Review of wind power scenario generation methods for optimal operation of renewable energy systems

•The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 280; S. 115992
Hauptverfasser: Li, Jinghua, Zhou, Jiasheng, Chen, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.12.2020
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation methods are discussed. Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems.
AbstractList Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems.
•The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is established.•The applications of scenario generation methods are summarized and discussed.•Limitations and challenges of scenario generation methods are discussed. Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To comprehensively understand scenario generation and optimize solutions for uncertainties, the various methods and applications of scenario generation are classified and discussed in this work. First, the basic concepts are presented and scenario generation methods for addressing stochastic programming problems are discussed. Second, three categories of scenario generation methods are briefly introduced, along with their derived methods, advantages, and disadvantages. Third, an evaluation framework for these methods is established. Subsequently, applications of the scenario generation methods in power systems are discussed to identify the properties of these methods. Further, a comparative analysis and discussion are presented to show the suitability of each scenario generation method and to help choose the appropriate methods for different practical situations. Finally, the current limitations and future works with regard to scenario generation for stochastic programming in wind-power-integrated systems are highlighted and discussed. The results of this study are expected to provide references for applying scenario generation methods to the optimal operation of renewable energy systems.
ArticleNumber 115992
Author Chen, Bo
Zhou, Jiasheng
Li, Jinghua
Author_xml – sequence: 1
  givenname: Jinghua
  surname: Li
  fullname: Li, Jinghua
  email: happyjinghua@163.com
– sequence: 2
  givenname: Jiasheng
  surname: Zhou
  fullname: Zhou, Jiasheng
– sequence: 3
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
BookMark eNqFkE1LxDAQhoMouK7-BcnRS9dJ2sYGPCjiFwiC6DmkyVSzdJuaRJf992atXrx4Gpi8z0vmOSC7gx-QkGMGCwZMnC4XesQBw-tmwYHnJaul5DtkxpozXkjGml0ygxJEwQWT--QgxiUAcMZhRton_HS4pr6jazdYOvo1BhoNDjo4T1-3xTo5P9AVpjdvI-18oH5MbqX7PH9fMx9ydq3bHun0Gxo3MeEqHpK9TvcRj37mnLzcXD9f3RUPj7f3V5cPhSmrOhWNbkByadsz2VWiNhXaFpAzVgJUHQdhTckbZkRTN1agAStFK2uAtja6NKKck5Opdwz-_QNjUiuXD-l7PaD_iIqLUlScV5XMUTFFTfAxBuzUGPJBYaMYqK1UtVS_UtVWqpqkZvD8D2hc-jaQgnb9__jFhGP2kL0HFY3DwaB1AU1S1rv_Kr4AHuGbWg
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3224744
crossref_primary_10_1016_j_psep_2024_12_102
crossref_primary_10_3390_electronics14112150
crossref_primary_10_1016_j_energy_2025_135985
crossref_primary_10_1016_j_epsr_2025_111779
crossref_primary_10_1016_j_ijepes_2022_108832
crossref_primary_10_1016_j_ijepes_2024_109889
crossref_primary_10_1109_ACCESS_2021_3087728
crossref_primary_10_1016_j_est_2025_115556
crossref_primary_10_1088_1742_6596_2661_1_012020
crossref_primary_10_1007_s10957_024_02518_y
crossref_primary_10_1016_j_renene_2025_122781
crossref_primary_10_1016_j_enbuild_2024_114600
crossref_primary_10_1016_j_apenergy_2022_119400
crossref_primary_10_1088_1742_6596_2754_1_012003
crossref_primary_10_1109_OAJPE_2025_3575734
crossref_primary_10_1016_j_renene_2025_124431
crossref_primary_10_1049_rpg2_12414
crossref_primary_10_1109_TSG_2025_3573166
crossref_primary_10_3390_en18081917
crossref_primary_10_1109_TPWRS_2023_3305470
crossref_primary_10_1016_j_apenergy_2024_123182
crossref_primary_10_1016_j_renene_2023_05_004
crossref_primary_10_1016_j_ijepes_2025_110492
crossref_primary_10_1016_j_apenergy_2024_124793
crossref_primary_10_1016_j_segan_2023_100999
crossref_primary_10_1016_j_apenergy_2024_123620
crossref_primary_10_3390_en15072486
crossref_primary_10_3390_en16155600
crossref_primary_10_1109_JETCAS_2023_3291145
crossref_primary_10_1016_j_jclepro_2022_130768
crossref_primary_10_1016_j_rser_2021_111506
crossref_primary_10_3390_su152316536
crossref_primary_10_3390_electronics13112100
crossref_primary_10_1016_j_apenergy_2021_118387
crossref_primary_10_1088_1742_6596_2896_1_012032
crossref_primary_10_3390_app13169305
crossref_primary_10_1109_TPWRS_2023_3298004
crossref_primary_10_1016_j_enconman_2023_117066
crossref_primary_10_1109_TSG_2021_3111610
crossref_primary_10_1016_j_ins_2022_11_027
crossref_primary_10_1016_j_renene_2021_12_110
crossref_primary_10_3389_fenrg_2024_1425202
crossref_primary_10_3390_electronics13010211
crossref_primary_10_1016_j_epsr_2024_111233
crossref_primary_10_1016_j_apenergy_2022_120094
crossref_primary_10_1063_5_0147592
crossref_primary_10_3390_su162410936
crossref_primary_10_1049_stg2_12119
crossref_primary_10_3389_fenrg_2024_1427582
crossref_primary_10_1016_j_energy_2025_138049
crossref_primary_10_1016_j_renene_2024_121624
crossref_primary_10_3390_en16052435
crossref_primary_10_1016_j_enconman_2021_114790
crossref_primary_10_1186_s40854_023_00564_5
crossref_primary_10_3390_en18030503
crossref_primary_10_3390_pr10122649
crossref_primary_10_1016_j_oceaneng_2023_115578
crossref_primary_10_1109_ACCESS_2024_3429405
crossref_primary_10_1166_jno_2025_3704
crossref_primary_10_3390_en17215293
crossref_primary_10_1016_j_ijepes_2023_109294
crossref_primary_10_1016_j_ijepes_2024_110175
crossref_primary_10_1016_j_apenergy_2025_125369
crossref_primary_10_1016_j_renene_2023_01_036
crossref_primary_10_1109_TSG_2024_3360874
crossref_primary_10_3390_en18143745
crossref_primary_10_1016_j_compchemeng_2024_108646
crossref_primary_10_1016_j_epsr_2023_109398
crossref_primary_10_1016_j_cherd_2022_08_014
crossref_primary_10_3390_en18061462
crossref_primary_10_1016_j_eswa_2024_123774
crossref_primary_10_1016_j_compeleceng_2024_109715
crossref_primary_10_1016_j_energy_2023_126945
crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_3390_en16073114
crossref_primary_10_1109_TPWRS_2022_3170992
crossref_primary_10_3390_en15072698
crossref_primary_10_1016_j_epsr_2023_109268
crossref_primary_10_1016_j_apenergy_2024_122905
crossref_primary_10_1016_j_energy_2025_136525
crossref_primary_10_1016_j_seta_2022_102230
crossref_primary_10_1016_j_applthermaleng_2021_117511
crossref_primary_10_1109_TPWRS_2023_3277698
crossref_primary_10_1016_j_segan_2024_101509
crossref_primary_10_1007_s40866_023_00175_0
crossref_primary_10_1016_j_jclepro_2021_129833
crossref_primary_10_1016_j_rser_2023_113963
crossref_primary_10_1109_JSYST_2021_3110860
crossref_primary_10_1109_ACCESS_2021_3097985
crossref_primary_10_3390_en15238830
crossref_primary_10_1007_s12652_020_02784_4
crossref_primary_10_3390_en16041636
crossref_primary_10_1002_wene_70004
crossref_primary_10_3390_pr13092897
crossref_primary_10_1016_j_apenergy_2022_118813
crossref_primary_10_1016_j_eswa_2025_126787
crossref_primary_10_1016_j_est_2022_104311
crossref_primary_10_1007_s41660_021_00196_1
crossref_primary_10_1049_gtd2_70089
crossref_primary_10_1051_e3sconf_202449102043
crossref_primary_10_1016_j_compeleceng_2024_109817
crossref_primary_10_1016_j_egyr_2022_08_021
crossref_primary_10_3390_en15249436
crossref_primary_10_1016_j_rser_2023_113933
crossref_primary_10_1016_j_energy_2022_126173
crossref_primary_10_1016_j_apenergy_2022_120294
crossref_primary_10_1109_TNNLS_2023_3284666
crossref_primary_10_1109_TSTE_2024_3453269
crossref_primary_10_1016_j_energy_2022_123454
crossref_primary_10_1016_j_tsep_2021_101098
crossref_primary_10_3390_a16100479
crossref_primary_10_32604_ee_2024_047794
crossref_primary_10_3389_fenrg_2021_646975
crossref_primary_10_1016_j_apcato_2025_207066
crossref_primary_10_1016_j_egyr_2024_06_017
crossref_primary_10_1016_j_energ_2025_100017
crossref_primary_10_1109_TPWRS_2023_3305771
crossref_primary_10_1016_j_epsr_2024_110513
crossref_primary_10_1049_rpg2_12911
crossref_primary_10_1016_j_segan_2024_101402
crossref_primary_10_3390_en18143781
crossref_primary_10_1016_j_ifacol_2024_07_100
crossref_primary_10_3390_electronics13204041
crossref_primary_10_3390_forecast4010004
Cites_doi 10.1016/j.asoc.2018.11.042
10.1016/j.apenergy.2011.11.004
10.1109/TPWRS.2013.2287871
10.1109/ISGT-Asia.2018.8467774
10.1016/j.apenergy.2019.03.112
10.7148/2007-0203
10.1109/TPWRS.2006.887894
10.1049/iet-gtd.2012.0405
10.1186/s41601-017-0066-9
10.1109/TPWRS.2009.2016589
10.1016/j.energy.2019.02.021
10.1109/TSG.2014.2328976
10.1016/j.ejor.2014.07.049
10.1109/TPWRS.2013.2258824
10.1016/j.enconman.2017.04.077
10.1109/TSG.2017.2778688
10.1109/TEC.2009.2025431
10.1109/TPWRS.2015.2394317
10.1109/TSG.2015.2430851
10.1016/j.epsr.2019.02.018
10.1109/TIE.2018.2890499
10.3390/pr8080892
10.1016/j.apenergy.2020.115395
10.1049/iet-rpg.2015.0568
10.1109/TPWRS.2011.2113380
10.1109/TPWRS.2010.2070848
10.1109/TPWRS.2015.2412687
10.1109/TPWRS.2009.2016504
10.1109/TPWRS.2011.2121095
10.1109/TSTE.2012.2222680
10.1016/j.jclepro.2016.07.207
10.1109/TPWRS.2018.2838050
10.1109/CICED.2016.7576300
10.1016/j.apenergy.2019.02.015
10.4028/www.scientific.net/AMM.472.953
10.1016/j.energy.2016.09.096
10.1109/TPWRS.2009.2033277
10.1016/j.epsr.2015.12.020
10.3934/jimo.2008.4.363
10.17775/CSEEJPES.2016.00004
10.1016/j.rser.2013.12.034
10.1109/TSTE.2014.2360702
10.1016/j.rser.2015.07.197
10.1016/j.ijepes.2019.03.066
10.1109/TSTE.2013.2256807
10.1109/TPWRS.2011.2164947
10.1016/j.orl.2014.06.006
10.1016/j.cam.2012.05.020
10.1049/iet-gtd.2018.6362
10.1109/TEC.2007.914174
10.1007/s11431-014-5720-0
10.1109/TPWRS.2018.2799954
10.1109/TPWRS.2017.2737580
10.1109/TPWRS.2013.2288100
10.1109/ACCESS.2018.2875936
10.1109/TPWRS.2018.2794541
10.1063/5.0006480
10.1109/TPWRS.2019.2891227
10.1109/TSTE.2017.2782089
10.1109/TPWRS.2008.926719
10.1016/j.apenergy.2018.03.082
10.1016/j.ijepes.2019.105388
10.1016/j.renene.2011.01.015
10.1109/TPWRS.2020.2965922
10.1016/j.rser.2018.03.078
10.1016/j.ijepes.2018.07.020
10.1016/j.apenergy.2018.06.095
10.1016/j.apenergy.2018.11.058
10.1007/s11590-018-1300-8
10.1109/ACCESS.2016.2622358
10.1061/(ASCE)HE.1943-5584.0000795
10.1016/j.ijhydene.2018.09.179
10.1016/j.apenergy.2015.10.052
10.1109/TIM.2004.827058
10.1109/TSTE.2014.2386870
10.1109/TSTE.2019.2920884
10.1109/TPWRS.2010.2045774
10.1016/j.apenergy.2012.06.002
10.1007/s42835-019-00085-1
10.1109/TPWRS.2012.2204281
10.1016/j.ijforecast.2006.03.001
10.1016/j.ijepes.2012.10.069
10.1109/TPWRS.2006.879276
10.1137/110858082
10.1016/j.apenergy.2019.113372
10.1016/j.energy.2017.06.113
10.1109/TPWRS.2012.2187803
10.1287/moor.1050.0146
10.1016/j.apenergy.2009.09.022
10.1023/A:1021853807313
10.1109/TSTE.2017.2728098
10.1109/TPWRS.2016.2562718
10.1016/j.energy.2019.116657
10.1109/TEC.2006.889616
10.1016/j.apenergy.2019.01.238
10.1007/s10589-015-9758-0
10.1016/j.energy.2019.116441
10.1109/TPWRS.2006.889126
10.1016/j.energy.2017.12.154
10.1109/PESGM.2014.6939042
10.1109/TSG.2014.2303580
10.1016/j.epsr.2019.106193
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.115992
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_115992
S0306261920314380
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-8a80929db79f465c4edb0e2113004f206dc3281c6858d6ec0d96b9500b5ca3c63
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594134700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 08:00:56 EDT 2025
Sat Nov 29 07:22:01 EST 2025
Tue Nov 18 21:52:41 EST 2025
Fri Feb 23 02:45:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Application strategy
Scenario generation
Wind power
Stochastic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-8a80929db79f465c4edb0e2113004f206dc3281c6858d6ec0d96b9500b5ca3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636422449
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636422449
crossref_primary_10_1016_j_apenergy_2020_115992
crossref_citationtrail_10_1016_j_apenergy_2020_115992
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115992
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Díaz, Gómez-Aleixandre, Coto (b0230) 2016; 162
Wang, Liu, Tang, Liu, Zhou (b0390) 2020; 181
Billinton, Wangdee (b0625) 2007; 22
Zeynali, Rostami, Ahmadian, Elkamel (b0560) 2020; 39
Ouyang, Zha, Qin (b0425) 2017; 144
Mehrotra, Papp (b0095) 2013; 23
Sun, Cremer, Strbac (b0175) 2018; 228
Ehsan, Cheng, Yang (b0285) 2019; 5
Hoeltgebaum, Fernandes, Street (b0170) 2018; 33
Chen C, Sun H, Shen X, Guo Y, Guo Q, Xia, Tian. Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model. Appl Energy 2019;252:113372.
Ponomareva, Roman, Date (b0265) 2015; 240
Zhang, Ai, Xiao, Hao, Lu (b0260) 2020; 114
Baringo, Conejo (b0305) 2013; 101
Lucheroni, Boland, Ragno (b0035) 2019; 239
Alahyari, Ehsan, Mousavizadeh (b0140) 2019; 25
Chen, Wen, Cheng (b0155) 2013; 4
Rakipour, Barati (b0115) 2019; 173
Abbasi, Taki, Rajabi, Li, Zhang (b0215) 2019; 239
Pappala, Erlich, Rohrig, Dobschinski (b0245) 2009; 24
Morales, Mínguez, Conejo (b0220) 2010; 87
Hashemi, Ostergaard, Yang (b0550) 2014; 5
Tang, Xu, Tan, Sun, Zhang (b0455) 2019; 34
Rocha LCS, Junior PR, Paiva AP, Oliveira PE, Aquila G, Balestrassi PP. A stochastic economic viability analysis of residential wind power generation in Brazil. Renew Sustain Energy Rev. 2018;90:412–9.
Cai, Shi, Chen (b0150) 2013; 7
Yan, Liu, Han, Wang, Feng (b0015) 2015; 2015
Matevosyan, Soder (b0075) 2006; 21
Sklar (b0160) 1959; 8
Chen, Wang, Kirschen, Zhang (b0255) 2018; 33
Wang X, Hu Z, Zhang M, Hu M. Two-stage stochastic optimization for unit commitment considering wind power based on scenario analysis. In: China International Conference on Electricity Distribution. IEEE, 2016.
Tang, Wang, Xu, Sun, Zhang (b0130) 2018; 221
Yu H, Rosehart B. Probabilistic power flow considering wind speed correlation of wind farms. In: 17th Power Systems Computation Conf. Stockholm, Sweden, 1–7 August; 2011.
Park, Xu, Hobbs (b0090) 2019; 13
Aquila, Rocha, Junior, Oliveira, Queiroz, Paiva (b0615) 2016; 137
Li, Ye, Zeng, Wei (b0005) 2016; 2
Cheng, Gicquel, Lisser (b0120) 2019; 13
Biswas, Suganthan, Mallipeddi, Amaratunga (b0405) 2019; 75
Haghi, Lotfifard (b0065) 2014; 6
Høyland, Kaut, Wallace (b0275) 2003; 24
Pranevicius H, Sutiene K. Scenario tree generation by clustering the simulated data paths. 2007.
Vagropoulos, Kardakos, Simoglou, Bakirtzis, Catalao (b0235) 2016; 134
Pflug, Pichler (b0370) 2015; 62
Arabpour, Besmi, Maghouli (b0545) 2019; 14
Jiang, Mao, Chai, Yu, Tao (b0085) 2018; 6
Ehsan, Yang (b0280) 2019; 235
Prosper, Otero-Casal, Canoura Fernandez, Miguez-Macho (b0415) 2019; 135
Dong, Chen, Wei (b0105) 2019; 66
Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problem. In: Power Tech Conference Proceedings, 2003 IEEE Bologna. IEEE; 2004.
Wan, Xu, Pinson (b0525) 2013; 28
Gao, Mao, Chen, Song (b0200) 2014; 472
Becker (b0060) 2017; 9
Stappers, Paterakis, Kok, Gibescu (b0250) 2020
Ming, Xie, Campi, Garatti, Kumar (b0445) 2017; 10
Hyndman, Koehler (b0440) 2006; 22
Shi, Huang, Ding (b0600) 2020; 8
Li, J, Sun H, Wen J, Cheng S, Luo W, Ge w, et al. A Two-dimensional Optimal Technology for Constructing Wind Power Time Series Scenarios. Proceedings of the CSEE 2014;34(16):2544–551.
Wang, Hu, Zhang (b0410) 2017; 5
Li J, L F. Copula-Based Monte Carlo Scenarios Generation Method for STOPF Problem. Electricity, 2014(z1):41–50.
Meibom, Barth, Hasche, Brand, Weber, O'Malley (b0190) 2011; 26
Xie, Xiong, Ke, Liu (b0465) 2016; 8
Yu, Chung, Wong, Lee, Zhang (b0055) 2009; 24
Kaut, Wallace (b0025) 2003; 3
Aghaei, Niknam, Azizipanah-Abarghooee, Arroyo (b0460) 2013; 47
Daneshvar, Mohammadi-Ivatloo, Zare, Asadi (b0395) 2020; 193
Xie, Ji, Li, Wu (b0110) 2017; 33
Casey, Sen (b0365) 2005; 30
Fu, Guo, Sun, Pan, Xiong, Wang (b0595) 2017; 135
Xue, Lei, Xue, Yu, Dong, Wen (b0010) 2014; 34
Papaefthymiou, Klockl (b0125) 2008; 23
Kaut (b0030) 2017
Qiao, Zou, Li, Chen, Liu, Jiang (b0580) 2019; 112
Camal, Teng, Michiorri, Kariniotakis, Badesa (b0185) 2019; 242
Lin, Cheng, Chang, Zhang, Shu, Liu (b0100) 2014; 31
Xu, Chen, Yang (b0270) 2012; 236
Silva, Teixeira, Brígida, Santos, Vale, Praca (b0345) 2016; 116
Jamali, Aghaei, Esmaili, Nikoobakht, Niknam, Shafie-kha (b0400) 2019; 11
Ma, Sun, Fang (b0360) 2013; 4
Wu, Shahidehpour, Li (b0515) 2012; 27
Rubasheuski, Oppen, Woodruff (b0290) 2014; 42
Wan, Xu, Pinson, Dong, Wong (b0520) 2014; 29
Lin, Fang, Chen, Liu, Bie (b0045) 2017
Hart, Jacobson (b0050) 2011; 36
Shu, Jirutitijaroen (b0620) 2011; 26
Li, Li, Wen, Cheng, Xie, Yue (b0135) 2014; 57
Cui, Feng, Wang, Zhang, Wang, Florita (b0540) 2017
Gao, Xue, Yang, Yang, Sun, Sun (b0420) 2017; 2
Sumaili, Keko, Miranda, Zhou, Botterud, Wang (b0340) 2011
Cui, Ke, Sun, Gan, Zhang, Hodge (b0240) 2015; 6
Yang, Xue, Guo, Zhang, Zhang (b0380) 2017
Du, Zhang, Kang, Xia (b0375) 2018; 33
Yu, Luh, Litvinov, Zheng, Zhao, Zhao (b0510) 2015; 6
Freitas, Macedo (b0565) 2019; 172
Qiu, Li, Pan, Yang, Chen (b0180) 2019; 44
Saber, Moeini-Aghtaie, Ehsan, Fotuhi-Firuzabad (b0555) 2019; 104
Goyal, Ojha (b0355) 2014; 19
Li, Zhu (b0040) 2016; 10
Razali, Hashim (b0330) 2010
Das, Basu (b0385) 2020; 190
Li, Shahidehpour, Li (b0505) 2007; 22
Wan, Xu, Pinson, Dong, Wong (b0530) 2014; 29
Boone A. Simulation of short-term wind speed forecast errors using a multi-variate ARMA (1, 1) time-series model. Master thesis, KTH Roy. Inst. Technol, Stockholm, Sweden, 2005.
Sideratos, Hatziargyriou (b0080) 2012; 27
Li, Lan, Wei (b0350) 2016; 31
Pourakbari-Kasmaei, Rider, Mantovani (b0470) 2016; 31
Dvorkin Y, Wang Y, Pandzic H, Kirschen D. Comparison of scenario reduction methods for the stochastic unit commitment. In: Pes General Meeting | Conference & Exposition. IEEE, 214;1–5.
Duehee, Ross (b0020) 2017; 32
Ghofrani, Arabali, Etezadi-Amoli, Fadail (b0210) 2014; 5
Li, Sedzro, Fang, Hodge (b0300) 2020; 12
Taylor, Mcsharry, Buizza (b0535) 2009; 24
Papavasiliou, Oren, O'Neill (b0485) 2011; 6
Sun, Teng, Konstantelos, Strbac (b0570) 2018; 145
Pinson, Girard (b0430) 2012; 96
Chen, Pedersen, Bak-Jensen, Chen (b0225) 2010; 25
Guan L, Wen B, Zhan X, Zhou B, Zhao W. Scenario Generation of Wind Power Based on Longitudinal-Horizontal Clustering Strategy. In: 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 934–9; 2018.
Henrion, Kuchler, Romisch (b0325) 2017; 4
Pinson, Kariniotakis (b0435) 2010; 25
Wang, Shahidehpour, Li (b0480) 2008; 23
Lei, Wang, Jia, Chen, Li, Song (b0590) 2020; 276
Sutiene K and Pranevicius H. Scenario Generation Employing copulas. Proceeding of the world congress on engineering. UK: London; 2007.
Ummels, Gibescu, Pelgrum, Kling, Brand (b0475) 2007; 22
Ji, Wang (b0495) 2016
Ma, Xu, Liu, Zhang, Xiong (b0450) 2016; 4
Swamy, Shmoys (b0145) 2012
Wangdee, Billinton (b0205) 2012; 27
Li, Zou, Tan, Cao (b0585) 2018; 9
Broersen, De Waele (b0195) 2004; 53
Tang (10.1016/j.apenergy.2020.115992_b0455) 2019; 34
Arabpour (10.1016/j.apenergy.2020.115992_b0545) 2019; 14
Høyland (10.1016/j.apenergy.2020.115992_b0275) 2003; 24
Sun (10.1016/j.apenergy.2020.115992_b0570) 2018; 145
Pinson (10.1016/j.apenergy.2020.115992_b0430) 2012; 96
Mehrotra (10.1016/j.apenergy.2020.115992_b0095) 2013; 23
Díaz (10.1016/j.apenergy.2020.115992_b0230) 2016; 162
Ehsan (10.1016/j.apenergy.2020.115992_b0285) 2019; 5
Wang (10.1016/j.apenergy.2020.115992_b0410) 2017; 5
Shi (10.1016/j.apenergy.2020.115992_b0600) 2020; 8
Sumaili (10.1016/j.apenergy.2020.115992_b0340) 2011
Xie (10.1016/j.apenergy.2020.115992_b0465) 2016; 8
Kaut (10.1016/j.apenergy.2020.115992_b0025) 2003; 3
Xie (10.1016/j.apenergy.2020.115992_b0110) 2017; 33
Broersen (10.1016/j.apenergy.2020.115992_b0195) 2004; 53
Kaut (10.1016/j.apenergy.2020.115992_b0030) 2017
10.1016/j.apenergy.2020.115992_b0490
Li (10.1016/j.apenergy.2020.115992_b0350) 2016; 31
Cheng (10.1016/j.apenergy.2020.115992_b0120) 2019; 13
Ming (10.1016/j.apenergy.2020.115992_b0445) 2017; 10
Duehee (10.1016/j.apenergy.2020.115992_b0020) 2017; 32
Baringo (10.1016/j.apenergy.2020.115992_b0305) 2013; 101
Ji (10.1016/j.apenergy.2020.115992_b0495) 2016
Cui (10.1016/j.apenergy.2020.115992_b0240) 2015; 6
Aghaei (10.1016/j.apenergy.2020.115992_b0460) 2013; 47
Cai (10.1016/j.apenergy.2020.115992_b0150) 2013; 7
Wan (10.1016/j.apenergy.2020.115992_b0525) 2013; 28
Chen (10.1016/j.apenergy.2020.115992_b0255) 2018; 33
Li (10.1016/j.apenergy.2020.115992_b0300) 2020; 12
Casey (10.1016/j.apenergy.2020.115992_b0365) 2005; 30
Hart (10.1016/j.apenergy.2020.115992_b0050) 2011; 36
Papavasiliou (10.1016/j.apenergy.2020.115992_b0485) 2011; 6
Papaefthymiou (10.1016/j.apenergy.2020.115992_b0125) 2008; 23
Taylor (10.1016/j.apenergy.2020.115992_b0535) 2009; 24
Lei (10.1016/j.apenergy.2020.115992_b0590) 2020; 276
Stappers (10.1016/j.apenergy.2020.115992_b0250) 2020
Matevosyan (10.1016/j.apenergy.2020.115992_b0075) 2006; 21
Tang (10.1016/j.apenergy.2020.115992_b0130) 2018; 221
Shu (10.1016/j.apenergy.2020.115992_b0620) 2011; 26
Goyal (10.1016/j.apenergy.2020.115992_b0355) 2014; 19
Yu (10.1016/j.apenergy.2020.115992_b0055) 2009; 24
Qiu (10.1016/j.apenergy.2020.115992_b0180) 2019; 44
Wangdee (10.1016/j.apenergy.2020.115992_b0205) 2012; 27
10.1016/j.apenergy.2020.115992_b0310
Saber (10.1016/j.apenergy.2020.115992_b0555) 2019; 104
Pinson (10.1016/j.apenergy.2020.115992_b0435) 2010; 25
Wang (10.1016/j.apenergy.2020.115992_b0480) 2008; 23
Yan (10.1016/j.apenergy.2020.115992_b0015) 2015; 2015
Hashemi (10.1016/j.apenergy.2020.115992_b0550) 2014; 5
Jiang (10.1016/j.apenergy.2020.115992_b0085) 2018; 6
Pourakbari-Kasmaei (10.1016/j.apenergy.2020.115992_b0470) 2016; 31
Li (10.1016/j.apenergy.2020.115992_b0585) 2018; 9
Fu (10.1016/j.apenergy.2020.115992_b0595) 2017; 135
Abbasi (10.1016/j.apenergy.2020.115992_b0215) 2019; 239
Li (10.1016/j.apenergy.2020.115992_b0135) 2014; 57
Meibom (10.1016/j.apenergy.2020.115992_b0190) 2011; 26
10.1016/j.apenergy.2020.115992_b0320
Chen (10.1016/j.apenergy.2020.115992_b0225) 2010; 25
Wang (10.1016/j.apenergy.2020.115992_b0390) 2020; 181
Li (10.1016/j.apenergy.2020.115992_b0505) 2007; 22
10.1016/j.apenergy.2020.115992_b0165
Silva (10.1016/j.apenergy.2020.115992_b0345) 2016; 116
Daneshvar (10.1016/j.apenergy.2020.115992_b0395) 2020; 193
Wu (10.1016/j.apenergy.2020.115992_b0515) 2012; 27
Sideratos (10.1016/j.apenergy.2020.115992_b0080) 2012; 27
Dong (10.1016/j.apenergy.2020.115992_b0105) 2019; 66
Qiao (10.1016/j.apenergy.2020.115992_b0580) 2019; 112
Becker (10.1016/j.apenergy.2020.115992_b0060) 2017; 9
Rubasheuski (10.1016/j.apenergy.2020.115992_b0290) 2014; 42
Ma (10.1016/j.apenergy.2020.115992_b0360) 2013; 4
Camal (10.1016/j.apenergy.2020.115992_b0185) 2019; 242
Lin (10.1016/j.apenergy.2020.115992_b0100) 2014; 31
10.1016/j.apenergy.2020.115992_b0315
Biswas (10.1016/j.apenergy.2020.115992_b0405) 2019; 75
10.1016/j.apenergy.2020.115992_b0575
Cui (10.1016/j.apenergy.2020.115992_b0540) 2017
Haghi (10.1016/j.apenergy.2020.115992_b0065) 2014; 6
Chen (10.1016/j.apenergy.2020.115992_b0155) 2013; 4
10.1016/j.apenergy.2020.115992_b0295
Ummels (10.1016/j.apenergy.2020.115992_b0475) 2007; 22
Li (10.1016/j.apenergy.2020.115992_b0005) 2016; 2
Vagropoulos (10.1016/j.apenergy.2020.115992_b0235) 2016; 134
Yang (10.1016/j.apenergy.2020.115992_b0380) 2017
Pflug (10.1016/j.apenergy.2020.115992_b0370) 2015; 62
10.1016/j.apenergy.2020.115992_b0605
Ghofrani (10.1016/j.apenergy.2020.115992_b0210) 2014; 5
Razali (10.1016/j.apenergy.2020.115992_b0330) 2010
Das (10.1016/j.apenergy.2020.115992_b0385) 2020; 190
Lucheroni (10.1016/j.apenergy.2020.115992_b0035) 2019; 239
Yu (10.1016/j.apenergy.2020.115992_b0510) 2015; 6
Ouyang (10.1016/j.apenergy.2020.115992_b0425) 2017; 144
Lin (10.1016/j.apenergy.2020.115992_b0045) 2017
Sklar (10.1016/j.apenergy.2020.115992_b0160) 1959; 8
Freitas (10.1016/j.apenergy.2020.115992_b0565) 2019; 172
Park (10.1016/j.apenergy.2020.115992_b0090) 2019; 13
Ponomareva (10.1016/j.apenergy.2020.115992_b0265) 2015; 240
Li (10.1016/j.apenergy.2020.115992_b0040) 2016; 10
Billinton (10.1016/j.apenergy.2020.115992_b0625) 2007; 22
Hoeltgebaum (10.1016/j.apenergy.2020.115992_b0170) 2018; 33
Swamy (10.1016/j.apenergy.2020.115992_b0145) 2012
Hyndman (10.1016/j.apenergy.2020.115992_b0440) 2006; 22
Ma (10.1016/j.apenergy.2020.115992_b0450) 2016; 4
Ehsan (10.1016/j.apenergy.2020.115992_b0280) 2019; 235
10.1016/j.apenergy.2020.115992_b0335
10.1016/j.apenergy.2020.115992_b0610
Xu (10.1016/j.apenergy.2020.115992_b0270) 2012; 236
Henrion (10.1016/j.apenergy.2020.115992_b0325) 2017; 4
Morales (10.1016/j.apenergy.2020.115992_b0220) 2010; 87
Gao (10.1016/j.apenergy.2020.115992_b0420) 2017; 2
Rakipour (10.1016/j.apenergy.2020.115992_b0115) 2019; 173
Sun (10.1016/j.apenergy.2020.115992_b0175) 2018; 228
Gao (10.1016/j.apenergy.2020.115992_b0200) 2014; 472
Wan (10.1016/j.apenergy.2020.115992_b0520) 2014; 29
10.1016/j.apenergy.2020.115992_b0070
Zhang (10.1016/j.apenergy.2020.115992_b0260) 2020; 114
Jamali (10.1016/j.apenergy.2020.115992_b0400) 2019; 11
Pappala (10.1016/j.apenergy.2020.115992_b0245) 2009; 24
Xue (10.1016/j.apenergy.2020.115992_b0010) 2014; 34
Prosper (10.1016/j.apenergy.2020.115992_b0415) 2019; 135
Wan (10.1016/j.apenergy.2020.115992_b0530) 2014; 29
Aquila (10.1016/j.apenergy.2020.115992_b0615) 2016; 137
Du (10.1016/j.apenergy.2020.115992_b0375) 2018; 33
Alahyari (10.1016/j.apenergy.2020.115992_b0140) 2019; 25
Zeynali (10.1016/j.apenergy.2020.115992_b0560) 2020; 39
10.1016/j.apenergy.2020.115992_b0500
References_xml – volume: 145
  start-page: 871
  year: 2018
  end-page: 885
  ident: b0570
  article-title: An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources
  publication-title: Energy
– reference: Dvorkin Y, Wang Y, Pandzic H, Kirschen D. Comparison of scenario reduction methods for the stochastic unit commitment. In: Pes General Meeting | Conference & Exposition. IEEE, 214;1–5.
– volume: 228
  start-page: 546
  year: 2018
  end-page: 555
  ident: b0175
  article-title: A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration
  publication-title: Appl Energy
– volume: 242
  start-page: 1396
  year: 2019
  end-page: 1406
  ident: b0185
  article-title: Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications
  publication-title: Appl Energy
– volume: 2015
  start-page: 1322
  year: 2015
  end-page: 1330
  ident: b0015
  article-title: Reviews on uncertainty analysis of wind power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 144
  start-page: 361
  year: 2017
  end-page: 373
  ident: b0425
  article-title: A combined multivariate model for wind power prediction
  publication-title: Energy Convers Manage
– volume: 5
  start-page: 56
  year: 2019
  end-page: 62
  ident: b0285
  article-title: Scenario-based planning of active distribution systems under uncertainties of renewable generation and electricity demand
  publication-title: CSEE J Power Energy Syst
– volume: 104
  start-page: 414
  year: 2019
  end-page: 422
  ident: b0555
  article-title: A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue
  publication-title: Int J Electr Power Energy Syst
– volume: 22
  year: 2007
  ident: b0625
  article-title: Reliability-Based Transmission Reinforcement Planning Associated With Large-Scale Wind Farms
  publication-title: IEEE Trans Power Syst
– volume: 239
  start-page: 1226
  year: 2019
  end-page: 1241
  ident: b0035
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Appl Energy
– volume: 6
  start-page: 2197
  year: 2011
  end-page: 2206
  ident: b0485
  article-title: Reserve Requirements for Wind Power Integration: A Scenario-Based Stochastic Programming Framework
  publication-title: IEEE Trans Power Syst
– volume: 116
  start-page: 128
  year: 2016
  end-page: 139
  ident: b0345
  article-title: Generation of realistic scenarios for multi-agent simulation of electricity markets
  publication-title: Energy
– volume: 57
  start-page: 2475
  year: 2014
  end-page: 2486
  ident: b0135
  article-title: Generating wind power time series based on its persistence and variation characteristics
  publication-title: Sci China Technol Sci
– volume: 173
  start-page: 384
  year: 2019
  end-page: 399
  ident: b0115
  article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response
  publication-title: Energy
– volume: 39
  year: 2020
  ident: b0560
  article-title: Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology
  publication-title: Sustain Energy Technol Assess
– volume: 66
  start-page: 8533
  year: 2019
  end-page: 8544
  ident: b0105
  article-title: Sequential Monte Carlo filter for state of charge estimation of lithium-ion batteries based on auto regressive exogenous model
  publication-title: IEEE Trans Ind Electron
– volume: 87
  start-page: 843
  year: 2010
  end-page: 855
  ident: b0220
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
– volume: 27
  start-page: 2306
  year: 2012
  end-page: 2313
  ident: b0205
  article-title: Probing the Intermittent Energy Resource Contributions From Generation Adequacy and Security Perspectives
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 1450
  year: 2016
  end-page: 1458
  ident: b0040
  article-title: Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms
  publication-title: IET Renew Power Gener
– volume: 33
  start-page: 2239
  year: 2017
  end-page: 2247
  ident: b0110
  article-title: Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function
  publication-title: IEEE Trans Power Syst
– volume: 4
  start-page: 363
  year: 2017
  end-page: 384
  ident: b0325
  article-title: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming
  publication-title: J Indus Manage Optim
– volume: 6
  start-page: 1
  year: 2015
  ident: b0510
  article-title: Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 1858
  year: 2017
  end-page: 1868
  ident: b0445
  article-title: Scenario-based economic dispatch with uncertain demand response
  publication-title: IEEE Trans Smart Grid
– reference: Wang X, Hu Z, Zhang M, Hu M. Two-stage stochastic optimization for unit commitment considering wind power based on scenario analysis. In: China International Conference on Electricity Distribution. IEEE, 2016.
– volume: 7
  start-page: 474
  year: 2013
  end-page: 482
  ident: b0150
  article-title: Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling
  publication-title: IET Gener Transm Distrib
– volume: 236
  start-page: 4561
  year: 2012
  end-page: 4579
  ident: b0270
  article-title: Scenario tree generation approaches using K-means and LP moment matching methods
  publication-title: J Comput Appl Math
– volume: 134
  start-page: 9
  year: 2016
  end-page: 18
  ident: b0235
  article-title: ANN-based scenario generation methodology for stochastic variables of electric power systems
  publication-title: Electr Power Syst Res
– volume: 172
  start-page: 22
  year: 2019
  end-page: 31
  ident: b0565
  article-title: Romero RA strategy for transmission network expansion planning considering multiple generation scenarios
  publication-title: Electr Power Syst Res
– volume: 34
  start-page: 5029
  year: 2014
  end-page: 5040
  ident: b0010
  article-title: A Review on Impacts of Wind Power Uncertainties on Power Systems
  publication-title: Proceedings of the CSEE
– volume: 4
  start-page: 294
  year: 2013
  end-page: 301
  ident: b0155
  article-title: Probabilistic Load Flow Method Based on Nataf Transformation and Latin Hypercube Sampling
  publication-title: IEEE Trans Sustain Energy
– volume: 114
  year: 2020
  ident: b0260
  article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network
  publication-title: Int J Electr Power Energy Syst
– year: 2020
  ident: b0250
  article-title: A Class-Driven Approach Based on Long Short-Term Memory Networks for Electricity Price Scenario Generation and Reduction
  publication-title: IEEE Trans Power Syst
– volume: 33
  start-page: 4694
  year: 2018
  end-page: 4705
  ident: b0375
  article-title: Scenario Map Based Stochastic Unit Commitment
  publication-title: IEEE Trans Power Syst
– volume: 2
  start-page: 36
  year: 2017
  ident: b0420
  article-title: Optimal operation modes of photovoltaic-battery energy storage system based power plants considering typical scenarios
  publication-title: Protection Control Modern Power Syst
– volume: 24
  start-page: 661
  year: 2009
  end-page: 667
  ident: b0055
  article-title: Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition
  publication-title: IEEE Trans Power Syst
– volume: 239
  start-page: 1294
  year: 2019
  end-page: 1307
  ident: b0215
  article-title: Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach
  publication-title: Appl Energy
– volume: 53
  start-page: 645
  year: 2004
  end-page: 651
  ident: b0195
  article-title: Finite sample properties of ARMA order selection
  publication-title: IEEE Trans Instrum Meas
– volume: 112
  start-page: 262
  year: 2019
  end-page: 271
  ident: b0580
  article-title: Impact of uncertainty and correlation on operation of micro-integrated energy system
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 1005
  year: 2019
  end-page: 1013
  ident: b0090
  article-title: Comparing scenario reduction methods for stochastic transmission planning
  publication-title: IET Gener Transm Distrib
– volume: 30
  start-page: 615
  year: 2005
  end-page: 631
  ident: b0365
  article-title: The Scenario Generation Algorithm for Multistage Stochastic Linear Programming
  publication-title: Mathem Oper Res
– start-page: 84
  year: 2016
  end-page: 88
  ident: b0495
  article-title: A scenario probability based method to solve unit commitment of large scale energy storage system and thermal generation in high wind power penetration level system
  publication-title: Power and Energy Engineering Conference
– volume: 135
  year: 2019
  ident: b0415
  article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations
  publication-title: Renew Energy
– year: 2010
  ident: b0330
  article-title: Backward reduction application for minimizing wind power scenarios in stochastic programming
  publication-title: Power Engineering and Optimization Conference (PEOCO), 4th International
– volume: 24
  year: 2009
  ident: b0535
  article-title: Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models
  publication-title: IEEE Trans Energy Convers
– volume: 32
  start-page: 400
  year: 2017
  end-page: 410
  ident: b0020
  article-title: Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model
  publication-title: IEEE Trans Power Syst
– volume: 135
  start-page: 153
  year: 2017
  end-page: 170
  ident: b0595
  article-title: Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric
  publication-title: Energy
– volume: 190
  year: 2020
  ident: b0385
  article-title: Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
  publication-title: Energy
– volume: 96
  start-page: 12
  year: 2012
  end-page: 20
  ident: b0430
  article-title: Evaluating the quality of scenarios of short-term wind power generation
  publication-title: Appl Energy
– volume: 24
  start-page: 940
  year: 2009
  end-page: 950
  ident: b0245
  article-title: A stochastic model for the optimal operation of a wind-thermal power system
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1210
  year: 2019
  end-page: 1219
  ident: b0400
  article-title: Self-scheduling approach to coordinating wind power producers with energy storage and demand response
  publication-title: IEEE Trans Sustain Energy
– volume: 5
  start-page: 33
  year: 2017
  ident: b0410
  article-title: Research on Establishment of Quality Evaluation Framework of Short-Term Wind Power Scenarios
  publication-title: Power Syst Technol
– volume: 19
  start-page: 828
  year: 2014
  end-page: 835
  ident: b0355
  article-title: Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin
  publication-title: J Hydrol Eng
– volume: 8
  start-page: 1
  year: 2016
  ident: b0465
  article-title: Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multi-wind Farms Generation
  publication-title: IEEE Trans Sustain Energy
– volume: 75
  start-page: 616
  year: 2019
  end-page: 632
  ident: b0405
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl Soft Comput
– volume: 26
  start-page: 1367
  year: 2011
  end-page: 1379
  ident: b0190
  article-title: Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland
  publication-title: IEEE Trans Power Syst
– volume: 31
  start-page: 1657
  year: 2016
  end-page: 1658
  ident: b0350
  article-title: A Scenario Optimal Reduction Method for Wind Power Time Series
  publication-title: IEEE Trans Power Syst
– volume: 27
  start-page: 913
  year: 2012
  end-page: 921
  ident: b0515
  article-title: Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC
  publication-title: IEEE Trans Power Syst
– reference: Sutiene K and Pranevicius H. Scenario Generation Employing copulas. Proceeding of the world congress on engineering. UK: London; 2007.
– volume: 4
  start-page: 894
  year: 2013
  end-page: 904
  ident: b0360
  article-title: Scenario Generation of Wind Power Based on Statistical Uncertainty and Variability
  publication-title: IEEE Trans Sustain Energy
– volume: 44
  start-page: 5162
  year: 2019
  end-page: 5170
  ident: b0180
  article-title: A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 22
  start-page: 44
  year: 2007
  end-page: 51
  ident: b0475
  article-title: Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch
  publication-title: IEEE Trans Energy Convers
– start-page: 1504
  year: 2017
  end-page: 1509
  ident: b0380
  article-title: Wind power probability interval prediction based on Bootstrap quantile regression method
  publication-title: Chinese Automation Congress (CAC)
– volume: 181
  year: 2020
  ident: b0390
  article-title: A scenario-based analytical method for probabilistic load flow analysis
  publication-title: Electr Power Syst Res
– year: 2011
  ident: b0340
  article-title: Finding representative wind power scenarios and their probabilities for stochastic models
  publication-title: International Conference on Intelligent System Application to Power Systems
– volume: 4
  start-page: 8095
  year: 2016
  end-page: 8104
  ident: b0450
  article-title: Asymptotic mean and variance of Gini correlation under contaminated Gaussian model
  publication-title: IEEE Access
– reference: Yu H, Rosehart B. Probabilistic power flow considering wind speed correlation of wind farms. In: 17th Power Systems Computation Conf. Stockholm, Sweden, 1–7 August; 2011.
– volume: 22
  start-page: 449
  year: 2007
  end-page: 458
  ident: b0505
  article-title: Risk-Constrained Bidding Strategy With Stochastic Unit Commitment
  publication-title: IEEE Trans Power Syst
– volume: 23
  start-page: 963
  year: 2013
  end-page: 999
  ident: b0095
  article-title: Generating moment matching scenarios using optimization techniques
  publication-title: SIAM J Optim
– volume: 33
  start-page: 3265
  year: 2018
  end-page: 3275
  ident: b0255
  article-title: Model-free renewable scenario generation using generative adversarial networks
  publication-title: IEEE Trans Power Syst
– volume: 47
  start-page: 351
  year: 2013
  end-page: 367
  ident: b0460
  article-title: Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties
  publication-title: Int J Electr Power Energy Syst
– reference: Rocha LCS, Junior PR, Paiva AP, Oliveira PE, Aquila G, Balestrassi PP. A stochastic economic viability analysis of residential wind power generation in Brazil. Renew Sustain Energy Rev. 2018;90:412–9.
– year: 2017
  ident: b0030
  article-title: Forecast-based scenario-tree generation method. Optimization
  publication-title: Online
– reference: Li, J, Sun H, Wen J, Cheng S, Luo W, Ge w, et al. A Two-dimensional Optimal Technology for Constructing Wind Power Time Series Scenarios. Proceedings of the CSEE 2014;34(16):2544–551.
– volume: 240
  start-page: 678
  year: 2015
  end-page: 687
  ident: b0265
  article-title: An algorithm for moment-matching scenario generation with application to financial portfolio optimisation
  publication-title: Eur J Oper Res
– volume: 9
  start-page: 1298
  year: 2017
  end-page: 1306
  ident: b0060
  article-title: Generation of time-coupled wind power infeed scenarios using pair-copula construction
  publication-title: IEEE Trans Sustain Energy
– volume: 27
  start-page: 1788
  year: 2012
  end-page: 1796
  ident: b0080
  article-title: Probabilistic wind power forecasting using radial basis function neural networks
  publication-title: IEEE Trans Power Syst
– volume: 221
  start-page: 348
  year: 2018
  end-page: 357
  ident: b0130
  article-title: Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations
  publication-title: Appl Energy
– volume: 5
  start-page: 2306
  year: 2014
  end-page: 2313
  ident: b0210
  article-title: Smart Scheduling and Cost-Benefit Analysis of Grid-Enabled Electric Vehicles for Wind Power Integration
  publication-title: IEEE Trans Smart Grid
– volume: 42
  start-page: 374
  year: 2014
  end-page: 377
  ident: b0290
  article-title: Multi-stage scenario generation by the combined moment matching and scenario reduction method
  publication-title: Oper Res Lett
– reference: Boone A. Simulation of short-term wind speed forecast errors using a multi-variate ARMA (1, 1) time-series model. Master thesis, KTH Roy. Inst. Technol, Stockholm, Sweden, 2005.
– volume: 2
  start-page: 11
  year: 2016
  end-page: 18
  ident: b0005
  article-title: A Scenario-Based Robust Transmission Network Expansion Planning Method for Consideration of Wind Power Uncertainties
  publication-title: CSEE J Power Energy Syst
– volume: 34
  start-page: 2685
  year: 2019
  end-page: 2695
  ident: b0455
  article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2017
  ident: b0540
  article-title: Probabilistic wind power ramp forecasting based on a scenario generation method
  publication-title: IEEE Power & Energy Society General Meeting
– volume: 6
  start-page: 113
  year: 2014
  end-page: 121
  ident: b0065
  article-title: Spatiotemporal modeling of wind generation for optimal energy storage sizing
  publication-title: IEEE Trans Sustain Energy
– volume: 276
  year: 2020
  ident: b0590
  article-title: Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy
  publication-title: Appl Energy
– volume: 28
  start-page: 4877
  year: 2013
  end-page: 4878
  ident: b0525
  article-title: Direct Interval Forecasting of Wind Power
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 422
  year: 2015
  end-page: 433
  ident: b0240
  article-title: Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method
  publication-title: IEEE Trans Sustain Energy
– volume: 9
  start-page: 273
  year: 2018
  end-page: 283
  ident: b0585
  article-title: Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System
  publication-title: IEEE Trans Sustain Energy
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b0440
  article-title: Another look at measures of forecast accuracy
  publication-title: Int J Forecast
– volume: 8
  start-page: 892
  year: 2020
  ident: b0600
  article-title: Research on the Optimal Configuration of Regional Integrated Energy System Based on Production Simulation
  publication-title: Processes
– volume: 24
  start-page: 169
  year: 2003
  end-page: 185
  ident: b0275
  article-title: A heuristic for moment-matching scenario generation
  publication-title: Comput Optim Appl
– volume: 21
  start-page: 1396
  year: 2006
  end-page: 1404
  ident: b0075
  article-title: Minimization of imbalance cost trading wind power on the short-term power market
  publication-title: IEEE Trans Power Syst
– year: 2012
  ident: b0145
  article-title: Sampling-based approximation algorithms for multi-stage stochastic optimization
  publication-title: IEEE Symposium on Foundations of Computer Science
– volume: 62
  start-page: 641
  year: 2015
  end-page: 668
  ident: b0370
  article-title: Dynamic generation of scenario trees
  publication-title: Comput Optim Appl
– volume: 13
  start-page: 657
  year: 2019
  end-page: 672
  ident: b0120
  article-title: Partial sample average approximation method for chance constrained problems
  publication-title: Optim Lett
– reference: Chen C, Sun H, Shen X, Guo Y, Guo Q, Xia, Tian. Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model. Appl Energy 2019;252:113372.
– volume: 26
  start-page: 2066
  year: 2011
  end-page: 2073
  ident: b0620
  article-title: Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources
  publication-title: IEEE Trans Power Syst
– volume: 472
  start-page: 953
  year: 2014
  end-page: 957
  ident: b0200
  article-title: A Wind Farm Capacity Credibility Calculation Method Based on Parabola
  publication-title: Appl Mech Mater
– volume: 12
  year: 2020
  ident: b0300
  article-title: A clustering-based scenario generation framework for power market simulation with wind integration
  publication-title: J Renew Sustain Energy
– volume: 31
  start-page: 825
  year: 2016
  end-page: 826
  ident: b0470
  article-title: An Unambiguous Distance-Based MIQP Model to Solve Economic Dispatch Problems with Disjoint Operating Zones
  publication-title: IEEE Trans Power Syst
– volume: 25
  start-page: 1845
  year: 2010
  end-page: 1856
  ident: b0435
  article-title: Conditional prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
– start-page: 90
  year: 2017
  end-page: 95
  ident: b0045
  article-title: Scenario generation and reduction methods for power flow examination of transmission expansion planning
  publication-title: 2017 IEEE 7th International Conference on Power and Energy Systems (ICPES)
– volume: 101
  start-page: 475
  year: 2013
  end-page: 482
  ident: b0305
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl Energy
– volume: 6
  start-page: 62193
  year: 2018
  end-page: 62203
  ident: b0085
  article-title: Scenario generation for wind power using improved generative adversarial networks
  publication-title: IEEE Access
– volume: 25
  start-page: 667
  year: 2010
  end-page: 676
  ident: b0225
  article-title: ARIMA-Based Time Series Model of Stochastic Wind Power Generation
  publication-title: IEEE Trans Power Syst
– volume: 162
  start-page: 21
  year: 2016
  end-page: 30
  ident: b0230
  article-title: Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants
  publication-title: Appl Energy
– reference: Guan L, Wen B, Zhan X, Zhou B, Zhao W. Scenario Generation of Wind Power Based on Longitudinal-Horizontal Clustering Strategy. In: 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 934–9; 2018.
– volume: 14
  start-page: 1035
  year: 2019
  end-page: 1043
  ident: b0545
  article-title: Transmission expansion and reactive power planning considering wind energy investment using a linearized AC model
  publication-title: J Electr Eng Technol
– volume: 33
  start-page: 7011
  year: 2018
  end-page: 7019
  ident: b0170
  article-title: Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters
  publication-title: IEEE Trans Power Syst
– volume: 25
  year: 2019
  ident: b0140
  article-title: A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties
  publication-title: J Storage Mater
– volume: 193
  year: 2020
  ident: b0395
  article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment
  publication-title: Energy
– volume: 23
  start-page: 234
  year: 2008
  end-page: 240
  ident: b0125
  article-title: MCMC for Wind Power Simulation
  publication-title: IEEE Trans Energy Convers
– volume: 235
  start-page: 1277
  year: 2019
  end-page: 1288
  ident: b0280
  article-title: Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand
  publication-title: Appl Energy
– volume: 5
  start-page: 1514
  year: 2014
  end-page: 1522
  ident: b0550
  article-title: A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids With High PV Penetration
  publication-title: IEEE Trans Smart Grid
– volume: 29
  start-page: 1166
  year: 2014
  end-page: 1174
  ident: b0530
  article-title: Optimal Prediction Intervals of Wind Power Generation
  publication-title: IEEE Trans Power Syst
– volume: 31
  start-page: 921
  year: 2014
  end-page: 934
  ident: b0100
  article-title: Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications
  publication-title: Renew Sustain Energy Rev
– reference: Li J, L F. Copula-Based Monte Carlo Scenarios Generation Method for STOPF Problem. Electricity, 2014(z1):41–50.
– volume: 36
  start-page: 2278
  year: 2011
  end-page: 2286
  ident: b0050
  article-title: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables
  publication-title: Renew Energy
– reference: Pranevicius H, Sutiene K. Scenario tree generation by clustering the simulated data paths. 2007.
– volume: 23
  start-page: 1319
  year: 2008
  end-page: 1327
  ident: b0480
  article-title: Security-Constrained Unit Commitment With Volatile Wind Power Generation
  publication-title: IEEE Trans Power Syst
– volume: 3
  start-page: 14
  year: 2003
  end-page: 2003
  ident: b0025
  article-title: Evaluation of Scenario-Generation Methods for Stochastic Programming
  publication-title: Pacific J Optim
– volume: 8
  start-page: 229
  year: 1959
  end-page: 231
  ident: b0160
  article-title: Fonctions de repartition à n dimensions et leurs marges
  publication-title: Publication de l'Institut de Statistique de l'Université de Paris
– volume: 137
  start-page: 1100
  year: 2016
  end-page: 1108
  ident: b0615
  article-title: Wind power generation: An impact analysis of incentive strategies for cleaner energy provision in Brazil
  publication-title: J Cleaner Prod
– reference: Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problem. In: Power Tech Conference Proceedings, 2003 IEEE Bologna. IEEE; 2004.
– volume: 29
  start-page: 1033
  year: 2014
  end-page: 1044
  ident: b0520
  article-title: Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine
  publication-title: IEEE Trans Power Syst
– volume: 75
  start-page: 616
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0405
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.042
– volume: 96
  start-page: 12
  year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0430
  article-title: Evaluating the quality of scenarios of short-term wind power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.004
– volume: 29
  start-page: 1033
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0520
  article-title: Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2287871
– year: 2011
  ident: 10.1016/j.apenergy.2020.115992_b0340
  article-title: Finding representative wind power scenarios and their probabilities for stochastic models
– ident: 10.1016/j.apenergy.2020.115992_b0310
  doi: 10.1109/ISGT-Asia.2018.8467774
– year: 2010
  ident: 10.1016/j.apenergy.2020.115992_b0330
  article-title: Backward reduction application for minimizing wind power scenarios in stochastic programming
– volume: 242
  start-page: 1396
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0185
  article-title: Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.112
– ident: 10.1016/j.apenergy.2020.115992_b0315
  doi: 10.7148/2007-0203
– volume: 22
  start-page: 449
  issue: 1
  year: 2007
  ident: 10.1016/j.apenergy.2020.115992_b0505
  article-title: Risk-Constrained Bidding Strategy With Stochastic Unit Commitment
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.887894
– start-page: 90
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0045
  article-title: Scenario generation and reduction methods for power flow examination of transmission expansion planning
– volume: 7
  start-page: 474
  issue: 5
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0150
  article-title: Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2012.0405
– volume: 2
  start-page: 36
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0420
  article-title: Optimal operation modes of photovoltaic-battery energy storage system based power plants considering typical scenarios
  publication-title: Protection Control Modern Power Syst
  doi: 10.1186/s41601-017-0066-9
– volume: 24
  start-page: 661
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2020.115992_b0055
  article-title: Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2016589
– volume: 173
  start-page: 384
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0115
  article-title: Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.021
– volume: 5
  start-page: 2306
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0210
  article-title: Smart Scheduling and Cost-Benefit Analysis of Grid-Enabled Electric Vehicles for Wind Power Integration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2328976
– ident: 10.1016/j.apenergy.2020.115992_b0320
– start-page: 1504
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0380
  article-title: Wind power probability interval prediction based on Bootstrap quantile regression method
  publication-title: Chinese Automation Congress (CAC)
– volume: 3
  start-page: 14
  issue: 2
  year: 2003
  ident: 10.1016/j.apenergy.2020.115992_b0025
  article-title: Evaluation of Scenario-Generation Methods for Stochastic Programming
  publication-title: Pacific J Optim
– volume: 240
  start-page: 678
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2020.115992_b0265
  article-title: An algorithm for moment-matching scenario generation with application to financial portfolio optimisation
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.07.049
– ident: 10.1016/j.apenergy.2020.115992_b0335
– volume: 25
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0140
  article-title: A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties
  publication-title: J Storage Mater
– volume: 28
  start-page: 4877
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0525
  article-title: Direct Interval Forecasting of Wind Power
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2258824
– volume: 144
  start-page: 361
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0425
  article-title: A combined multivariate model for wind power prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.077
– ident: 10.1016/j.apenergy.2020.115992_b0295
– volume: 10
  start-page: 1858
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0445
  article-title: Scenario-based economic dispatch with uncertain demand response
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2778688
– volume: 24
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2020.115992_b0535
  article-title: Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2009.2025431
– start-page: 84
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0495
  article-title: A scenario probability based method to solve unit commitment of large scale energy storage system and thermal generation in high wind power penetration level system
– volume: 31
  start-page: 825
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0470
  article-title: An Unambiguous Distance-Based MIQP Model to Solve Economic Dispatch Problems with Disjoint Operating Zones
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2394317
– volume: 6
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.apenergy.2020.115992_b0510
  article-title: Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2430851
– volume: 39
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0560
  article-title: Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology
  publication-title: Sustain Energy Technol Assess
– volume: 172
  start-page: 22
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0565
  article-title: Romero RA strategy for transmission network expansion planning considering multiple generation scenarios
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.02.018
– volume: 66
  start-page: 8533
  issue: 11
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0105
  article-title: Sequential Monte Carlo filter for state of charge estimation of lithium-ion batteries based on auto regressive exogenous model
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2890499
– volume: 8
  start-page: 892
  issue: 8
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0600
  article-title: Research on the Optimal Configuration of Regional Integrated Energy System Based on Production Simulation
  publication-title: Processes
  doi: 10.3390/pr8080892
– volume: 276
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0590
  article-title: Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115395
– volume: 10
  start-page: 1450
  issue: 9
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0040
  article-title: Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2015.0568
– volume: 26
  start-page: 2066
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2020.115992_b0620
  article-title: Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2113380
– volume: 26
  start-page: 1367
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2020.115992_b0190
  article-title: Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2070848
– volume: 31
  start-page: 1657
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0350
  article-title: A Scenario Optimal Reduction Method for Wind Power Time Series
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2412687
– volume: 8
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0465
  article-title: Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multi-wind Farms Generation
  publication-title: IEEE Trans Sustain Energy
– volume: 24
  start-page: 940
  issue: 2
  year: 2009
  ident: 10.1016/j.apenergy.2020.115992_b0245
  article-title: A stochastic model for the optimal operation of a wind-thermal power system
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2016504
– volume: 6
  start-page: 2197
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2020.115992_b0485
  article-title: Reserve Requirements for Wind Power Integration: A Scenario-Based Stochastic Programming Framework
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2121095
– volume: 4
  start-page: 294
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0155
  article-title: Probabilistic Load Flow Method Based on Nataf Transformation and Latin Hypercube Sampling
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2012.2222680
– volume: 137
  start-page: 1100
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0615
  article-title: Wind power generation: An impact analysis of incentive strategies for cleaner energy provision in Brazil
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2016.07.207
– volume: 33
  start-page: 7011
  issue: 6
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0170
  article-title: Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2838050
– ident: 10.1016/j.apenergy.2020.115992_b0500
  doi: 10.1109/CICED.2016.7576300
– volume: 239
  start-page: 1226
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0035
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.015
– volume: 472
  start-page: 953
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0200
  article-title: A Wind Farm Capacity Credibility Calculation Method Based on Parabola
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.472.953
– volume: 116
  start-page: 128
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0345
  article-title: Generation of realistic scenarios for multi-agent simulation of electricity markets
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.096
– volume: 25
  start-page: 667
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2020.115992_b0225
  article-title: ARIMA-Based Time Series Model of Stochastic Wind Power Generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2033277
– volume: 134
  start-page: 9
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0235
  article-title: ANN-based scenario generation methodology for stochastic variables of electric power systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2015.12.020
– volume: 4
  start-page: 363
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0325
  article-title: Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming
  publication-title: J Indus Manage Optim
  doi: 10.3934/jimo.2008.4.363
– volume: 2
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0005
  article-title: A Scenario-Based Robust Transmission Network Expansion Planning Method for Consideration of Wind Power Uncertainties
  publication-title: CSEE J Power Energy Syst
  doi: 10.17775/CSEEJPES.2016.00004
– volume: 31
  start-page: 921
  issue: Complete
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0100
  article-title: Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.034
– volume: 6
  start-page: 113
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0065
  article-title: Spatiotemporal modeling of wind generation for optimal energy storage sizing
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2014.2360702
– volume: 2015
  start-page: 1322
  issue: 52
  year: 2015
  ident: 10.1016/j.apenergy.2020.115992_b0015
  article-title: Reviews on uncertainty analysis of wind power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.197
– volume: 112
  start-page: 262
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0580
  article-title: Impact of uncertainty and correlation on operation of micro-integrated energy system
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.03.066
– volume: 4
  start-page: 894
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0360
  article-title: Scenario Generation of Wind Power Based on Statistical Uncertainty and Variability
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2013.2256807
– volume: 27
  start-page: 913
  issue: 2
  year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0515
  article-title: Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2164947
– year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0145
  article-title: Sampling-based approximation algorithms for multi-stage stochastic optimization
– volume: 42
  start-page: 374
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0290
  article-title: Multi-stage scenario generation by the combined moment matching and scenario reduction method
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2014.06.006
– volume: 236
  start-page: 4561
  issue: 17
  year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0270
  article-title: Scenario tree generation approaches using K-means and LP moment matching methods
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2012.05.020
– volume: 13
  start-page: 1005
  issue: 7
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0090
  article-title: Comparing scenario reduction methods for stochastic transmission planning
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2018.6362
– volume: 23
  start-page: 234
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2020.115992_b0125
  article-title: MCMC for Wind Power Simulation
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2007.914174
– volume: 57
  start-page: 2475
  issue: 12
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0135
  article-title: Generating wind power time series based on its persistence and variation characteristics
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-014-5720-0
– volume: 33
  start-page: 4694
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0375
  article-title: Scenario Map Based Stochastic Unit Commitment
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2799954
– volume: 33
  start-page: 2239
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0110
  article-title: Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2737580
– volume: 29
  start-page: 1166
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0530
  article-title: Optimal Prediction Intervals of Wind Power Generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2288100
– volume: 6
  start-page: 62193
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0085
  article-title: Scenario generation for wind power using improved generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2875936
– volume: 33
  start-page: 3265
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0255
  article-title: Model-free renewable scenario generation using generative adversarial networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2794541
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0300
  article-title: A clustering-based scenario generation framework for power market simulation with wind integration
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0006480
– volume: 8
  start-page: 229
  year: 1959
  ident: 10.1016/j.apenergy.2020.115992_b0160
  article-title: Fonctions de repartition à n dimensions et leurs marges
  publication-title: Publication de l'Institut de Statistique de l'Université de Paris
– volume: 34
  start-page: 2685
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0455
  article-title: Lagrangian relaxation with incremental proximal method for economic dispatch with large numbers of wind power scenarios
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2891227
– volume: 9
  start-page: 1298
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0060
  article-title: Generation of time-coupled wind power infeed scenarios using pair-copula construction
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2782089
– volume: 23
  start-page: 1319
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2020.115992_b0480
  article-title: Security-Constrained Unit Commitment With Volatile Wind Power Generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.926719
– volume: 221
  start-page: 348
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0130
  article-title: Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.082
– volume: 114
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0260
  article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105388
– volume: 36
  start-page: 2278
  issue: 8
  year: 2011
  ident: 10.1016/j.apenergy.2020.115992_b0050
  article-title: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.01.015
– year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0250
  article-title: A Class-Driven Approach Based on Long Short-Term Memory Networks for Electricity Price Scenario Generation and Reduction
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2020.2965922
– ident: 10.1016/j.apenergy.2020.115992_b0610
  doi: 10.1016/j.rser.2018.03.078
– volume: 104
  start-page: 414
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0555
  article-title: A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.07.020
– volume: 228
  start-page: 546
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0175
  article-title: A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.095
– volume: 235
  start-page: 1277
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0280
  article-title: Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.058
– volume: 13
  start-page: 657
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0120
  article-title: Partial sample average approximation method for chance constrained problems
  publication-title: Optim Lett
  doi: 10.1007/s11590-018-1300-8
– volume: 4
  start-page: 8095
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0450
  article-title: Asymptotic mean and variance of Gini correlation under contaminated Gaussian model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2622358
– volume: 19
  start-page: 828
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0355
  article-title: Evaluation of Rule and Decision Tree Induction Algorithms for Generating Climate Change Scenarios for Temperature and Pan Evaporation on a Lake Basin
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000795
– volume: 44
  start-page: 5162
  issue: 11
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0180
  article-title: A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.179
– volume: 162
  start-page: 21
  year: 2016
  ident: 10.1016/j.apenergy.2020.115992_b0230
  article-title: Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.052
– volume: 53
  start-page: 645
  issue: 3
  year: 2004
  ident: 10.1016/j.apenergy.2020.115992_b0195
  article-title: Finite sample properties of ARMA order selection
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2004.827058
– volume: 6
  start-page: 422
  issue: 2
  year: 2015
  ident: 10.1016/j.apenergy.2020.115992_b0240
  article-title: Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2014.2386870
– volume: 11
  start-page: 1210
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0400
  article-title: Self-scheduling approach to coordinating wind power producers with energy storage and demand response
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2920884
– volume: 25
  start-page: 1845
  issue: 4
  year: 2010
  ident: 10.1016/j.apenergy.2020.115992_b0435
  article-title: Conditional prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2045774
– year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0030
  article-title: Forecast-based scenario-tree generation method. Optimization
  publication-title: Online
– ident: 10.1016/j.apenergy.2020.115992_b0165
– volume: 101
  start-page: 475
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0305
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.06.002
– volume: 14
  start-page: 1035
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0545
  article-title: Transmission expansion and reactive power planning considering wind energy investment using a linearized AC model
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-019-00085-1
– volume: 27
  start-page: 2306
  issue: 4
  year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0205
  article-title: Probing the Intermittent Energy Resource Contributions From Generation Adequacy and Security Perspectives
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2204281
– volume: 5
  start-page: 33
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0410
  article-title: Research on Establishment of Quality Evaluation Framework of Short-Term Wind Power Scenarios
  publication-title: Power Syst Technol
– volume: 34
  start-page: 5029
  issue: 29
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0010
  article-title: A Review on Impacts of Wind Power Uncertainties on Power Systems
  publication-title: Proceedings of the CSEE
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.apenergy.2020.115992_b0440
  article-title: Another look at measures of forecast accuracy
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 47
  start-page: 351
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0460
  article-title: Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.10.069
– volume: 21
  start-page: 1396
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2020.115992_b0075
  article-title: Minimization of imbalance cost trading wind power on the short-term power market
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.879276
– volume: 23
  start-page: 963
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2020.115992_b0095
  article-title: Generating moment matching scenarios using optimization techniques
  publication-title: SIAM J Optim
  doi: 10.1137/110858082
– ident: 10.1016/j.apenergy.2020.115992_b0575
  doi: 10.1016/j.apenergy.2019.113372
– volume: 5
  start-page: 56
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0285
  article-title: Scenario-based planning of active distribution systems under uncertainties of renewable generation and electricity demand
  publication-title: CSEE J Power Energy Syst
– volume: 135
  start-page: 153
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0595
  article-title: Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.113
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0540
  article-title: Probabilistic wind power ramp forecasting based on a scenario generation method
– volume: 27
  start-page: 1788
  issue: 4
  year: 2012
  ident: 10.1016/j.apenergy.2020.115992_b0080
  article-title: Probabilistic wind power forecasting using radial basis function neural networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2187803
– volume: 30
  start-page: 615
  issue: 3
  year: 2005
  ident: 10.1016/j.apenergy.2020.115992_b0365
  article-title: The Scenario Generation Algorithm for Multistage Stochastic Linear Programming
  publication-title: Mathem Oper Res
  doi: 10.1287/moor.1050.0146
– volume: 135
  issue: 674–686
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0415
  article-title: Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations
  publication-title: Renew Energy
– ident: 10.1016/j.apenergy.2020.115992_b0070
– volume: 87
  start-page: 843
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2020.115992_b0220
  article-title: A methodology to generate statistically dependent wind speed scenarios
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.022
– volume: 24
  start-page: 169
  issue: 2–3
  year: 2003
  ident: 10.1016/j.apenergy.2020.115992_b0275
  article-title: A heuristic for moment-matching scenario generation
  publication-title: Comput Optim Appl
  doi: 10.1023/A:1021853807313
– volume: 9
  start-page: 273
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0585
  article-title: Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2728098
– volume: 32
  start-page: 400
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.115992_b0020
  article-title: Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2562718
– volume: 193
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0395
  article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116657
– volume: 22
  start-page: 44
  issue: 1
  year: 2007
  ident: 10.1016/j.apenergy.2020.115992_b0475
  article-title: Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2006.889616
– volume: 239
  start-page: 1294
  year: 2019
  ident: 10.1016/j.apenergy.2020.115992_b0215
  article-title: Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.238
– volume: 62
  start-page: 641
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2020.115992_b0370
  article-title: Dynamic generation of scenario trees
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-015-9758-0
– volume: 190
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0385
  article-title: Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116441
– volume: 22
  issue: 1
  year: 2007
  ident: 10.1016/j.apenergy.2020.115992_b0625
  article-title: Reliability-Based Transmission Reinforcement Planning Associated With Large-Scale Wind Farms
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.889126
– volume: 145
  start-page: 871
  year: 2018
  ident: 10.1016/j.apenergy.2020.115992_b0570
  article-title: An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.154
– ident: 10.1016/j.apenergy.2020.115992_b0490
  doi: 10.1109/PESGM.2014.6939042
– volume: 5
  start-page: 1514
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2020.115992_b0550
  article-title: A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids With High PV Penetration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2303580
– volume: 181
  year: 2020
  ident: 10.1016/j.apenergy.2020.115992_b0390
  article-title: A scenario-based analytical method for probabilistic load flow analysis
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.106193
– ident: 10.1016/j.apenergy.2020.115992_b0605
SSID ssj0002120
Score 2.6639419
Snippet •The state-of-the-art scenario generation methods are classified and reviewed comprehensively.•An evaluation framework for scenario generation methods is...
Scenario generation is an effective method for addressing uncertainties in stochastic programming for energy systems with integrated wind power. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115992
SubjectTerms application methods
Application strategy
energy
methodology
power generation
Scenario generation
stochastic processes
Stochastic programming
Uncertainty
Wind power
Title Review of wind power scenario generation methods for optimal operation of renewable energy systems
URI https://dx.doi.org/10.1016/j.apenergy.2020.115992
https://www.proquest.com/docview/2636422449
Volume 280
WOSCitedRecordID wos000594134700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHBIWKsslI3KoMHjubjwUNggpVCBVpxMWKl2haQTJqZmh_Ps_rhLKUHrhEo0zsOPO-eUv83vcQeqk1GIaWtFlbsTbLp4plMtcqKyDasrWNpTGOZ_ZDdXRUz-f8Y6guGVw7garr6osLvvyvooZzIGxbOnsNcadJ4QR8BqHDEcQOx38S_KdUjHJ-YkkAbBu0fcvZBFFxbzsmmyB03zza8THs96A5vlm_dBm_hfGW7fLclVYZXyE4jOjNI3Nt8GL9FSm9x-UIHIJZXKyT3v-y6Nf-dDMsTLCYLrPAq77X_fgVBHXpHL4IM5ZekTKzodhYrVLfoSkoRnA8uW9694vO9q8PTifN0i91Ym8x2Qz4mST7kvFKKYUxW-1UxHmEnUf4eW6ibVoVHDT39sH72fwwGWsamDvjE4yKyH-_oj_5L5csuXNPju-huyGuwAceD_fRDdPtoDsjtskdtDvbFDXCpUGrDw-Q9JDBfYstZLCDDI6QwRvI4AAZDJDBATI4QcaOT5DB_plwgMxD9Pnt7PjNuyz03sgUy4tVVjc1Ac9Zy4q3eVmo3GhJDJ3a3c-8paTUitF6qmz7Al0aRTQvJS8IkYVqmCrZLtrq-s48Qpg0uWIQtTbU2F30WhqmIUytlKwaSZncQ0X8RYUKxPS2P8pX8XeZ7qFXadzSU7NcOYJHgYngYHrHUQAWrxz7IkpYgAa222pNZ_r1IGjJIIgHN5k_vvaKnqDbmz_UU7S1OlubZ-iW-r46Gc6eB7D-AKTgr5E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+wind+power+scenario+generation+methods+for+optimal+operation+of+renewable+energy+systems&rft.jtitle=Applied+energy&rft.au=Li%2C+Jinghua&rft.au=Zhou%2C+Jiasheng&rft.au=Chen%2C+Bo&rft.date=2020-12-15&rft.issn=0306-2619&rft.volume=280&rft.spage=115992&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_115992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon