
– start-page: 945
  year: 2018
  end-page: 948
  ident: b135
  article-title: A deep learning approach for wind power prediction based on stacked denoising auto encoders optimized by bat algorithm
  publication-title: 2018 china international conference on electricity distribution (ciced)
– year: 2000
  ident: b68
  article-title: WPPT - a tool for wind power prediction
  publication-title: Prediction.Procedings of wind power for the 21st century, kassel, germany, 25-27 september 2000
– volume: 167
  start-page: 203
  year: 2018
  end-page: 219
  ident: b187
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers Manage
– volume: 430
  start-page: 121
  year: 2021
  end-page: 137
  ident: b133
  article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression
  publication-title: Neurocomputing
– volume: 24
  start-page: 97
  year: 2021
  end-page: 115
  ident: b5
  article-title: Review of control strategy of large horizontal-axis wind turbines yaw system
  publication-title: Wind Energy
– volume: 76
  start-page: 526
  year: 2014
  end-page: 541
  ident: b99
  article-title: A hybrid forecasting model based on outlier detection and fuzzy time series–a case study on hainan wind farm of China
  publication-title: Energy
– volume: 205
  year: 2020
  ident: b40
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 196
  year: 2020
  ident: b47
  article-title: Wind power forecasting using attention-based gated recurrent unit network
  publication-title: Energy
– volume: 11
  start-page: 509
  year: 2019
  end-page: 523
  ident: b53
  article-title: Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction
  publication-title: IEEE Trans Sustain Energy
– volume: 162
  start-page: 1208
  year: 2020
  end-page: 1226
  ident: b25
  article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm
  publication-title: Renew Energy
– volume: 2020
  year: 2020
  ident: b198
  article-title: Short-time wind speed forecast using artificial learning-based algorithms
  publication-title: Comput Intell Neuroence
– volume: 35
  start-page: 2549
  year: 2020
  end-page: 2560
  ident: b207
  article-title: Improved deep mixture density network for regional wind power probabilistic forecasting
  publication-title: IEEE Trans Power Syst
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b22
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
– year: 2020
  ident: b192
  article-title: Performances of deep learning models for indian ocean wind speed prediction
  publication-title: Model Earth Syst Environ
– volume: 148
  year: 2019
  ident: b129
  article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network
  publication-title: Measurement
– volume: 58
  start-page: 742
  year: 2017
  end-page: 755
  ident: b59
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl Soft Comput
– volume: 151
  start-page: 709
  year: 2017
  end-page: 722
  ident: b125
  article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm
  publication-title: Energy Convers Manage
– volume: 225
  year: 2020
  ident: b122
  article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition
  publication-title: Energy Convers Manage
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: b237
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– volume: 6
  start-page: 6997
  year: 2019
  end-page: 7010
  ident: b190
  article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM
  publication-title: IEEE Internet Things J
– volume: 96
  start-page: 727
  year: 2016
  end-page: 737
  ident: b142
  article-title: Short-term wind speed forecasting using empirical mode decomposition and feature selection
  publication-title: Renew Energy
– volume: 187
  start-page: 356
  year: 2019
  end-page: 377
  ident: b232
  article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM
  publication-title: Energy Convers Manage
– volume: 11
  start-page: 1638
  year: 2018
  ident: b146
  article-title: Short-term wind speed forecasting based on low redundancy feature selection
  publication-title: Energies
– volume: 174
  start-page: 1219
  year: 2019
  end-page: 1237
  ident: b118
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
– volume: 190
  start-page: 1245
  year: 2017
  end-page: 1257
  ident: b138
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
– volume: 12
  year: 2020
  ident: b156
  article-title: A hybrid wind speed forecasting model using stacked autoencoder and LSTM
  publication-title: J Renew Sustain Energy
– volume: 154
  start-page: 598
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b210
  article-title: Forecasting energy consumption and wind power generation using deep echo state network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.03.042
– volume: 180
  start-page: 302
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b13
  article-title: Advanced wind power prediction based on data-driven error correction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.108
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b123
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 156
  start-page: 804
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b113
  article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.03.168
– volume: 201
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b139
  article-title: Evaluating a dendritic neuron model for wind speed forecasting
  publication-title: Knowl-Based Syst
– volume: 100
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b236
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106996
– volume: 196
  start-page: 779
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b216
  article-title: Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.06.041
– volume: 146
  start-page: 149
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b66
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.157
– year: 2003
  ident: 10.1016/j.apenergy.2021.117766_b70
  article-title: State-of-the-art methods and software tools for short-term prediction of wind energy production
– start-page: 1091
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b209
  article-title: Probabilistic wind power forecasting via Bayesian deep learning based prediction intervals
– volume: 32
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b10
  article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods
  publication-title: J Build Eng
– volume: 309
  start-page: 05011
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b194
  article-title: Multi-time scale wind speed prediction based on WT-bi-LSTM
  publication-title: MATEC Web Conf
  doi: 10.1051/matecconf/202030905011
– volume: 76
  start-page: 526
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b99
  article-title: A hybrid forecasting model based on outlier detection and fuzzy time series–a case study on hainan wind farm of China
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.064
– year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b176
  article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118441
– volume: 8
  start-page: 182283
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b193
  article-title: Hybrid bidirectional LSTM model for short-term wind speed interval prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027977
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2021.117766_b32
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 196
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b47
  article-title: Wind power forecasting using attention-based gated recurrent unit network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117081
– volume: 148
  start-page: 554
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b33
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.06.021
– volume: 235
  start-page: 939
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b80
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.10.080
– volume: 185
  start-page: 783
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b54
  article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.018
– volume: 210
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b101
  article-title: BayesIan robust multi-extreme learning machine
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106468
– volume: 62
  start-page: 592
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b141
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 236
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b46
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.114002
– volume: 126
  start-page: 254
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b238
  article-title: An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.03.035
– volume: 22
  start-page: 337
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2021.117766_b31
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2096824
– volume: 205
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b169
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112418
– volume: 166
  start-page: 120
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b174
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.021
– volume: 2
  start-page: 265
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2021.117766_b144
  article-title: Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2011.2114680
– year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b55
– year: 2000
  ident: 10.1016/j.apenergy.2021.117766_b67
  article-title: Prediktor-an on-line prediction system
– volume: 169
  start-page: 449
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b149
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.090
– volume: 35
  start-page: 2549
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b207
  article-title: Improved deep mixture density network for regional wind power probabilistic forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2020.2971607
– volume: 68
  start-page: 8298
  issue: 9
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b95
  article-title: Deep learning-based forecasting approach in smart grids with micro-clustering and bi-directional LSTM network
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.3009604
– volume: 55
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b83
  article-title: A review on renewable energy and electricity requirement forecasting models for smart grid and buildings
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2020.102052
– volume: 196
  start-page: 1395
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b30
  article-title: Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.06.024
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b75
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 187
  start-page: 356
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b232
  article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.086
– volume: 32
  start-page: 2673
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b154
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2628873
– volume: 171
  start-page: 764
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b41
  article-title: Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.02.117
– volume: 162
  start-page: 1208
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b25
  article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.08.077
– volume: 249
  start-page: 392
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b4
  article-title: Data processing strategies in wind energy forecasting models and applications: A comprehensive review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.188
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b156
  article-title: A hybrid wind speed forecasting model using stacked autoencoder and LSTM
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5139689
– volume: 190
  start-page: 1245
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b138
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.043
– volume: 156
  start-page: 498
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b109
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.053
– volume: 6
  start-page: 6997
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b190
  article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2913176
– volume: 6
  start-page: 1416
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b164
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2434387
– volume: 250
  start-page: 530
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b173
  article-title: A hybrid deep learning-based neural network for 24-h ahead wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.05.044
– year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b192
  article-title: Performances of deep learning models for indian ocean wind speed prediction
  publication-title: Model Earth Syst Environ
– volume: 230
  start-page: 429
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b189
  article-title: Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.114
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.apenergy.2021.117766_b42
  article-title: Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 189
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b110
  article-title: Wind power forecast based on improved long short term memory network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116300
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2021.117766_b35
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 85
  start-page: 790
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b20
  article-title: Wind speed forecasting for wind farms: A method based on support vector regression
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.004
– volume: 38
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b136
  article-title: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN
  publication-title: Sustain Energy Technol Assess
– volume: 116
  start-page: 309
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b233
  article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.09.078
– volume: 11
  start-page: 1370
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b92
  article-title: Short-term wind speed interval prediction based on ensemble GRU model
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2926147
– volume: 2020
  issue: 12
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b198
  article-title: Short-time wind speed forecast using artificial learning-based algorithms
  publication-title: Comput Intell Neuroence
– volume: 8
  start-page: 134422
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b199
  article-title: Short-term wind power forecasting based on VMD decomposition, convlstm networks and error analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011060
– volume: 174
  start-page: 1219
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b118
  article-title: An innovative hybrid system for wind speed forecasting based on fuzzy preprocessing scheme and multi-objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.194
– volume: 1087
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b93
  article-title: Short-term wind power prediction method based on wavelet packet decomposition and improved GRU
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1087/2/022034
– volume: 254
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b58
  article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113686
– volume: 9
  start-page: 1919
  issue: 6
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b150
  article-title: Novel forecasting model based on improved wavelet transform, informative feature selection, and hybrid support vector machine on wind power forecasting
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-0886-0
– volume: 151
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b183
  article-title: 1d convolutional neural networks and applications: A survey
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107398
– volume: 203
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b23
  article-title: Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112239
– volume: 76
  start-page: 91
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b130
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in xinjiang, China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.11.011
– volume: 7
  start-page: 99244
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b165
  article-title: Deep belief networks with genetic algorithms in forecasting wind speed
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929542
– volume: 36
  start-page: 20
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b153
  article-title: A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.02.006
– volume: 75
  start-page: 301
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b104
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.058
– volume: 218
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b97
  article-title: Day-ahead wind power forecasting based on the clustering of equivalent power curves
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119515
– volume: 96
  start-page: 727
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b142
  article-title: Short-term wind speed forecasting using empirical mode decomposition and feature selection
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.05.023
– ident: 10.1016/j.apenergy.2021.117766_b182
  doi: 10.1007/978-3-319-73013-4_23
– volume: 33
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2021.117766_b15
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.01.014
– volume: 8
  start-page: 165612
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b217
  article-title: A combined model based on ceemdan, permutation entropy, gated recurrent unit network, and an improved bat algorithm for wind speed forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022872
– volume: 33
  start-page: 3276
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b18
  article-title: Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2787667
– volume: 261
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b126
  article-title: Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114345
– volume: 165
  start-page: 840
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b168
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.118
– volume: 207
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b94
  article-title: A novel deep learning ensemble model with data denoising for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112524
– start-page: 4561
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b56
  article-title: A multi-variable stacked long-short term memory network for wind speed forecasting
– volume: 61
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b84
  article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2020.102275
– volume: 13
  start-page: 1690
  issue: 10
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b188
  article-title: Multi-step wind power forecast based on VMD-LSTM
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.5781
– volume: 213
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b111
  article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network
  publication-title: Energy Convers Manage
– volume: 205
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b40
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112461
– volume: 28
  start-page: 802
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b196
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv Neural Inf Process Syst
– volume: 174
  start-page: 688
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b213
  article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.04.091
– volume: 228
  start-page: 1822
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b74
  article-title: A survey of artificial neural network in wind energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.084
– volume: 145
  start-page: 270
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b131
  article-title: Chaotic wind power time series prediction via switching data-driven modes
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.06.047
– volume: 165
  start-page: 681
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b57
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.03.098
– ident: 10.1016/j.apenergy.2021.117766_b134
  doi: 10.1145/1390156.1390294
– volume: 164
  start-page: 211
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b228
  article-title: A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.09.078
– volume: 6
  start-page: 17851
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b158
  article-title: A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818108
– volume: 143
  start-page: 1172
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b37
  article-title: A novel non-linear combination system for short-term wind speed forecast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.154
– volume: 197
  start-page: 151
  issue: JUL.1
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b151
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.008
– volume: 292
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b222
  article-title: Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116842
– volume: 224
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b79
  article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113324
– start-page: 945
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b135
  article-title: A deep learning approach for wind power prediction based on stacked denoising auto encoders optimized by bat algorithm
– volume: 8
  start-page: 67955
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b195
  article-title: Short-term wind speed forecasting with principle-subordinate predictor based on conv-LSTM and improved BPNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982839
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b206
  article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 48
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b52
  article-title: Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101290
– volume: 179
  start-page: 13
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b220
  article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of nrel
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.068
– volume: 135
  start-page: 674
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b17
  article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.047
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b50
  article-title: Auto-encoder with neural networks for wind speed forecasting
– volume: 207
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b172
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106396
– volume: 554
  start-page: 120
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b225
  article-title: Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2020.12.032
– volume: 227
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b62
  article-title: Short-term wind speed predicting framework based on eemd-ga-lstm method under large scaled wind history
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113559
– start-page: 368
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b166
  article-title: Continuous RBM based deep neural network for wind speed forecasting in Hong Kong
– volume: 8
  start-page: 51482
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b44
  article-title: Research on a novel combination system on the basis of deep learning and swarm intelligence optimization algorithm for wind speed forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980562
– start-page: 2432
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b96
  article-title: The application of deep neural network algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction
– volume: 17
  start-page: 720
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b86
  article-title: Advanced deep learning approach for probabilistic wind speed forecasting
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3004436
– start-page: 1580
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b160
  article-title: Stacked sparse autoencoder based fault detection and location method for modular five-level converters
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b43
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 5
  start-page: 258
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2021.117766_b9
  article-title: Smart energy management system for optimal microgrid economic operation
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2010.0052
– volume: 397
  start-page: 393
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b98
  article-title: Wind speed forecasting using deep neural network with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.108
– volume: 10
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b8
  article-title: Wind power curve modeling and wind power forecasting with inconsistent data
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2820198
– volume: 178
  start-page: 886
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b14
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.098
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b237
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
– volume: 31
  start-page: 2546
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b34
  article-title: Arima-based frequency-decomposed modeling of wind speed time series
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2468586
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b200
  article-title: Predicting wind turbine power and load outputs by multi-task convolutional LSTM model
– volume: 16
  start-page: 3471
  issue: 5
  year: 2012
  ident: 10.1016/j.apenergy.2021.117766_b51
  article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.044
– volume: 292
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b132
  article-title: Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116851
– volume: 277
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b212
  article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2019.103176
– start-page: 1
  year: 2010
  ident: 10.1016/j.apenergy.2021.117766_b11
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
– volume: 220
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b124
  article-title: Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113098
– volume: 136
  start-page: 439
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b117
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.01.022
– volume: 236
  start-page: 262
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b201
  article-title: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.063
– volume: 168
  start-page: 558
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b170
  article-title: A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.128
– volume: 99
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b60
  article-title: A self-adaptive kernel extreme learning machine for short-term wind speed forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106917
– volume: 230
  start-page: 1108
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b239
  article-title: A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.037
– year: 2009
  ident: 10.1016/j.apenergy.2021.117766_b71
– volume: 163
  start-page: 1895
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b203
  article-title: Wind power forecasting–a data-driven method along with gated recurrent neural network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.10.119
– volume: 6
  start-page: 1447
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b145
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2441747
– volume: 143
  start-page: 842
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b204
  article-title: Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.05.039
– volume: 179
  start-page: 120
  issue: SEP.1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b180
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.05.009
– start-page: 1844
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b45
  article-title: Ultra-short-term wind power combination forecasting model based on MEEMD-SAE-Elman
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b76
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.033
– volume: 11
  issue: 12
  year: 2010
  ident: 10.1016/j.apenergy.2021.117766_b91
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
  publication-title: J Mach Learn Res
– volume: 216
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b224
  article-title: Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and rif-based algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119299
– volume: 31
  start-page: 762
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b12
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.054
– volume: 37
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2021.117766_b102
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.06.023
– volume: 56
  start-page: 6117
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b19
  article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2020.2992945
– year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b185
  article-title: A multi-scale model based on the long short-term memory for day ahead hourly wind speed forecasting
  publication-title: Pattern Recognit Lett
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b155
  article-title: Robust deep neural network for wind speed prediction
– volume: 4
  start-page: 849
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2021.117766_b28
  article-title: Combined nonparametric prediction intervals for wind power generation
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2013.2253140
– volume: 85
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b108
  article-title: A secondary decomposition based hybrid structure with meteorological analysis for deterministic and probabilistic wind speed forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105799
– volume: 241
  start-page: 229
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b16
  article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and gaussian mixture model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.044
– volume: 10
  start-page: 670
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b208
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2844102
– volume: 213
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b143
  article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112824
– volume: 150
  start-page: 108
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b235
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.014
– year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b240
– volume: 171
  start-page: 1418
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b234
  article-title: Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.020
– year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b6
– volume: 11
  start-page: 509
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b53
  article-title: Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2897136
– volume: 126
  start-page: 736
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b120
  article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.089
– volume: 260
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b179
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114259
– volume: 155
  start-page: 350
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b88
  article-title: Feature extraction of NWP data for wind power forecasting using 3D-convolutional neural networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.11.043
– start-page: 131
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b171
  article-title: Wind power prediction based on a convolutional neural network
– volume: 22
  start-page: 1341
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2021.117766_b29
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2162110
– volume: 365
  start-page: 54
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b48
  article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.058
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b230
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and ga-bp neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 116
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b1
  article-title: Approaches to wind power curve modeling: A review and discussion
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109422
– volume: 165
  start-page: 939
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b112
  article-title: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.180
– start-page: 921
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b197
  article-title: Exploiting spatio-temporal dependencies for RNN-based wind power forecasts
– volume: 233
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b218
  article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the arima to wind speed prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.113917
– volume: 188
  start-page: 56
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b178
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.111
– year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b69
– volume: 156
  start-page: 1373
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b231
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.047
– volume: 226
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b175
  article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113500
– volume: 89
  start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b105
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 217
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b219
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119361
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.apenergy.2021.117766_b184
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 195
  start-page: 70
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b90
  article-title: One dimensional convolutional neural network architectures for wind prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.05.007
– volume: 102
  start-page: 241
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b119
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.10.030
– volume: 12
  start-page: 191
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b3
  article-title: Sparse heteroscedastic multiple spline regression models for wind turbine power curve modeling
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.2988683
– volume: 164
  start-page: 1508
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b127
  article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in brazilian northeast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.10.126
– year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b73
– volume: 430
  start-page: 121
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b133
  article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.093
– volume: 3
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b223
  article-title: A deep gated recurrent neural network for petroleum production forecasting
  publication-title: Mach Learn Appl
– volume: 13
  start-page: 2062
  issue: 12
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b137
  article-title: Data-driven wind speed forecasting using deep feature extraction and LSTM
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.5917
– year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b7
– volume: 155
  start-page: 188
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b106
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.10.085
– volume: 100
  start-page: 9
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b81
  article-title: A review on the selected applications of forecasting models in renewable power systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.046
– volume: 148
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b129
  article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106971
– volume: 82
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b24
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105550
– start-page: 1657
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b147
  article-title: Deep neural networks for ultra-short-term wind forecasting
– year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b87
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118371
– volume: 45
  start-page: 2673
  issue: 11
  year: 2002
  ident: 10.1016/j.apenergy.2021.117766_b191
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.650093
– volume: 76
  start-page: 717
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b221
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.07.001
– volume: 159
  start-page: 54
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b39
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.01.010
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b22
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 11
  start-page: 1638
  issue: 7
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b146
  article-title: Short-term wind speed forecasting based on low redundancy feature selection
  publication-title: Energies
  doi: 10.3390/en11071638
– volume: 163
  start-page: 134
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b64
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.012
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b167
  article-title: Wind power prediction and pattern feature based on deep learning method
– volume: 11
  start-page: 2294
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b214
  article-title: Wind field-based short-term turbine response forecasting by stacked dilated convolutional lstms
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2954107
– volume: 121
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b162
  article-title: Short-term wind speed forecasting based on the jaya-SVM model
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106056
– volume: 94
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b229
  article-title: Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106476
– volume: 173
  start-page: 123
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b63
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.07.070
– volume: 195
  start-page: 328
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b21
  article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.05.020
– volume: 202
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b211
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117794
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b89
  article-title: A model combining convolutional neural network and lightgbm algorithm for ultra-short-term wind power forecasting
  publication-title: IEEE Access
– volume: 14
  start-page: 2657
  issue: 14
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b26
  article-title: Uncertain wind power forecasting using LSTM-based prediction interval
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2019.1238
– volume: 180
  start-page: 196
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b114
  article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.006
– year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b72
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b77
  article-title: Combined forecasting models for wind energy forecasting: A case study in China
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.12.012
– volume: 198
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b148
  article-title: Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.06.083
– volume: 119
  start-page: 561
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b226
  article-title: Short-term wind speed forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.040
– start-page: 713
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b181
  article-title: Wind speed prediction using multidimensional convolutional neural networks
– volume: 32
  start-page: 255
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b27
  article-title: Review on probabilistic forecasting of wind power generation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.01.033
– volume: 180
  start-page: 338
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b107
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.089
– volume: 118
  start-page: 213
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b121
  article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.075
– start-page: 1724
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b202
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 151
  start-page: 709
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b125
  article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.09.034
– volume: 238
  start-page: 249
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b177
  article-title: Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space
  publication-title: Appllied Energy
  doi: 10.1016/j.apenergy.2019.01.010
– year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b152
  article-title: Kernel principal components analysis with extreme learning machines for wind speed prediction
– start-page: 599
  year: 2012
  ident: 10.1016/j.apenergy.2021.117766_b163
  article-title: A practical guide to training restricted Boltzmann machines
– volume: 93
  start-page: 33
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b186
  article-title: Lstm-efg for wind power forecasting based on sequential correlation features
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.09.054
– volume: 10
  start-page: 885
  issue: 7
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b85
  article-title: Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2015.0477
– volume: 60
  start-page: 960
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b2
  article-title: Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.01.114
– volume: 13
  start-page: 2770
  issue: 6
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b157
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2730846
– volume: 89
  start-page: 49
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b65
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.07.019
– volume: 168
  start-page: 482
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b115
  article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.099
– volume: 167
  start-page: 203
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b187
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.082
– volume: 123
  start-page: 362
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b82
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.06.053
– volume: 8
  start-page: 227126
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b215
  article-title: A hybrid short-term wind power prediction model combining data processing, multiple parameters optimization and multi-intelligent models apportion strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046001
– volume: 225
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b122
  article-title: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113456
– volume: 30
  issue: 05
  year: 2016
  ident: 10.1016/j.apenergy.2021.117766_b49
  article-title: Day-ahead prediction of wind speed with deep feature learning
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001416500117
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b78
  article-title: Ensemble methods for wind and solar power forecasting–a state-of-the-art review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.081
– volume: 259
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b103
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114137
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b36
  article-title: Recursive wind speed forecasting based on hammerstein auto-regressive model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.032
– volume: 153
  start-page: 589
  issue: dec.
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b128
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.10.021
– volume: 178
  start-page: 137
  year: 2018
  ident: 10.1016/j.apenergy.2021.117766_b205
  article-title: A novel framework for wind speed prediction based on recurrent neural networks and support vector machine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.008
– volume: 140
  start-page: 17
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b140
  article-title: High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.03.041
– volume: 91
  start-page: 556
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b38
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.039
– volume: 58
  start-page: 742
  year: 2017
  ident: 10.1016/j.apenergy.2021.117766_b59
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.031
– volume: 132
  start-page: 43
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b100
  article-title: Robust functional regression for wind speed forecasting based on sparse Bayesian learning
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.07.083
– volume: 24
  start-page: 97
  issn: 1099-1824
  year: 2021
  ident: 10.1016/j.apenergy.2021.117766_b5
  article-title: Review of control strategy of large horizontal-axis wind turbines yaw system
  publication-title: Wind Energy
  doi: 10.1002/we.2564
– volume: 16
  start-page: 6263
  issue: 10
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b161
  article-title: Gearbox fault diagnosis using a deep learning model with limited data sample
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2967822
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2021.117766_b159
  article-title: Deep neural network based feature representation for weather forecasting
– volume: 270
  year: 2020
  ident: 10.1016/j.apenergy.2021.117766_b61
  article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2020.121817
– volume: 143
  start-page: 472
  year: 2015
  ident: 10.1016/j.apenergy.2021.117766_b227
  article-title: The study and application of a novel hybrid forecasting model - a case study of wind speed forecasting in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.038
– year: 2000
  ident: 10.1016/j.apenergy.2021.117766_b68
  article-title: WPPT - a tool for wind power prediction
– volume: 133
  start-page: 919
  year: 2019
  ident: 10.1016/j.apenergy.2021.117766_b116
  article-title: Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.043
SSID ssj0002120
Score 2.7372415
Snippet The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117766
SubjectTerms artificial intelligence
data collection
Data pre-processing
Deep neural network
electric power
electricity
electricity generation
Feature extraction
Relationship learning
wind power
Wind power forecasting
wind speed
Wind speed forecasting
Title A review of wind speed and wind power forecasting with deep neural networks
URI https://dx.doi.org/10.1016/j.apenergy.2021.117766
https://www.proquest.com/docview/2636518606
Volume 304
WOSCitedRecordID wos000701874500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHBIWq5VEZiRvKsrbjOD6u0FYUUMWhoIVL5DgO2hXNRs2m7c9n_MiD8ig9cIk2Vuz15vt2ZjyeGSP0UoKOUGVBI5pzGcWcsEglqoy0UaDPFSgV5xr4_EEcH6eLhfwY4nQbd5yAqKr08lLW_xVqaAOwbersDeDuB4UG-AygwxVgh-s_AT8bpaNcLK1bvAYN5TYJ3G1tz0Wz0YVGq2bT-2ILY-pXtrolYFb52PBmbLl25qpxyYKDH97Lii9tT7Kv69bh1lanyyHeZ-kaD1VQlGNXNSyHv61C_-B_oMTGcvgMzC7vappEdh02lqlsGo-kot0Y9mer_CKwve9gNVG1n_7EfsVk6PBzhewrmquPJ-xC1VZZN05mx8n8OLfRNhVcgszbnh3NF-96TU1D2c7uF4wyyH8_oz8ZL1fUuLNNTh6g-2FRgWeeDA_RLVPtoHujUpM7aHc-ZDTCo0GkN4_Q-xn2fMHrEluCYMcXDHzxt44veMQXbPmCLV-w5wvu-PIYfTqcn7x5G4UTNiLNYr6JUgPiWoPFJowwXLCCFFpooXJjYJmrSC5jRQrBuC7JtORlqWOqUq1iSWlBiGa7aKtaV2YPYWOYLImMdVmwOKFK5sykSZqzJKVxnop9xLtXl-lQft6egvI9-zt4--h136_2BViu7SE7ZLJgRnrzMAPSXdv3RQdlBnLWbp6pyqzbJqMJSzhJYb3_5MYzeoruDv-cZ2hrc9aa5-iOPt8sm7ODwMof-y-kBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+wind+speed+and+wind+power+forecasting+with+deep+neural+networks&rft.jtitle=Applied+energy&rft.au=Wang%2C+Yun&rft.au=Zou%2C+Runmin&rft.au=Liu%2C+Fang&rft.au=Zhang%2C+Lingjun&rft.date=2021-12-15&rft.issn=0306-2619&rft.volume=304&rft.spage=117766&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2021_117766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon