Review of wind power scenario generation methods for optimal operation of renewable energy systems
•The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation metho...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 280; S. 115992 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.12.2020
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation methods are discussed.
Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems. |
|---|---|
| AbstractList | Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems. •The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation methods are discussed. Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems. |
| ArticleNumber | 115992 |
| Author | Chen, Bo Zhou, Jiasheng Li, Jinghua |
| Author_xml | – sequence: 1 givenname: Jinghua surname: Li fullname: Li, Jinghua email: happyjinghua@163.com – sequence: 2 givenname: Jiasheng surname: Zhou fullname: Zhou, Jiasheng – sequence: 3 givenname: Bo surname: Chen fullname: Chen, Bo |
| BookMark | eNqFkE1LxDAQhoMouK7-BcnRS9dJ2sYGPCjiFwiC6DmkyVSzdJuaRJf992atXrx4Gpi8z0vmOSC7gx-QkGMGCwZMnC4XesQBw-tmwYHnJaul5DtkxpozXkjGml0ygxJEwQWT--QgxiUAcMZhRton_HS4pr6jazdYOvo1BhoNDjo4T1-3xTo5P9AVpjdvI-18oH5MbqX7PH9fMx9ydq3bHun0Gxo3MeEqHpK9TvcRj37mnLzcXD9f3RUPj7f3V5cPhSmrOhWNbkByadsz2VWiNhXaFpAzVgJUHQdhTckbZkRTN1agAStFK2uAtja6NKKck5Opdwz-_QNjUiuXD-l7PaD_iIqLUlScV5XMUTFFTfAxBuzUGPJBYaMYqK1UtVS_UtVWqpqkZvD8D2hc-jaQgnb9__jFhGP2kL0HFY3DwaB1AU1S1rv_Kr4AHuGbWg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3224744 crossref_primary_10_1016_j_psep_2024_12_102 crossref_primary_10_3390_electronics14112150 crossref_primary_10_1016_j_energy_2025_135985 crossref_primary_10_1016_j_epsr_2025_111779 crossref_primary_10_1016_j_ijepes_2022_108832 crossref_primary_10_1016_j_ijepes_2024_109889 crossref_primary_10_1109_ACCESS_2021_3087728 crossref_primary_10_1016_j_est_2025_115556 crossref_primary_10_1088_1742_6596_2661_1_012020 crossref_primary_10_1007_s10957_024_02518_y crossref_primary_10_1016_j_renene_2025_122781 crossref_primary_10_1016_j_enbuild_2024_114600 crossref_primary_10_1016_j_apenergy_2022_119400 crossref_primary_10_1088_1742_6596_2754_1_012003 crossref_primary_10_1109_OAJPE_2025_3575734 crossref_primary_10_1016_j_renene_2025_124431 crossref_primary_10_1049_rpg2_12414 crossref_primary_10_1109_TSG_2025_3573166 crossref_primary_10_3390_en18081917 crossref_primary_10_1109_TPWRS_2023_3305470 crossref_primary_10_1016_j_apenergy_2024_123182 crossref_primary_10_1016_j_renene_2023_05_004 crossref_primary_10_1016_j_ijepes_2025_110492 crossref_primary_10_1016_j_apenergy_2024_124793 crossref_primary_10_1016_j_segan_2023_100999 crossref_primary_10_1016_j_apenergy_2024_123620 crossref_primary_10_3390_en15072486 crossref_primary_10_3390_en16155600 crossref_primary_10_1109_JETCAS_2023_3291145 crossref_primary_10_1016_j_jclepro_2022_130768 crossref_primary_10_1016_j_rser_2021_111506 crossref_primary_10_3390_su152316536 crossref_primary_10_3390_electronics13112100 crossref_primary_10_1016_j_apenergy_2021_118387 crossref_primary_10_1088_1742_6596_2896_1_012032 crossref_primary_10_3390_app13169305 crossref_primary_10_1109_TPWRS_2023_3298004 crossref_primary_10_1016_j_enconman_2023_117066 crossref_primary_10_1109_TSG_2021_3111610 crossref_primary_10_1016_j_ins_2022_11_027 crossref_primary_10_1016_j_renene_2021_12_110 crossref_primary_10_3389_fenrg_2024_1425202 crossref_primary_10_3390_electronics13010211 crossref_primary_10_1016_j_epsr_2024_111233 crossref_primary_10_1016_j_apenergy_2022_120094 crossref_primary_10_1063_5_0147592 crossref_primary_10_3390_su162410936 crossref_primary_10_1049_stg2_12119 crossref_primary_10_3389_fenrg_2024_1427582 crossref_primary_10_1016_j_energy_2025_138049 crossref_primary_10_1016_j_renene_2024_121624 crossref_primary_10_3390_en16052435 crossref_primary_10_1016_j_enconman_2021_114790 crossref_primary_10_1186_s40854_023_00564_5 crossref_primary_10_3390_en18030503 crossref_primary_10_3390_pr10122649 crossref_primary_10_1016_j_oceaneng_2023_115578 crossref_primary_10_1109_ACCESS_2024_3429405 crossref_primary_10_1166_jno_2025_3704 crossref_primary_10_3390_en17215293 crossref_primary_10_1016_j_ijepes_2023_109294 crossref_primary_10_1016_j_ijepes_2024_110175 crossref_primary_10_1016_j_apenergy_2025_125369 crossref_primary_10_1016_j_renene_2023_01_036 crossref_primary_10_1109_TSG_2024_3360874 crossref_primary_10_3390_en18143745 crossref_primary_10_1016_j_compchemeng_2024_108646 crossref_primary_10_1016_j_epsr_2023_109398 crossref_primary_10_1016_j_cherd_2022_08_014 crossref_primary_10_3390_en18061462 crossref_primary_10_1016_j_eswa_2024_123774 crossref_primary_10_1016_j_compeleceng_2024_109715 crossref_primary_10_1016_j_energy_2023_126945 crossref_primary_10_1016_j_apenergy_2024_125059 crossref_primary_10_3390_en16073114 crossref_primary_10_1109_TPWRS_2022_3170992 crossref_primary_10_3390_en15072698 crossref_primary_10_1016_j_epsr_2023_109268 crossref_primary_10_1016_j_apenergy_2024_122905 crossref_primary_10_1016_j_energy_2025_136525 crossref_primary_10_1016_j_seta_2022_102230 crossref_primary_10_1016_j_applthermaleng_2021_117511 crossref_primary_10_1109_TPWRS_2023_3277698 crossref_primary_10_1016_j_segan_2024_101509 crossref_primary_10_1007_s40866_023_00175_0 crossref_primary_10_1016_j_jclepro_2021_129833 crossref_primary_10_1016_j_rser_2023_113963 crossref_primary_10_1109_JSYST_2021_3110860 crossref_primary_10_1109_ACCESS_2021_3097985 crossref_primary_10_3390_en15238830 crossref_primary_10_1007_s12652_020_02784_4 crossref_primary_10_3390_en16041636 crossref_primary_10_1002_wene_70004 crossref_primary_10_3390_pr13092897 crossref_primary_10_1016_j_apenergy_2022_118813 crossref_primary_10_1016_j_eswa_2025_126787 crossref_primary_10_1016_j_est_2022_104311 crossref_primary_10_1007_s41660_021_00196_1 crossref_primary_10_1049_gtd2_70089 crossref_primary_10_1051_e3sconf_202449102043 crossref_primary_10_1016_j_compeleceng_2024_109817 crossref_primary_10_1016_j_egyr_2022_08_021 crossref_primary_10_3390_en15249436 crossref_primary_10_1016_j_rser_2023_113933 crossref_primary_10_1016_j_energy_2022_126173 crossref_primary_10_1016_j_apenergy_2022_120294 crossref_primary_10_1109_TNNLS_2023_3284666 crossref_primary_10_1109_TSTE_2024_3453269 crossref_primary_10_1016_j_energy_2022_123454 crossref_primary_10_1016_j_tsep_2021_101098 crossref_primary_10_3390_a16100479 crossref_primary_10_32604_ee_2024_047794 crossref_primary_10_3389_fenrg_2021_646975 crossref_primary_10_1016_j_apcato_2025_207066 crossref_primary_10_1016_j_egyr_2024_06_017 crossref_primary_10_1016_j_energ_2025_100017 crossref_primary_10_1109_TPWRS_2023_3305771 crossref_primary_10_1016_j_epsr_2024_110513 crossref_primary_10_1049_rpg2_12911 crossref_primary_10_1016_j_segan_2024_101402 crossref_primary_10_3390_en18143781 crossref_primary_10_1016_j_ifacol_2024_07_100 crossref_primary_10_3390_electronics13204041 crossref_primary_10_3390_forecast4010004 |
| Cites_doi | 10.1016/j.asoc.2018.11.042 10.1016/j.apenergy.2011.11.004 10.1109/TPWRS.2013.2287871 10.1109/ISGT-Asia.2018.8467774 10.1016/j.apenergy.2019.03.112 10.7148/2007-0203 10.1109/TPWRS.2006.887894 10.1049/iet-gtd.2012.0405 10.1186/s41601-017-0066-9 10.1109/TPWRS.2009.2016589 10.1016/j.energy.2019.02.021 10.1109/TSG.2014.2328976 10.1016/j.ejor.2014.07.049 10.1109/TPWRS.2013.2258824 10.1016/j.enconman.2017.04.077 10.1109/TSG.2017.2778688 10.1109/TEC.2009.2025431 10.1109/TPWRS.2015.2394317 10.1109/TSG.2015.2430851 10.1016/j.epsr.2019.02.018 10.1109/TIE.2018.2890499 10.3390/pr8080892 10.1016/j.apenergy.2020.115395 10.1049/iet-rpg.2015.0568 10.1109/TPWRS.2011.2113380 10.1109/TPWRS.2010.2070848 10.1109/TPWRS.2015.2412687 10.1109/TPWRS.2009.2016504 10.1109/TPWRS.2011.2121095 10.1109/TSTE.2012.2222680 10.1016/j.jclepro.2016.07.207 10.1109/TPWRS.2018.2838050 10.1109/CICED.2016.7576300 10.1016/j.apenergy.2019.02.015 10.4028/www.scientific.net/AMM.472.953 10.1016/j.energy.2016.09.096 10.1109/TPWRS.2009.2033277 10.1016/j.epsr.2015.12.020 10.3934/jimo.2008.4.363 10.17775/CSEEJPES.2016.00004 10.1016/j.rser.2013.12.034 10.1109/TSTE.2014.2360702 10.1016/j.rser.2015.07.197 10.1016/j.ijepes.2019.03.066 10.1109/TSTE.2013.2256807 10.1109/TPWRS.2011.2164947 10.1016/j.orl.2014.06.006 10.1016/j.cam.2012.05.020 10.1049/iet-gtd.2018.6362 10.1109/TEC.2007.914174 10.1007/s11431-014-5720-0 10.1109/TPWRS.2018.2799954 10.1109/TPWRS.2017.2737580 10.1109/TPWRS.2013.2288100 10.1109/ACCESS.2018.2875936 10.1109/TPWRS.2018.2794541 10.1063/5.0006480 10.1109/TPWRS.2019.2891227 10.1109/TSTE.2017.2782089 10.1109/TPWRS.2008.926719 10.1016/j.apenergy.2018.03.082 10.1016/j.ijepes.2019.105388 10.1016/j.renene.2011.01.015 10.1109/TPWRS.2020.2965922 10.1016/j.rser.2018.03.078 10.1016/j.ijepes.2018.07.020 10.1016/j.apenergy.2018.06.095 10.1016/j.apenergy.2018.11.058 10.1007/s11590-018-1300-8 10.1109/ACCESS.2016.2622358 10.1061/(ASCE)HE.1943-5584.0000795 10.1016/j.ijhydene.2018.09.179 10.1016/j.apenergy.2015.10.052 10.1109/TIM.2004.827058 10.1109/TSTE.2014.2386870 10.1109/TSTE.2019.2920884 10.1109/TPWRS.2010.2045774 10.1016/j.apenergy.2012.06.002 10.1007/s42835-019-00085-1 10.1109/TPWRS.2012.2204281 10.1016/j.ijforecast.2006.03.001 10.1016/j.ijepes.2012.10.069 10.1109/TPWRS.2006.879276 10.1137/110858082 10.1016/j.apenergy.2019.113372 10.1016/j.energy.2017.06.113 10.1109/TPWRS.2012.2187803 10.1287/moor.1050.0146 10.1016/j.apenergy.2009.09.022 10.1023/A:1021853807313 10.1109/TSTE.2017.2728098 10.1109/TPWRS.2016.2562718 10.1016/j.energy.2019.116657 10.1109/TEC.2006.889616 10.1016/j.apenergy.2019.01.238 10.1007/s10589-015-9758-0 10.1016/j.energy.2019.116441 10.1109/TPWRS.2006.889126 10.1016/j.energy.2017.12.154 10.1109/PESGM.2014.6939042 10.1109/TSG.2014.2303580 10.1016/j.epsr.2019.106193 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.115992 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_115992 S0306261920314380 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-8a80929db79f465c4edb0e2113004f206dc3281c6858d6ec0d96b9500b5ca3c63 |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594134700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 08:00:56 EDT 2025 Sat Nov 29 07:22:01 EST 2025 Tue Nov 18 21:52:41 EST 2025 Fri Feb 23 02:45:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty Application strategy Scenario generation Wind power Stochastic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-8a80929db79f465c4edb0e2113004f206dc3281c6858d6ec0d96b9500b5ca3c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636422449 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636422449 crossref_primary_10_1016_j_apenergy_2020_115992 crossref_citationtrail_10_1016_j_apenergy_2020_115992 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115992 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-15 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Díaz, Gómez-Aleixandre, Coto (b0230) 2016; 162 Wang, Liu, Tang, Liu, Zhou (b0390) 2020; 181 Billinton, Wangdee (b0625) 2007; 22 Zeynali, Rostami, Ahmadian, Elkamel (b0560) 2020; 39 Ouyang, Zha, Qin (b0425) 2017; 144 Mehrotra, Papp (b0095) 2013; 23 Sun, Cremer, Strbac (b0175) 2018; 228 Ehsan, Cheng, Yang (b0285) 2019; 5 Hoeltgebaum, Fernandes, Street (b0170) 2018; 33 Chen C, Sun H, Shen X, Guo Y, Guo Q, Xia, Tian. Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model. Appl Energy 2019;252:113372. Ponomareva, Roman, Date (b0265) 2015; 240 Zhang, Ai, Xiao, Hao, Lu (b0260) 2020; 114 Baringo, Conejo (b0305) 2013; 101 Lucheroni, Boland, Ragno (b0035) 2019; 239 Alahyari, Ehsan, Mousavizadeh (b0140) 2019; 25 Chen, Wen, Cheng (b0155) 2013; 4 Rakipour, Barati (b0115) 2019; 173 Abbasi, Taki, Rajabi, Li, Zhang (b0215) 2019; 239 Pappala, Erlich, Rohrig, Dobschinski (b0245) 2009; 24 Morales, Mínguez, Conejo (b0220) 2010; 87 Hashemi, Ostergaard, Yang (b0550) 2014; 5 Tang, Xu, Tan, Sun, Zhang (b0455) 2019; 34 Rocha LCS, Junior PR, Paiva AP, Oliveira PE, Aquila G, Balestrassi PP. A stochastic economic viability analysis of residential wind power generation in Brazil. Renew Sustain Energy Rev. 2018;90:412–9. Cai, Shi, Chen (b0150) 2013; 7 Yan, Liu, Han, Wang, Feng (b0015) 2015; 2015 Matevosyan, Soder (b0075) 2006; 21 Sklar (b0160) 1959; 8 Chen, Wang, Kirschen, Zhang (b0255) 2018; 33 Wang X, Hu Z, Zhang M, Hu M. Two-stage stochastic optimization for unit commitment considering wind power based on scenario analysis. In: China International Conference on Electricity Distribution. IEEE, 2016. Tang, Wang, Xu, Sun, Zhang (b0130) 2018; 221 Yu H, Rosehart B. Probabilistic power flow considering wind speed correlation of wind farms. In: 17th Power Systems Computation Conf. Stockholm, Sweden, 1–7 August; 2011. Park, Xu, Hobbs (b0090) 2019; 13 Aquila, Rocha, Junior, Oliveira, Queiroz, Paiva (b0615) 2016; 137 Li, Ye, Zeng, Wei (b0005) 2016; 2 Cheng, Gicquel, Lisser (b0120) 2019; 13 Biswas, Suganthan, Mallipeddi, Amaratunga (b0405) 2019; 75 Haghi, Lotfifard (b0065) 2014; 6 Høyland, Kaut, Wallace (b0275) 2003; 24 Pranevicius H, Sutiene K. Scenario tree generation by clustering the simulated data paths. 2007. Vagropoulos, Kardakos, Simoglou, Bakirtzis, Catalao (b0235) 2016; 134 Pflug, Pichler (b0370) 2015; 62 Arabpour, Besmi, Maghouli (b0545) 2019; 14 Jiang, Mao, Chai, Yu, Tao (b0085) 2018; 6 Ehsan, Yang (b0280) 2019; 235 Prosper, Otero-Casal, Canoura Fernandez, Miguez-Macho (b0415) 2019; 135 Dong, Chen, Wei (b0105) 2019; 66 Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problem. In: Power Tech Conference Proceedings, 2003 IEEE Bologna. IEEE; 2004. Wan, Xu, Pinson (b0525) 2013; 28 Gao, Mao, Chen, Song (b0200) 2014; 472 Becker (b0060) 2017; 9 Stappers, Paterakis, Kok, Gibescu (b0250) 2020 Ming, Xie, Campi, Garatti, Kumar (b0445) 2017; 10 Hyndman, Koehler (b0440) 2006; 22 Shi, Huang, Ding (b0600) 2020; 8 Li, J, Sun H, Wen J, Cheng S, Luo W, Ge w, et al. A Two-dimensional Optimal Technology for Constructing Wind Power Time Series Scenarios. Proceedings of the CSEE 2014;34(16):2544–551. Wang, Hu, Zhang (b0410) 2017; 5 Li J, L F. Copula-Based Monte Carlo Scenarios Generation Method for STOPF Problem. Electricity, 2014(z1):41–50. Meibom, Barth, Hasche, Brand, Weber, O'Malley (b0190) 2011; 26 Xie, Xiong, Ke, Liu (b0465) 2016; 8 Yu, Chung, Wong, Lee, Zhang (b0055) 2009; 24 Kaut, Wallace (b0025) 2003; 3 Aghaei, Niknam, Azizipanah-Abarghooee, Arroyo (b0460) 2013; 47 Daneshvar, Mohammadi-Ivatloo, Zare, Asadi (b0395) 2020; 193 Xie, Ji, Li, Wu (b0110) 2017; 33 Casey, Sen (b0365) 2005; 30 Fu, Guo, Sun, Pan, Xiong, Wang (b0595) 2017; 135 Xue, Lei, Xue, Yu, Dong, Wen (b0010) 2014; 34 Papaefthymiou, Klockl (b0125) 2008; 23 Kaut (b0030) 2017 Qiao, Zou, Li, Chen, Liu, Jiang (b0580) 2019; 112 Camal, Teng, Michiorri, Kariniotakis, Badesa (b0185) 2019; 242 Lin, Cheng, Chang, Zhang, Shu, Liu (b0100) 2014; 31 Xu, Chen, Yang (b0270) 2012; 236 Silva, Teixeira, Brígida, Santos, Vale, Praca (b0345) 2016; 116 Jamali, Aghaei, Esmaili, Nikoobakht, Niknam, Shafie-kha (b0400) 2019; 11 Ma, Sun, Fang (b0360) 2013; 4 Wu, Shahidehpour, Li (b0515) 2012; 27 Rubasheuski, Oppen, Woodruff (b0290) 2014; 42 Wan, Xu, Pinson, Dong, Wong (b0520) 2014; 29 Lin, Fang, Chen, Liu, Bie (b0045) 2017 Hart, Jacobson (b0050) 2011; 36 Shu, Jirutitijaroen (b0620) 2011; 26 Li, Li, Wen, Cheng, Xie, Yue (b0135) 2014; 57 Cui, Feng, Wang, Zhang, Wang, Florita (b0540) 2017 Gao, Xue, Yang, Yang, Sun, Sun (b0420) 2017; 2 Sumaili, Keko, Miranda, Zhou, Botterud, Wang (b0340) 2011 Cui, Ke, Sun, Gan, Zhang, Hodge (b0240) 2015; 6 Yang, Xue, Guo, Zhang, Zhang (b0380) 2017 Du, Zhang, Kang, Xia (b0375) 2018; 33 Yu, Luh, Litvinov, Zheng, Zhao, Zhao (b0510) 2015; 6 Freitas, Macedo (b0565) 2019; 172 Qiu, Li, Pan, Yang, Chen (b0180) 2019; 44 Saber, Moeini-Aghtaie, Ehsan, Fotuhi-Firuzabad (b0555) 2019; 104 Goyal, Ojha (b0355) 2014; 19 Li, Zhu (b0040) 2016; 10 Razali, Hashim (b0330) 2010 Das, Basu (b0385) 2020; 190 Li, Shahidehpour, Li (b0505) 2007; 22 Wan, Xu, Pinson, Dong, Wong (b0530) 2014; 29 Boone A. Simulation of short-term wind speed forecast errors using a multi-variate ARMA (1, 1) time-series model. Master thesis, KTH Roy. Inst. Technol, Stockholm, Sweden, 2005. Sideratos, Hatziargyriou (b0080) 2012; 27 Li, Lan, Wei (b0350) 2016; 31 Pourakbari-Kasmaei, Rider, Mantovani (b0470) 2016; 31 Dvorkin Y, Wang Y, Pandzic H, Kirschen D. Comparison of scenario reduction methods for the stochastic unit commitment. In: Pes General Meeting | Conference & Exposition. IEEE, 214;1–5. Duehee, Ross (b0020) 2017; 32 Ghofrani, Arabali, Etezadi-Amoli, Fadail (b0210) 2014; 5 Li, Sedzro, Fang, Hodge (b0300) 2020; 12 Taylor, Mcsharry, Buizza (b0535) 2009; 24 Papavasiliou, Oren, O'Neill (b0485) 2011; 6 Sun, Teng, Konstantelos, Strbac (b0570) 2018; 145 Pinson, Girard (b0430) 2012; 96 Chen, Pedersen, Bak-Jensen, Chen (b0225) 2010; 25 Guan L, Wen B, Zhan X, Zhou B, Zhao W. Scenario Generation of Wind Power Based on Longitudinal-Horizontal Clustering Strategy. In: 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 934–9; 2018. Henrion, Kuchler, Romisch (b0325) 2017; 4 Pinson, Kariniotakis (b0435) 2010; 25 Wang, Shahidehpour, Li (b0480) 2008; 23 Lei, Wang, Jia, Chen, Li, Song (b0590) 2020; 276 Sutiene K and Pranevicius H. Scenario Generation Employing copulas. Proceeding of the world congress on engineering. UK: London; 2007. Ummels, Gibescu, Pelgrum, Kling, Brand (b0475) 2007; 22 Ji, Wang (b0495) 2016 Ma, Xu, Liu, Zhang, Xiong (b0450) 2016; 4 Swamy, Shmoys (b0145) 2012 Wangdee, Billinton (b0205) 2012; 27 Li, Zou, Tan, Cao (b0585) 2018; 9 Broersen, De Waele (b0195) 2004; 53 Tang (10.1016/j.apenergy.2020.115992_b0455) 2019; 34 Arabpour (10.1016/j.apenergy.2020.115992_b0545) 2019; 14 Høyland (10.1016/j.apenergy.2020.115992_b0275) 2003; 24 Sun (10.1016/j.apenergy.2020.115992_b0570) 2018; 145 Pinson (10.1016/j.apenergy.2020.115992_b0430) 2012; 96 Mehrotra (10.1016/j.apenergy.2020.115992_b0095) 2013; 23 Díaz (10.1016/j.apenergy.2020.115992_b0230) 2016; 162 Ehsan (10.1016/j.apenergy.2020.115992_b0285) 2019; 5 Wang (10.1016/j.apenergy.2020.115992_b0410) 2017; 5 Shi (10.1016/j.apenergy.2020.115992_b0600) 2020; 8 Sumaili (10.1016/j.apenergy.2020.115992_b0340) 2011 Xie (10.1016/j.apenergy.2020.115992_b0465) 2016; 8 Kaut (10.1016/j.apenergy.2020.115992_b0025) 2003; 3 Xie (10.1016/j.apenergy.2020.115992_b0110) 2017; 33 Broersen (10.1016/j.apenergy.2020.115992_b0195) 2004; 53 Kaut (10.1016/j.apenergy.2020.115992_b0030) 2017 10.1016/j.apenergy.2020.115992_b0490 Li (10.1016/j.apenergy.2020.115992_b0350) 2016; 31 Cheng (10.1016/j.apenergy.2020.115992_b0120) 2019; 13 Ming (10.1016/j.apenergy.2020.115992_b0445) 2017; 10 Duehee (10.1016/j.apenergy.2020.115992_b0020) 2017; 32 Baringo (10.1016/j.apenergy.2020.115992_b0305) 2013; 101 Ji (10.1016/j.apenergy.2020.115992_b0495) 2016 Cui (10.1016/j.apenergy.2020.115992_b0240) 2015; 6 Aghaei (10.1016/j.apenergy.2020.115992_b0460) 2013; 47 Cai (10.1016/j.apenergy.2020.115992_b0150) 2013; 7 Wan (10.1016/j.apenergy.2020.115992_b0525) 2013; 28 Chen (10.1016/j.apenergy.2020.115992_b0255) 2018; 33 Li (10.1016/j.apenergy.2020.115992_b0300) 2020; 12 Casey (10.1016/j.apenergy.2020.115992_b0365) 2005; 30 Hart (10.1016/j.apenergy.2020.115992_b0050) 2011; 36 Papavasiliou (10.1016/j.apenergy.2020.115992_b0485) 2011; 6 Papaefthymiou (10.1016/j.apenergy.2020.115992_b0125) 2008; 23 Taylor (10.1016/j.apenergy.2020.115992_b0535) 2009; 24 Lei (10.1016/j.apenergy.2020.115992_b0590) 2020; 276 Stappers (10.1016/j.apenergy.2020.115992_b0250) 2020 Matevosyan (10.1016/j.apenergy.2020.115992_b0075) 2006; 21 Tang (10.1016/j.apenergy.2020.115992_b0130) 2018; 221 Shu (10.1016/j.apenergy.2020.115992_b0620) 2011; 26 Goyal (10.1016/j.apenergy.2020.115992_b0355) 2014; 19 Yu (10.1016/j.apenergy.2020.115992_b0055) 2009; 24 Qiu (10.1016/j.apenergy.2020.115992_b0180) 2019; 44 Wangdee (10.1016/j.apenergy.2020.115992_b0205) 2012; 27 10.1016/j.apenergy.2020.115992_b0310 Saber (10.1016/j.apenergy.2020.115992_b0555) 2019; 104 Pinson (10.1016/j.apenergy.2020.115992_b0435) 2010; 25 Wang (10.1016/j.apenergy.2020.115992_b0480) 2008; 23 Yan (10.1016/j.apenergy.2020.115992_b0015) 2015; 2015 Hashemi (10.1016/j.apenergy.2020.115992_b0550) 2014; 5 Jiang (10.1016/j.apenergy.2020.115992_b0085) 2018; 6 Pourakbari-Kasmaei (10.1016/j.apenergy.2020.115992_b0470) 2016; 31 Li (10.1016/j.apenergy.2020.115992_b0585) 2018; 9 Fu (10.1016/j.apenergy.2020.115992_b0595) 2017; 135 Abbasi (10.1016/j.apenergy.2020.115992_b0215) 2019; 239 Li (10.1016/j.apenergy.2020.115992_b0135) 2014; 57 Meibom (10.1016/j.apenergy.2020.115992_b0190) 2011; 26 10.1016/j.apenergy.2020.115992_b0320 Chen (10.1016/j.apenergy.2020.115992_b0225) 2010; 25 Wang (10.1016/j.apenergy.2020.115992_b0390) 2020; 181 Li (10.1016/j.apenergy.2020.115992_b0505) 2007; 22 10.1016/j.apenergy.2020.115992_b0165 Silva (10.1016/j.apenergy.2020.115992_b0345) 2016; 116 Daneshvar (10.1016/j.apenergy.2020.115992_b0395) 2020; 193 Wu (10.1016/j.apenergy.2020.115992_b0515) 2012; 27 Sideratos (10.1016/j.apenergy.2020.115992_b0080) 2012; 27 Dong (10.1016/j.apenergy.2020.115992_b0105) 2019; 66 Qiao (10.1016/j.apenergy.2020.115992_b0580) 2019; 112 Becker (10.1016/j.apenergy.2020.115992_b0060) 2017; 9 Rubasheuski (10.1016/j.apenergy.2020.115992_b0290) 2014; 42 Ma (10.1016/j.apenergy.2020.115992_b0360) 2013; 4 Camal (10.1016/j.apenergy.2020.115992_b0185) 2019; 242 Lin (10.1016/j.apenergy.2020.115992_b0100) 2014; 31 10.1016/j.apenergy.2020.115992_b0315 Biswas (10.1016/j.apenergy.2020.115992_b0405) 2019; 75 10.1016/j.apenergy.2020.115992_b0575 Cui (10.1016/j.apenergy.2020.115992_b0540) 2017 Haghi (10.1016/j.apenergy.2020.115992_b0065) 2014; 6 Chen (10.1016/j.apenergy.2020.115992_b0155) 2013; 4 10.1016/j.apenergy.2020.115992_b0295 Ummels (10.1016/j.apenergy.2020.115992_b0475) 2007; 22 Li (10.1016/j.apenergy.2020.115992_b0005) 2016; 2 Vagropoulos (10.1016/j.apenergy.2020.115992_b0235) 2016; 134 Yang (10.1016/j.apenergy.2020.115992_b0380) 2017 Pflug (10.1016/j.apenergy.2020.115992_b0370) 2015; 62 10.1016/j.apenergy.2020.115992_b0605 Ghofrani (10.1016/j.apenergy.2020.115992_b0210) 2014; 5 Razali (10.1016/j.apenergy.2020.115992_b0330) 2010 Das (10.1016/j.apenergy.2020.115992_b0385) 2020; 190 Lucheroni (10.1016/j.apenergy.2020.115992_b0035) 2019; 239 Yu (10.1016/j.apenergy.2020.115992_b0510) 2015; 6 Ouyang (10.1016/j.apenergy.2020.115992_b0425) 2017; 144 Lin (10.1016/j.apenergy.2020.115992_b0045) 2017 Sklar (10.1016/j.apenergy.2020.115992_b0160) 1959; 8 Freitas (10.1016/j.apenergy.2020.115992_b0565) 2019; 172 Park (10.1016/j.apenergy.2020.115992_b0090) 2019; 13 Ponomareva (10.1016/j.apenergy.2020.115992_b0265) 2015; 240 Li (10.1016/j.apenergy.2020.115992_b0040) 2016; 10 Billinton (10.1016/j.apenergy.2020.115992_b0625) 2007; 22 Hoeltgebaum (10.1016/j.apenergy.2020.115992_b0170) 2018; 33 Swamy (10.1016/j.apenergy.2020.115992_b0145) 2012 Hyndman (10.1016/j.apenergy.2020.115992_b0440) 2006; 22 Ma (10.1016/j.apenergy.2020.115992_b0450) 2016; 4 Ehsan (10.1016/j.apenergy.2020.115992_b0280) 2019; 235 10.1016/j.apenergy.2020.115992_b0335 10.1016/j.apenergy.2020.115992_b0610 Xu (10.1016/j.apenergy.2020.115992_b0270) 2012; 236 Henrion (10.1016/j.apenergy.2020.115992_b0325) 2017; 4 Morales (10.1016/j.apenergy.2020.115992_b0220) 2010; 87 Gao (10.1016/j.apenergy.2020.115992_b0420) 2017; 2 Rakipour (10.1016/j.apenergy.2020.115992_b0115) 2019; 173 Sun (10.1016/j.apenergy.2020.115992_b0175) 2018; 228 Gao (10.1016/j.apenergy.2020.115992_b0200) 2014; 472 Wan (10.1016/j.apenergy.2020.115992_b0520) 2014; 29 10.1016/j.apenergy.2020.115992_b0070 Zhang (10.1016/j.apenergy.2020.115992_b0260) 2020; 114 Jamali (10.1016/j.apenergy.2020.115992_b0400) 2019; 11 Pappala (10.1016/j.apenergy.2020.115992_b0245) 2009; 24 Xue (10.1016/j.apenergy.2020.115992_b0010) 2014; 34 Prosper (10.1016/j.apenergy.2020.115992_b0415) 2019; 135 Wan (10.1016/j.apenergy.2020.115992_b0530) 2014; 29 Aquila (10.1016/j.apenergy.2020.115992_b0615) 2016; 137 Du (10.1016/j.apenergy.2020.115992_b0375) 2018; 33 Alahyari (10.1016/j.apenergy.2020.115992_b0140) 2019; 25 Zeynali (10.1016/j.apenergy.2020.115992_b0560) 2020; 39 10.1016/j.apenergy.2020.115992_b0500 |
| References_xml | – volume: 145 start-page: 871 year: 2018 end-page: 885 ident: b0570 article-title: An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources publication-title: Energy – reference: Dvorkin Y, Wang Y, Pandzic H, Kirschen D. Comparison of scenario reduction methods for the stochastic unit commitment. In: Pes General Meeting | Conference & Exposition. IEEE, 214;1–5. – volume: 228 start-page: 546 year: 2018 end-page: 555 ident: b0175 article-title: A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration publication-title: Appl Energy – volume: 242 start-page: 1396 year: 2019 end-page: 1406 ident: b0185 article-title: Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications publication-title: Appl Energy – volume: 2015 start-page: 1322 year: 2015 end-page: 1330 ident: b0015 article-title: Reviews on uncertainty analysis of wind power forecasting publication-title: Renew Sustain Energy Rev – volume: 144 start-page: 361 year: 2017 end-page: 373 ident: b0425 article-title: A combined multivariate model for wind power prediction publication-title: Energy Convers Manage – volume: 5 start-page: 56 year: 2019 end-page: 62 ident: b0285 article-title: Scenario-based planning of active distribution systems under uncertainties of renewable generation and electricity demand publication-title: CSEE J Power Energy Syst – volume: 104 start-page: 414 year: 2019 end-page: 422 ident: b0555 article-title: A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue publication-title: Int J Electr Power Energy Syst – volume: 22 year: 2007 ident: b0625 article-title: Reliability-Based Transmission Reinforcement Planning Associated With Large-Scale Wind Farms publication-title: IEEE Trans Power Syst – volume: 239 start-page: 1226 year: 2019 end-page: 1241 ident: b0035 article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models publication-title: Appl Energy – volume: 6 start-page: 2197 year: 2011 end-page: 2206 ident: b0485 article-title: Reserve Requirements for Wind Power Integration: A Scenario-Based Stochastic Programming Framework publication-title: IEEE Trans Power Syst – volume: 116 start-page: 128 year: 2016 end-page: 139 ident: b0345 article-title: Generation of realistic scenarios for multi-agent simulation of electricity markets publication-title: Energy – volume: 57 start-page: 2475 year: 2014 end-page: 2486 ident: b0135 article-title: Generating wind power time series based on its persistence and variation characteristics publication-title: Sci China Technol Sci – volume: 173 start-page: 384 year: 2019 end-page: 399 ident: b0115 article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response publication-title: Energy – volume: 39 year: 2020 ident: b0560 article-title: Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology publication-title: Sustain Energy Technol Assess – volume: 66 start-page: 8533 year: 2019 end-page: 8544 ident: b0105 article-title: Sequential Monte Carlo filter for state of charge estimation of lithium-ion batteries based on auto regressive exogenous model publication-title: IEEE Trans Ind Electron – volume: 87 start-page: 843 year: 2010 end-page: 855 ident: b0220 article-title: A methodology to generate statistically dependent wind speed scenarios publication-title: Appl Energy – volume: 27 start-page: 2306 year: 2012 end-page: 2313 ident: b0205 article-title: Probing the Intermittent Energy Resource Contributions From Generation Adequacy and Security Perspectives publication-title: IEEE Trans Power Syst – volume: 10 start-page: 1450 year: 2016 end-page: 1458 ident: b0040 article-title: Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms publication-title: IET Renew Power Gener – volume: 33 start-page: 2239 year: 2017 end-page: 2247 ident: b0110 article-title: Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function publication-title: IEEE Trans Power Syst – volume: 4 start-page: 363 year: 2017 end-page: 384 ident: b0325 article-title: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming publication-title: J Indus Manage Optim – volume: 6 start-page: 1 year: 2015 ident: b0510 article-title: Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 1858 year: 2017 end-page: 1868 ident: b0445 article-title: Scenario-based economic dispatch with uncertain demand response publication-title: IEEE Trans Smart Grid – reference: Wang X, Hu Z, Zhang M, Hu M. Two-stage stochastic optimization for unit commitment considering wind power based on scenario analysis. In: China International Conference on Electricity Distribution. IEEE, 2016. – volume: 7 start-page: 474 year: 2013 end-page: 482 ident: b0150 article-title: Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling publication-title: IET Gener Transm Distrib – volume: 236 start-page: 4561 year: 2012 end-page: 4579 ident: b0270 article-title: Scenario tree generation approaches using K-means and LP moment matching methods publication-title: J Comput Appl Math – volume: 134 start-page: 9 year: 2016 end-page: 18 ident: b0235 article-title: ANN-based scenario generation methodology for stochastic variables of electric power systems publication-title: Electr Power Syst Res – volume: 172 start-page: 22 year: 2019 end-page: 31 ident: b0565 article-title: Romero RA strategy for transmission network expansion planning considering multiple generation scenarios publication-title: Electr Power Syst Res – volume: 34 start-page: 5029 year: 2014 end-page: 5040 ident: b0010 article-title: A Review on Impacts of Wind Power Uncertainties on Power Systems publication-title: Proceedings of the CSEE – volume: 4 start-page: 294 year: 2013 end-page: 301 ident: b0155 article-title: Probabilistic Load Flow Method Based on Nataf Transformation and Latin Hypercube Sampling publication-title: IEEE Trans Sustain Energy – volume: 114 year: 2020 ident: b0260 article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network publication-title: Int J Electr Power Energy Syst – year: 2020 ident: b0250 article-title: A Class-Driven Approach Based on Long Short-Term Memory Networks for Electricity Price Scenario Generation and Reduction publication-title: IEEE Trans Power Syst – volume: 33 start-page: 4694 year: 2018 end-page: 4705 ident: b0375 article-title: Scenario Map Based Stochastic Unit Commitment publication-title: IEEE Trans Power Syst – volume: 2 start-page: 36 year: 2017 ident: b0420 article-title: Optimal operation modes of photovoltaic-battery energy storage system based power plants considering typical scenarios publication-title: Protection Control Modern Power Syst – volume: 24 start-page: 661 year: 2009 end-page: 667 ident: b0055 article-title: Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition publication-title: IEEE Trans Power Syst – volume: 239 start-page: 1294 year: 2019 end-page: 1307 ident: b0215 article-title: Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach publication-title: Appl Energy – volume: 53 start-page: 645 year: 2004 end-page: 651 ident: b0195 article-title: Finite sample properties of ARMA order selection publication-title: IEEE Trans Instrum Meas – volume: 112 start-page: 262 year: 2019 end-page: 271 ident: b0580 article-title: Impact of uncertainty and correlation on operation of micro-integrated energy system publication-title: Int J Electr Power Energy Syst – volume: 13 start-page: 1005 year: 2019 end-page: 1013 ident: b0090 article-title: Comparing scenario reduction methods for stochastic transmission planning publication-title: IET Gener Transm Distrib – volume: 30 start-page: 615 year: 2005 end-page: 631 ident: b0365 article-title: The Scenario Generation Algorithm for Multistage Stochastic Linear Programming publication-title: Mathem Oper Res – start-page: 84 year: 2016 end-page: 88 ident: b0495 article-title: A scenario probability based method to solve unit commitment of large scale energy storage system and thermal generation in high wind power penetration level system publication-title: Power and Energy Engineering Conference – volume: 135 year: 2019 ident: b0415 article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations publication-title: Renew Energy – year: 2010 ident: b0330 article-title: Backward reduction application for minimizing wind power scenarios in stochastic programming publication-title: Power Engineering and Optimization Conference (PEOCO), 4th International – volume: 24 year: 2009 ident: b0535 article-title: Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models publication-title: IEEE Trans Energy Convers – volume: 32 start-page: 400 year: 2017 end-page: 410 ident: b0020 article-title: Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model publication-title: IEEE Trans Power Syst – volume: 135 start-page: 153 year: 2017 end-page: 170 ident: b0595 article-title: Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric publication-title: Energy – volume: 190 year: 2020 ident: b0385 article-title: Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources publication-title: Energy – volume: 96 start-page: 12 year: 2012 end-page: 20 ident: b0430 article-title: Evaluating the quality of scenarios of short-term wind power generation publication-title: Appl Energy – volume: 24 start-page: 940 year: 2009 end-page: 950 ident: b0245 article-title: A stochastic model for the optimal operation of a wind-thermal power system publication-title: IEEE Trans Power Syst – volume: 11 start-page: 1210 year: 2019 end-page: 1219 ident: b0400 article-title: Self-scheduling approach to coordinating wind power producers with energy storage and demand response publication-title: IEEE Trans Sustain Energy – volume: 5 start-page: 33 year: 2017 ident: b0410 article-title: Research on Establishment of Quality Evaluation Framework of Short-Term Wind Power Scenarios publication-title: Power Syst Technol – volume: 19 start-page: 828 year: 2014 end-page: 835 ident: b0355 article-title: Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin publication-title: J Hydrol Eng – volume: 8 start-page: 1 year: 2016 ident: b0465 article-title: Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multi-wind Farms Generation publication-title: IEEE Trans Sustain Energy – volume: 75 start-page: 616 year: 2019 end-page: 632 ident: b0405 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl Soft Comput – volume: 26 start-page: 1367 year: 2011 end-page: 1379 ident: b0190 article-title: Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland publication-title: IEEE Trans Power Syst – volume: 31 start-page: 1657 year: 2016 end-page: 1658 ident: b0350 article-title: A Scenario Optimal Reduction Method for Wind Power Time Series publication-title: IEEE Trans Power Syst – volume: 27 start-page: 913 year: 2012 end-page: 921 ident: b0515 article-title: Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC publication-title: IEEE Trans Power Syst – reference: Sutiene K and Pranevicius H. Scenario Generation Employing copulas. Proceeding of the world congress on engineering. UK: London; 2007. – volume: 4 start-page: 894 year: 2013 end-page: 904 ident: b0360 article-title: Scenario Generation of Wind Power Based on Statistical Uncertainty and Variability publication-title: IEEE Trans Sustain Energy – volume: 44 start-page: 5162 year: 2019 end-page: 5170 ident: b0180 article-title: A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production publication-title: Int J Hydrogen Energy – volume: 22 start-page: 44 year: 2007 end-page: 51 ident: b0475 article-title: Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch publication-title: IEEE Trans Energy Convers – start-page: 1504 year: 2017 end-page: 1509 ident: b0380 article-title: Wind power probability interval prediction based on Bootstrap quantile regression method publication-title: Chinese Automation Congress (CAC) – volume: 181 year: 2020 ident: b0390 article-title: A scenario-based analytical method for probabilistic load flow analysis publication-title: Electr Power Syst Res – year: 2011 ident: b0340 article-title: Finding representative wind power scenarios and their probabilities for stochastic models publication-title: International Conference on Intelligent System Application to Power Systems – volume: 4 start-page: 8095 year: 2016 end-page: 8104 ident: b0450 article-title: Asymptotic mean and variance of Gini correlation under contaminated Gaussian model publication-title: IEEE Access – reference: Yu H, Rosehart B. Probabilistic power flow considering wind speed correlation of wind farms. In: 17th Power Systems Computation Conf. Stockholm, Sweden, 1–7 August; 2011. – volume: 22 start-page: 449 year: 2007 end-page: 458 ident: b0505 article-title: Risk-Constrained Bidding Strategy With Stochastic Unit Commitment publication-title: IEEE Trans Power Syst – volume: 23 start-page: 963 year: 2013 end-page: 999 ident: b0095 article-title: Generating moment matching scenarios using optimization techniques publication-title: SIAM J Optim – volume: 33 start-page: 3265 year: 2018 end-page: 3275 ident: b0255 article-title: Model-free renewable scenario generation using generative adversarial networks publication-title: IEEE Trans Power Syst – volume: 47 start-page: 351 year: 2013 end-page: 367 ident: b0460 article-title: Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties publication-title: Int J Electr Power Energy Syst – reference: Rocha LCS, Junior PR, Paiva AP, Oliveira PE, Aquila G, Balestrassi PP. A stochastic economic viability analysis of residential wind power generation in Brazil. Renew Sustain Energy Rev. 2018;90:412–9. – year: 2017 ident: b0030 article-title: Forecast-based scenario-tree generation method. Optimization publication-title: Online – reference: Li, J, Sun H, Wen J, Cheng S, Luo W, Ge w, et al. A Two-dimensional Optimal Technology for Constructing Wind Power Time Series Scenarios. Proceedings of the CSEE 2014;34(16):2544–551. – volume: 240 start-page: 678 year: 2015 end-page: 687 ident: b0265 article-title: An algorithm for moment-matching scenario generation with application to financial portfolio optimisation publication-title: Eur J Oper Res – volume: 9 start-page: 1298 year: 2017 end-page: 1306 ident: b0060 article-title: Generation of time-coupled wind power infeed scenarios using pair-copula construction publication-title: IEEE Trans Sustain Energy – volume: 27 start-page: 1788 year: 2012 end-page: 1796 ident: b0080 article-title: Probabilistic wind power forecasting using radial basis function neural networks publication-title: IEEE Trans Power Syst – volume: 221 start-page: 348 year: 2018 end-page: 357 ident: b0130 article-title: Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations publication-title: Appl Energy – volume: 5 start-page: 2306 year: 2014 end-page: 2313 ident: b0210 article-title: Smart Scheduling and Cost-Benefit Analysis of Grid-Enabled Electric Vehicles for Wind Power Integration publication-title: IEEE Trans Smart Grid – volume: 42 start-page: 374 year: 2014 end-page: 377 ident: b0290 article-title: Multi-stage scenario generation by the combined moment matching and scenario reduction method publication-title: Oper Res Lett – reference: Boone A. Simulation of short-term wind speed forecast errors using a multi-variate ARMA (1, 1) time-series model. Master thesis, KTH Roy. Inst. Technol, Stockholm, Sweden, 2005. – volume: 2 start-page: 11 year: 2016 end-page: 18 ident: b0005 article-title: A Scenario-Based Robust Transmission Network Expansion Planning Method for Consideration of Wind Power Uncertainties publication-title: CSEE J Power Energy Syst – volume: 34 start-page: 2685 year: 2019 end-page: 2695 ident: b0455 article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios publication-title: IEEE Trans Power Syst – start-page: 1 year: 2017 ident: b0540 article-title: Probabilistic wind power ramp forecasting based on a scenario generation method publication-title: IEEE Power & Energy Society General Meeting – volume: 6 start-page: 113 year: 2014 end-page: 121 ident: b0065 article-title: Spatiotemporal modeling of wind generation for optimal energy storage sizing publication-title: IEEE Trans Sustain Energy – volume: 276 year: 2020 ident: b0590 article-title: Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy publication-title: Appl Energy – volume: 28 start-page: 4877 year: 2013 end-page: 4878 ident: b0525 article-title: Direct Interval Forecasting of Wind Power publication-title: IEEE Trans Power Syst – volume: 6 start-page: 422 year: 2015 end-page: 433 ident: b0240 article-title: Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method publication-title: IEEE Trans Sustain Energy – volume: 9 start-page: 273 year: 2018 end-page: 283 ident: b0585 article-title: Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System publication-title: IEEE Trans Sustain Energy – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b0440 article-title: Another look at measures of forecast accuracy publication-title: Int J Forecast – volume: 8 start-page: 892 year: 2020 ident: b0600 article-title: Research on the Optimal Configuration of Regional Integrated Energy System Based on Production Simulation publication-title: Processes – volume: 24 start-page: 169 year: 2003 end-page: 185 ident: b0275 article-title: A heuristic for moment-matching scenario generation publication-title: Comput Optim Appl – volume: 21 start-page: 1396 year: 2006 end-page: 1404 ident: b0075 article-title: Minimization of imbalance cost trading wind power on the short-term power market publication-title: IEEE Trans Power Syst – year: 2012 ident: b0145 article-title: Sampling-based approximation algorithms for multi-stage stochastic optimization publication-title: IEEE Symposium on Foundations of Computer Science – volume: 62 start-page: 641 year: 2015 end-page: 668 ident: b0370 article-title: Dynamic generation of scenario trees publication-title: Comput Optim Appl – volume: 13 start-page: 657 year: 2019 end-page: 672 ident: b0120 article-title: Partial sample average approximation method for chance constrained problems publication-title: Optim Lett – reference: Chen C, Sun H, Shen X, Guo Y, Guo Q, Xia, Tian. Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model. Appl Energy 2019;252:113372. – volume: 26 start-page: 2066 year: 2011 end-page: 2073 ident: b0620 article-title: Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources publication-title: IEEE Trans Power Syst – volume: 472 start-page: 953 year: 2014 end-page: 957 ident: b0200 article-title: A Wind Farm Capacity Credibility Calculation Method Based on Parabola publication-title: Appl Mech Mater – volume: 12 year: 2020 ident: b0300 article-title: A clustering-based scenario generation framework for power market simulation with wind integration publication-title: J Renew Sustain Energy – volume: 31 start-page: 825 year: 2016 end-page: 826 ident: b0470 article-title: An Unambiguous Distance-Based MIQP Model to Solve Economic Dispatch Problems with Disjoint Operating Zones publication-title: IEEE Trans Power Syst – volume: 25 start-page: 1845 year: 2010 end-page: 1856 ident: b0435 article-title: Conditional prediction intervals of wind power generation publication-title: IEEE Trans Power Syst – start-page: 90 year: 2017 end-page: 95 ident: b0045 article-title: Scenario generation and reduction methods for power flow examination of transmission expansion planning publication-title: 2017 IEEE 7th International Conference on Power and Energy Systems (ICPES) – volume: 101 start-page: 475 year: 2013 end-page: 482 ident: b0305 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl Energy – volume: 6 start-page: 62193 year: 2018 end-page: 62203 ident: b0085 article-title: Scenario generation for wind power using improved generative adversarial networks publication-title: IEEE Access – volume: 25 start-page: 667 year: 2010 end-page: 676 ident: b0225 article-title: ARIMA-Based Time Series Model of Stochastic Wind Power Generation publication-title: IEEE Trans Power Syst – volume: 162 start-page: 21 year: 2016 end-page: 30 ident: b0230 article-title: Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants publication-title: Appl Energy – reference: Guan L, Wen B, Zhan X, Zhou B, Zhao W. Scenario Generation of Wind Power Based on Longitudinal-Horizontal Clustering Strategy. In: 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 934–9; 2018. – volume: 14 start-page: 1035 year: 2019 end-page: 1043 ident: b0545 article-title: Transmission expansion and reactive power planning considering wind energy investment using a linearized AC model publication-title: J Electr Eng Technol – volume: 33 start-page: 7011 year: 2018 end-page: 7019 ident: b0170 article-title: Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters publication-title: IEEE Trans Power Syst – volume: 25 year: 2019 ident: b0140 article-title: A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties publication-title: J Storage Mater – volume: 193 year: 2020 ident: b0395 article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment publication-title: Energy – volume: 23 start-page: 234 year: 2008 end-page: 240 ident: b0125 article-title: MCMC for Wind Power Simulation publication-title: IEEE Trans Energy Convers – volume: 235 start-page: 1277 year: 2019 end-page: 1288 ident: b0280 article-title: Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand publication-title: Appl Energy – volume: 5 start-page: 1514 year: 2014 end-page: 1522 ident: b0550 article-title: A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids With High PV Penetration publication-title: IEEE Trans Smart Grid – volume: 29 start-page: 1166 year: 2014 end-page: 1174 ident: b0530 article-title: Optimal Prediction Intervals of Wind Power Generation publication-title: IEEE Trans Power Syst – volume: 31 start-page: 921 year: 2014 end-page: 934 ident: b0100 article-title: Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications publication-title: Renew Sustain Energy Rev – reference: Li J, L F. Copula-Based Monte Carlo Scenarios Generation Method for STOPF Problem. Electricity, 2014(z1):41–50. – volume: 36 start-page: 2278 year: 2011 end-page: 2286 ident: b0050 article-title: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables publication-title: Renew Energy – reference: Pranevicius H, Sutiene K. Scenario tree generation by clustering the simulated data paths. 2007. – volume: 23 start-page: 1319 year: 2008 end-page: 1327 ident: b0480 article-title: Security-Constrained Unit Commitment With Volatile Wind Power Generation publication-title: IEEE Trans Power Syst – volume: 3 start-page: 14 year: 2003 end-page: 2003 ident: b0025 article-title: Evaluation of Scenario-Generation Methods for Stochastic Programming publication-title: Pacific J Optim – volume: 8 start-page: 229 year: 1959 end-page: 231 ident: b0160 article-title: Fonctions de repartition à n dimensions et leurs marges publication-title: Publication de l'Institut de Statistique de l'Université de Paris – volume: 137 start-page: 1100 year: 2016 end-page: 1108 ident: b0615 article-title: Wind power generation: An impact analysis of incentive strategies for cleaner energy provision in Brazil publication-title: J Cleaner Prod – reference: Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problem. In: Power Tech Conference Proceedings, 2003 IEEE Bologna. IEEE; 2004. – volume: 29 start-page: 1033 year: 2014 end-page: 1044 ident: b0520 article-title: Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine publication-title: IEEE Trans Power Syst – volume: 75 start-page: 616 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0405 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.042 – volume: 96 start-page: 12 year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0430 article-title: Evaluating the quality of scenarios of short-term wind power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.11.004 – volume: 29 start-page: 1033 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0520 article-title: Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2287871 – year: 2011 ident: 10.1016/j.apenergy.2020.115992_b0340 article-title: Finding representative wind power scenarios and their probabilities for stochastic models – ident: 10.1016/j.apenergy.2020.115992_b0310 doi: 10.1109/ISGT-Asia.2018.8467774 – year: 2010 ident: 10.1016/j.apenergy.2020.115992_b0330 article-title: Backward reduction application for minimizing wind power scenarios in stochastic programming – volume: 242 start-page: 1396 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0185 article-title: Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.112 – ident: 10.1016/j.apenergy.2020.115992_b0315 doi: 10.7148/2007-0203 – volume: 22 start-page: 449 issue: 1 year: 2007 ident: 10.1016/j.apenergy.2020.115992_b0505 article-title: Risk-Constrained Bidding Strategy With Stochastic Unit Commitment publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.887894 – start-page: 90 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0045 article-title: Scenario generation and reduction methods for power flow examination of transmission expansion planning – volume: 7 start-page: 474 issue: 5 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0150 article-title: Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2012.0405 – volume: 2 start-page: 36 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0420 article-title: Optimal operation modes of photovoltaic-battery energy storage system based power plants considering typical scenarios publication-title: Protection Control Modern Power Syst doi: 10.1186/s41601-017-0066-9 – volume: 24 start-page: 661 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2020.115992_b0055 article-title: Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2016589 – volume: 173 start-page: 384 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0115 article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response publication-title: Energy doi: 10.1016/j.energy.2019.02.021 – volume: 5 start-page: 2306 issue: 5 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0210 article-title: Smart Scheduling and Cost-Benefit Analysis of Grid-Enabled Electric Vehicles for Wind Power Integration publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2328976 – ident: 10.1016/j.apenergy.2020.115992_b0320 – start-page: 1504 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0380 article-title: Wind power probability interval prediction based on Bootstrap quantile regression method publication-title: Chinese Automation Congress (CAC) – volume: 3 start-page: 14 issue: 2 year: 2003 ident: 10.1016/j.apenergy.2020.115992_b0025 article-title: Evaluation of Scenario-Generation Methods for Stochastic Programming publication-title: Pacific J Optim – volume: 240 start-page: 678 issue: 3 year: 2015 ident: 10.1016/j.apenergy.2020.115992_b0265 article-title: An algorithm for moment-matching scenario generation with application to financial portfolio optimisation publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.07.049 – ident: 10.1016/j.apenergy.2020.115992_b0335 – volume: 25 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0140 article-title: A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties publication-title: J Storage Mater – volume: 28 start-page: 4877 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0525 article-title: Direct Interval Forecasting of Wind Power publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2258824 – volume: 144 start-page: 361 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0425 article-title: A combined multivariate model for wind power prediction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.04.077 – ident: 10.1016/j.apenergy.2020.115992_b0295 – volume: 10 start-page: 1858 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0445 article-title: Scenario-based economic dispatch with uncertain demand response publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2778688 – volume: 24 issue: 3 year: 2009 ident: 10.1016/j.apenergy.2020.115992_b0535 article-title: Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2009.2025431 – start-page: 84 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0495 article-title: A scenario probability based method to solve unit commitment of large scale energy storage system and thermal generation in high wind power penetration level system – volume: 31 start-page: 825 issue: 1 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0470 article-title: An Unambiguous Distance-Based MIQP Model to Solve Economic Dispatch Problems with Disjoint Operating Zones publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2394317 – volume: 6 start-page: 1 issue: 6 year: 2015 ident: 10.1016/j.apenergy.2020.115992_b0510 article-title: Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2430851 – volume: 39 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0560 article-title: Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology publication-title: Sustain Energy Technol Assess – volume: 172 start-page: 22 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0565 article-title: Romero RA strategy for transmission network expansion planning considering multiple generation scenarios publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.02.018 – volume: 66 start-page: 8533 issue: 11 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0105 article-title: Sequential Monte Carlo filter for state of charge estimation of lithium-ion batteries based on auto regressive exogenous model publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2890499 – volume: 8 start-page: 892 issue: 8 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0600 article-title: Research on the Optimal Configuration of Regional Integrated Energy System Based on Production Simulation publication-title: Processes doi: 10.3390/pr8080892 – volume: 276 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0590 article-title: Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115395 – volume: 10 start-page: 1450 issue: 9 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0040 article-title: Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2015.0568 – volume: 26 start-page: 2066 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2020.115992_b0620 article-title: Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2113380 – volume: 26 start-page: 1367 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2020.115992_b0190 article-title: Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2070848 – volume: 31 start-page: 1657 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0350 article-title: A Scenario Optimal Reduction Method for Wind Power Time Series publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2412687 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0465 article-title: Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multi-wind Farms Generation publication-title: IEEE Trans Sustain Energy – volume: 24 start-page: 940 issue: 2 year: 2009 ident: 10.1016/j.apenergy.2020.115992_b0245 article-title: A stochastic model for the optimal operation of a wind-thermal power system publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2016504 – volume: 6 start-page: 2197 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2020.115992_b0485 article-title: Reserve Requirements for Wind Power Integration: A Scenario-Based Stochastic Programming Framework publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2121095 – volume: 4 start-page: 294 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0155 article-title: Probabilistic Load Flow Method Based on Nataf Transformation and Latin Hypercube Sampling publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2012.2222680 – volume: 137 start-page: 1100 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0615 article-title: Wind power generation: An impact analysis of incentive strategies for cleaner energy provision in Brazil publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2016.07.207 – volume: 33 start-page: 7011 issue: 6 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0170 article-title: Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2838050 – ident: 10.1016/j.apenergy.2020.115992_b0500 doi: 10.1109/CICED.2016.7576300 – volume: 239 start-page: 1226 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0035 article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.015 – volume: 472 start-page: 953 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0200 article-title: A Wind Farm Capacity Credibility Calculation Method Based on Parabola publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.472.953 – volume: 116 start-page: 128 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0345 article-title: Generation of realistic scenarios for multi-agent simulation of electricity markets publication-title: Energy doi: 10.1016/j.energy.2016.09.096 – volume: 25 start-page: 667 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2020.115992_b0225 article-title: ARIMA-Based Time Series Model of Stochastic Wind Power Generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2033277 – volume: 134 start-page: 9 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0235 article-title: ANN-based scenario generation methodology for stochastic variables of electric power systems publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2015.12.020 – volume: 4 start-page: 363 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0325 article-title: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming publication-title: J Indus Manage Optim doi: 10.3934/jimo.2008.4.363 – volume: 2 start-page: 11 issue: 1 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0005 article-title: A Scenario-Based Robust Transmission Network Expansion Planning Method for Consideration of Wind Power Uncertainties publication-title: CSEE J Power Energy Syst doi: 10.17775/CSEEJPES.2016.00004 – volume: 31 start-page: 921 issue: Complete year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0100 article-title: Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.12.034 – volume: 6 start-page: 113 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0065 article-title: Spatiotemporal modeling of wind generation for optimal energy storage sizing publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2014.2360702 – volume: 2015 start-page: 1322 issue: 52 year: 2015 ident: 10.1016/j.apenergy.2020.115992_b0015 article-title: Reviews on uncertainty analysis of wind power forecasting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.197 – volume: 112 start-page: 262 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0580 article-title: Impact of uncertainty and correlation on operation of micro-integrated energy system publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.03.066 – volume: 4 start-page: 894 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0360 article-title: Scenario Generation of Wind Power Based on Statistical Uncertainty and Variability publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2013.2256807 – volume: 27 start-page: 913 issue: 2 year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0515 article-title: Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2164947 – year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0145 article-title: Sampling-based approximation algorithms for multi-stage stochastic optimization – volume: 42 start-page: 374 issue: 5 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0290 article-title: Multi-stage scenario generation by the combined moment matching and scenario reduction method publication-title: Oper Res Lett doi: 10.1016/j.orl.2014.06.006 – volume: 236 start-page: 4561 issue: 17 year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0270 article-title: Scenario tree generation approaches using K-means and LP moment matching methods publication-title: J Comput Appl Math doi: 10.1016/j.cam.2012.05.020 – volume: 13 start-page: 1005 issue: 7 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0090 article-title: Comparing scenario reduction methods for stochastic transmission planning publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2018.6362 – volume: 23 start-page: 234 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2020.115992_b0125 article-title: MCMC for Wind Power Simulation publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2007.914174 – volume: 57 start-page: 2475 issue: 12 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0135 article-title: Generating wind power time series based on its persistence and variation characteristics publication-title: Sci China Technol Sci doi: 10.1007/s11431-014-5720-0 – volume: 33 start-page: 4694 issue: 5 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0375 article-title: Scenario Map Based Stochastic Unit Commitment publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2799954 – volume: 33 start-page: 2239 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0110 article-title: Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2737580 – volume: 29 start-page: 1166 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0530 article-title: Optimal Prediction Intervals of Wind Power Generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2288100 – volume: 6 start-page: 62193 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0085 article-title: Scenario generation for wind power using improved generative adversarial networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2875936 – volume: 33 start-page: 3265 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0255 article-title: Model-free renewable scenario generation using generative adversarial networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2794541 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0300 article-title: A clustering-based scenario generation framework for power market simulation with wind integration publication-title: J Renew Sustain Energy doi: 10.1063/5.0006480 – volume: 8 start-page: 229 year: 1959 ident: 10.1016/j.apenergy.2020.115992_b0160 article-title: Fonctions de repartition à n dimensions et leurs marges publication-title: Publication de l'Institut de Statistique de l'Université de Paris – volume: 34 start-page: 2685 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0455 article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2891227 – volume: 9 start-page: 1298 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0060 article-title: Generation of time-coupled wind power infeed scenarios using pair-copula construction publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2782089 – volume: 23 start-page: 1319 issue: 3 year: 2008 ident: 10.1016/j.apenergy.2020.115992_b0480 article-title: Security-Constrained Unit Commitment With Volatile Wind Power Generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.926719 – volume: 221 start-page: 348 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0130 article-title: Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.082 – volume: 114 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0260 article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105388 – volume: 36 start-page: 2278 issue: 8 year: 2011 ident: 10.1016/j.apenergy.2020.115992_b0050 article-title: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables publication-title: Renew Energy doi: 10.1016/j.renene.2011.01.015 – year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0250 article-title: A Class-Driven Approach Based on Long Short-Term Memory Networks for Electricity Price Scenario Generation and Reduction publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2020.2965922 – ident: 10.1016/j.apenergy.2020.115992_b0610 doi: 10.1016/j.rser.2018.03.078 – volume: 104 start-page: 414 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0555 article-title: A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.07.020 – volume: 228 start-page: 546 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0175 article-title: A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.095 – volume: 235 start-page: 1277 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0280 article-title: Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.11.058 – volume: 13 start-page: 657 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0120 article-title: Partial sample average approximation method for chance constrained problems publication-title: Optim Lett doi: 10.1007/s11590-018-1300-8 – volume: 4 start-page: 8095 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0450 article-title: Asymptotic mean and variance of Gini correlation under contaminated Gaussian model publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2622358 – volume: 19 start-page: 828 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0355 article-title: Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000795 – volume: 44 start-page: 5162 issue: 11 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0180 article-title: A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.09.179 – volume: 162 start-page: 21 year: 2016 ident: 10.1016/j.apenergy.2020.115992_b0230 article-title: Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.052 – volume: 53 start-page: 645 issue: 3 year: 2004 ident: 10.1016/j.apenergy.2020.115992_b0195 article-title: Finite sample properties of ARMA order selection publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2004.827058 – volume: 6 start-page: 422 issue: 2 year: 2015 ident: 10.1016/j.apenergy.2020.115992_b0240 article-title: Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2014.2386870 – volume: 11 start-page: 1210 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0400 article-title: Self-scheduling approach to coordinating wind power producers with energy storage and demand response publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2920884 – volume: 25 start-page: 1845 issue: 4 year: 2010 ident: 10.1016/j.apenergy.2020.115992_b0435 article-title: Conditional prediction intervals of wind power generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2045774 – year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0030 article-title: Forecast-based scenario-tree generation method. Optimization publication-title: Online – ident: 10.1016/j.apenergy.2020.115992_b0165 – volume: 101 start-page: 475 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0305 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.06.002 – volume: 14 start-page: 1035 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0545 article-title: Transmission expansion and reactive power planning considering wind energy investment using a linearized AC model publication-title: J Electr Eng Technol doi: 10.1007/s42835-019-00085-1 – volume: 27 start-page: 2306 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0205 article-title: Probing the Intermittent Energy Resource Contributions From Generation Adequacy and Security Perspectives publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2204281 – volume: 5 start-page: 33 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0410 article-title: Research on Establishment of Quality Evaluation Framework of Short-Term Wind Power Scenarios publication-title: Power Syst Technol – volume: 34 start-page: 5029 issue: 29 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0010 article-title: A Review on Impacts of Wind Power Uncertainties on Power Systems publication-title: Proceedings of the CSEE – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.apenergy.2020.115992_b0440 article-title: Another look at measures of forecast accuracy publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2006.03.001 – volume: 47 start-page: 351 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0460 article-title: Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.10.069 – volume: 21 start-page: 1396 issue: 3 year: 2006 ident: 10.1016/j.apenergy.2020.115992_b0075 article-title: Minimization of imbalance cost trading wind power on the short-term power market publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.879276 – volume: 23 start-page: 963 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2020.115992_b0095 article-title: Generating moment matching scenarios using optimization techniques publication-title: SIAM J Optim doi: 10.1137/110858082 – ident: 10.1016/j.apenergy.2020.115992_b0575 doi: 10.1016/j.apenergy.2019.113372 – volume: 5 start-page: 56 issue: 1 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0285 article-title: Scenario-based planning of active distribution systems under uncertainties of renewable generation and electricity demand publication-title: CSEE J Power Energy Syst – volume: 135 start-page: 153 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0595 article-title: Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric publication-title: Energy doi: 10.1016/j.energy.2017.06.113 – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0540 article-title: Probabilistic wind power ramp forecasting based on a scenario generation method – volume: 27 start-page: 1788 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2020.115992_b0080 article-title: Probabilistic wind power forecasting using radial basis function neural networks publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2012.2187803 – volume: 30 start-page: 615 issue: 3 year: 2005 ident: 10.1016/j.apenergy.2020.115992_b0365 article-title: The Scenario Generation Algorithm for Multistage Stochastic Linear Programming publication-title: Mathem Oper Res doi: 10.1287/moor.1050.0146 – volume: 135 issue: 674–686 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0415 article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations publication-title: Renew Energy – ident: 10.1016/j.apenergy.2020.115992_b0070 – volume: 87 start-page: 843 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2020.115992_b0220 article-title: A methodology to generate statistically dependent wind speed scenarios publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.09.022 – volume: 24 start-page: 169 issue: 2–3 year: 2003 ident: 10.1016/j.apenergy.2020.115992_b0275 article-title: A heuristic for moment-matching scenario generation publication-title: Comput Optim Appl doi: 10.1023/A:1021853807313 – volume: 9 start-page: 273 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0585 article-title: Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2728098 – volume: 32 start-page: 400 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2020.115992_b0020 article-title: Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2016.2562718 – volume: 193 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0395 article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment publication-title: Energy doi: 10.1016/j.energy.2019.116657 – volume: 22 start-page: 44 issue: 1 year: 2007 ident: 10.1016/j.apenergy.2020.115992_b0475 article-title: Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2006.889616 – volume: 239 start-page: 1294 year: 2019 ident: 10.1016/j.apenergy.2020.115992_b0215 article-title: Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.238 – volume: 62 start-page: 641 issue: 3 year: 2015 ident: 10.1016/j.apenergy.2020.115992_b0370 article-title: Dynamic generation of scenario trees publication-title: Comput Optim Appl doi: 10.1007/s10589-015-9758-0 – volume: 190 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0385 article-title: Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources publication-title: Energy doi: 10.1016/j.energy.2019.116441 – volume: 22 issue: 1 year: 2007 ident: 10.1016/j.apenergy.2020.115992_b0625 article-title: Reliability-Based Transmission Reinforcement Planning Associated With Large-Scale Wind Farms publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.889126 – volume: 145 start-page: 871 year: 2018 ident: 10.1016/j.apenergy.2020.115992_b0570 article-title: An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources publication-title: Energy doi: 10.1016/j.energy.2017.12.154 – ident: 10.1016/j.apenergy.2020.115992_b0490 doi: 10.1109/PESGM.2014.6939042 – volume: 5 start-page: 1514 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2020.115992_b0550 article-title: A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids With High PV Penetration publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2303580 – volume: 181 year: 2020 ident: 10.1016/j.apenergy.2020.115992_b0390 article-title: A scenario-based analytical method for probabilistic load flow analysis publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.106193 – ident: 10.1016/j.apenergy.2020.115992_b0605 |
| SSID | ssj0002120 |
| Score | 2.6639419 |
| Snippet | •The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is... Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115992 |
| SubjectTerms | application methods Application strategy energy methodology power generation Scenario generation stochastic processes Stochastic programming Uncertainty Wind power |
| Title | Review of wind power scenario generation methods for optimal operation of renewable energy systems |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.115992 https://www.proquest.com/docview/2636422449 |
| Volume | 280 |
| WOSCitedRecordID | wos000594134700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHBIWKsslI3KoMHjubjwUNggpVCBVpxMWKl2haQTJqZmh_Ps_rhLKUHrhEo0zsOPO-eUv83vcQeqk1GIaWtFlbsTbLp4plMtcqKyDasrWNpTGOZ_ZDdXRUz-f8Y6guGVw7garr6osLvvyvooZzIGxbOnsNcadJ4QR8BqHDEcQOx38S_KdUjHJ-YkkAbBu0fcvZBFFxbzsmmyB03zza8THs96A5vlm_dBm_hfGW7fLclVYZXyE4jOjNI3Nt8GL9FSm9x-UIHIJZXKyT3v-y6Nf-dDMsTLCYLrPAq77X_fgVBHXpHL4IM5ZekTKzodhYrVLfoSkoRnA8uW9694vO9q8PTifN0i91Ym8x2Qz4mST7kvFKKYUxW-1UxHmEnUf4eW6ibVoVHDT39sH72fwwGWsamDvjE4yKyH-_oj_5L5csuXNPju-huyGuwAceD_fRDdPtoDsjtskdtDvbFDXCpUGrDw-Q9JDBfYstZLCDDI6QwRvI4AAZDJDBATI4QcaOT5DB_plwgMxD9Pnt7PjNuyz03sgUy4tVVjc1Ac9Zy4q3eVmo3GhJDJ3a3c-8paTUitF6qmz7Al0aRTQvJS8IkYVqmCrZLtrq-s48Qpg0uWIQtTbU2F30WhqmIUytlKwaSZncQ0X8RYUKxPS2P8pX8XeZ7qFXadzSU7NcOYJHgYngYHrHUQAWrxz7IkpYgAa222pNZ_r1IGjJIIgHN5k_vvaKnqDbmz_UU7S1OlubZ-iW-r46Gc6eB7D-AKTgr5E |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+wind+power+scenario+generation+methods+for+optimal+operation+of+renewable+energy+systems&rft.jtitle=Applied+energy&rft.au=Li%2C+Jinghua&rft.au=Zhou%2C+Jiasheng&rft.au=Chen%2C+Bo&rft.date=2020-12-15&rft.issn=0306-2619&rft.volume=280&rft.spage=115992&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_115992 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |