Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm

Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmospheric environment (1994) Ročník 208; s. 113 - 122
Hlavní autoři: Liu, Jianjun, Weng, Fuzhong, Li, Zhanqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2019
Témata:
ISSN:1352-2310, 1873-2844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration. •A machine learning algorithm used to estimate hourly PM2.5 directly using TOA reflectance.•The performances of the model are comparable with those by using AOD.•Model has high performances on PM2.5 estimations at different temporal scales.•PM2.5 concentrations are estimated over three major polluted regions of China.
AbstractList Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration.
Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration. •A machine learning algorithm used to estimate hourly PM2.5 directly using TOA reflectance.•The performances of the model are comparable with those by using AOD.•Model has high performances on PM2.5 estimations at different temporal scales.•PM2.5 concentrations are estimated over three major polluted regions of China.
Author Weng, Fuzhong
Liu, Jianjun
Li, Zhanqing
Author_xml – sequence: 1
  givenname: Jianjun
  orcidid: 0000-0001-8747-3334
  surname: Liu
  fullname: Liu, Jianjun
  organization: Laboratory of Environmental Model and Data Optima (EMDO), Laurel, MD, USA
– sequence: 2
  givenname: Fuzhong
  surname: Weng
  fullname: Weng, Fuzhong
  email: fweng58@gmail.com
  organization: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
– sequence: 3
  givenname: Zhanqing
  surname: Li
  fullname: Li, Zhanqing
  organization: Earth System Science Interdisciplinary Center and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
BookMark eNqFkE9vFDEMxSNUJNrCV0A5cpkhyWQmGYkDqOJPpSKQgHPkTZxuVjPJkmQrlU9PuksvXHrys-Vn-f0uyFlMEQl5zVnPGZ_e7nqoayoY73rB-Nwz2TMmnpFzrtXQCS3lWdPDKDoxcPaCXJSyY4wNalbn5M8PqLgsoWK3gYKOfv8q-pFiqWGFGlKkLmS0dbmnPqeVZvRLayFapFBp3SKtaU-TP8rjI_stZqSHEuItBbqC3YaIdEHI8ThablMOdbu-JM89LAVf_auX5Nenjz-vvnQ33z5fX3246ewgx9pp7abJT7P3So0AoDUHP7WgDkYnN-hwM3vUqKSTOM4KrbdqmLVnSgvu9HBJ3pzu7nP6fWjJzBqKbaEhYjoUI8SgRjnPgrfV6bRqcyqlZTX73Djke8OZeYBtduYRtnmAbZg0DXYzvvvPaEM98qsZwvK0_f3Jjo3DXcBsig3YGJ_gG5fCUyf-Au2XpQg
CitedBy_id crossref_primary_10_1016_j_chemosphere_2020_128801
crossref_primary_10_1029_2022GH000669
crossref_primary_10_1016_j_atmosenv_2024_120560
crossref_primary_10_1016_j_jes_2021_01_022
crossref_primary_10_1016_j_scitotenv_2019_135056
crossref_primary_10_1016_j_atmosres_2023_106787
crossref_primary_10_3390_rs15235489
crossref_primary_10_1016_j_scitotenv_2020_144502
crossref_primary_10_3390_rs15204905
crossref_primary_10_1016_j_asoc_2024_111805
crossref_primary_10_3390_ijerph20031996
crossref_primary_10_1038_s41612_023_00559_0
crossref_primary_10_1016_j_apr_2021_02_007
crossref_primary_10_3390_rs14112714
crossref_primary_10_3390_atmos15040460
crossref_primary_10_5194_essd_13_529_2021
crossref_primary_10_1016_j_scitotenv_2022_153289
crossref_primary_10_1029_2021GL096066
crossref_primary_10_1016_j_apr_2024_102110
crossref_primary_10_3390_atmos12111452
crossref_primary_10_1289_EHP10831
crossref_primary_10_3390_rs16030467
crossref_primary_10_1016_j_atmosres_2020_105146
crossref_primary_10_1109_TGRS_2021_3064191
crossref_primary_10_1016_j_envint_2020_105801
crossref_primary_10_1016_j_atmosenv_2020_117671
crossref_primary_10_3390_rs16183363
crossref_primary_10_1016_j_atmosenv_2023_120021
crossref_primary_10_1016_j_isprsjprs_2022_03_002
crossref_primary_10_3390_atmos15030384
crossref_primary_10_1016_j_atmosres_2024_107281
crossref_primary_10_1016_j_envpol_2020_116327
crossref_primary_10_1007_s41810_025_00289_1
crossref_primary_10_1016_j_atmosenv_2021_118302
crossref_primary_10_1016_j_buildenv_2024_112141
crossref_primary_10_3390_rs15153826
crossref_primary_10_1016_j_ecoenv_2019_109386
crossref_primary_10_3390_rs11182120
crossref_primary_10_3390_rs14102366
crossref_primary_10_1016_j_scitotenv_2022_154363
crossref_primary_10_1016_j_uclim_2024_102148
crossref_primary_10_3390_rs13132525
crossref_primary_10_3390_rs13224545
crossref_primary_10_1016_j_envpol_2025_126012
crossref_primary_10_3390_rs16224306
crossref_primary_10_1007_s11869_022_01285_x
crossref_primary_10_1016_j_envpol_2021_116459
crossref_primary_10_1016_j_envpol_2021_116932
crossref_primary_10_1016_j_atmosenv_2021_118898
crossref_primary_10_1016_j_atmosenv_2021_118930
crossref_primary_10_1016_j_gsf_2023_101686
crossref_primary_10_1016_j_swevo_2025_102069
crossref_primary_10_3390_rs17010049
crossref_primary_10_1016_j_envsoft_2022_105329
crossref_primary_10_1016_j_earscirev_2023_104634
crossref_primary_10_1038_s43247_023_01119_3
crossref_primary_10_3390_atmos13050825
crossref_primary_10_1016_j_envint_2020_105950
crossref_primary_10_1016_j_apr_2024_102259
crossref_primary_10_1016_j_chemosphere_2022_134003
crossref_primary_10_5194_amt_15_5497_2022
crossref_primary_10_1016_j_envpol_2021_118783
crossref_primary_10_1029_2021JD036393
crossref_primary_10_1016_j_earscirev_2021_103752
crossref_primary_10_1016_j_atmosenv_2023_120284
crossref_primary_10_1109_TGRS_2024_3382036
crossref_primary_10_1016_j_eswa_2022_117905
crossref_primary_10_1029_2019JD030758
crossref_primary_10_1109_TGRS_2020_2990791
crossref_primary_10_3390_rs16213944
crossref_primary_10_3390_rs15153724
Cites_doi 10.1007/s11356-015-6027-9
10.1080/02786826.2016.1236182
10.1002/2016JD025659
10.1038/nature15371
10.1016/j.rse.2015.05.016
10.1016/j.atmosenv.2017.07.054
10.1038/s41586-019-0912-1
10.1002/2015GL064479
10.1021/acs.est.7b01210
10.1126/science.1160606
10.3155/1047-3289.59.11.1358
10.1016/j.envpol.2018.01.053
10.1016/j.envres.2012.06.011
10.1016/j.rse.2006.05.022
10.1016/j.atmosenv.2017.02.023
10.1016/j.envres.2012.11.003
10.5194/acp-18-15921-2018
10.1289/ehp.0800123
10.1016/j.atmosenv.2015.02.030
10.4209/aaqr.2015.01.0009
10.1007/s00376-017-7106-2
10.1016/j.envpol.2013.08.002
10.1016/j.rse.2015.02.005
10.3390/rs8030184
10.1002/jgrd.50479
10.1016/j.atmosenv.2015.06.046
10.1016/j.rse.2017.07.023
10.1038/s41598-017-07478-0
10.1016/j.rse.2014.09.015
10.5194/acp-11-7991-2011
10.5194/angeo-27-2755-2009
10.1021/acs.est.5b01413
10.5194/amt-6-2989-2013
10.1016/j.rse.2016.08.027
10.1016/j.scitotenv.2016.12.049
10.1109/TGRS.2011.2166120
10.1186/1471-2105-9-307
10.1214/ss/1009213726
10.1289/ehp.0901623
10.5194/amt-9-3293-2016
10.1002/2015RG000500
10.1016/j.atmosenv.2004.01.039
10.1016/j.atmosenv.2017.01.004
10.1002/2017GL075710
10.1289/ehp.1409481
10.1021/es5009399
10.1021/acs.est.5b05940
10.1029/96JD03988
10.1126/science.1064034
10.1016/j.rse.2014.08.008
10.1080/16742834.2017.1381547
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.atmosenv.2019.04.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Public Health
EISSN 1873-2844
EndPage 122
ExternalDocumentID 10_1016_j_atmosenv_2019_04_002
S1352231019302171
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
9DU
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
R2-
SEP
SEW
T9H
VH1
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-88d66f69ff775aaa881af6019da5d4bedeb9fe8e74d4e597ecfc7398f07821d83
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467661500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-2310
IngestDate Sun Sep 28 12:24:40 EDT 2025
Sat Nov 29 07:00:44 EST 2025
Tue Nov 18 20:53:09 EST 2025
Fri Feb 23 02:19:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PM2.5 concentration
TOA reflectances
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-88d66f69ff775aaa881af6019da5d4bedeb9fe8e74d4e597ecfc7398f07821d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8747-3334
PQID 2237549921
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2237549921
crossref_primary_10_1016_j_atmosenv_2019_04_002
crossref_citationtrail_10_1016_j_atmosenv_2019_04_002
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2019_04_002
PublicationCentury 2000
PublicationDate 2019-07-01
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Atmospheric environment (1994)
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Hoff, Engel-Cox (bib60) 2009; 59
Liu, Li (bib30) 2018; 35
Engel-Cox, Holloman, Coutant, Hoff (bib3) 2004; 38
Lelieveld, Evans, Fnais, Giannadaki, Pozzer (bib18) 2015; 525
Levy, Remer, Mattoo, Vermote, Kaufman (bib20) 2007; 112
Zhan, Luo, Deng, Chen, Grieneisen, Shen, Zhu, Zhang (bib59) 2017; 155
Gupta, Christopher (bib8) 2009; 114
Ma, Hu, Huang, Bi, Liu (bib37) 2014; 48
Kaufman, Tanré, Remer, Vermote, Chu, Holben (bib15) 1997; 102
Ristovski, Vucetic, Obradovic (bib43) 2012; 50
Song, Jia, Huang, Zhang (bib46) 2014; 154
Yu, Liu, Ma, Bi (bib58) 2017; 7
Li, Gong, Chen, Wang (bib21) 2015; 15
Zhang, Geng, Wang, Richter, He (bib61) 2012
Xiao, Wang, Chang, Meng, Geng, Lyapustin, Liu (bib54) 2017; 199
Liu, Paciorek, Koutrakis (bib33) 2009; 117
Li, Lau, Ramanathan, Wu, Ding, Manoj, Liu, Qian, Li, Zhou, Fan, Rosenfeld, Ming, Wang, Huang, Wang, Xu, Lee, Cribb, Zhang, Yang, Zhao, Takemura, Wang, Xia, Yin, Zhang, Guo, Zhai, Sugimoto, Babu, Brasseur (bib24) 2016; 54
He, Huang (bib10) 2018; 236
Li, Rosenfeld, Fan (bib25) 2017
Liu, Zheng, Li, Flynn, Cribb (bib29) 2012; 117
Gupta, Levy, Mattoo, Remer, Munchak (bib9) 2016; 9
Geng, Zhang, Martin, Van Donkelaar, Huo, Che, Lin, He (bib7) 2015; 166
Liu, Franklin, Kahn, Koutrakis (bib34) 2007; 107
You, Zang, Zhang, Li, Pan, Wang (bib57) 2016; 8
Hu, Belle, Meng, Wildani, Waller, Strickland, Liu (bib13) 2017; 51
Ramanathan, Crutzen, Kiehl, Rosenfeld (bib41) 2001; 294
Liaw, Wiener (bib27) 2002; 2
Lin, Li, Yuan, Lau, Li, Fung (bib28) 2015; 156
Van Donkelaar, Martin, Spurr, Drury, Remer, Levy, Wang (bib53) 2013; 118
Lee, Liu, Coull, Schwartz, Koutrakis (bib17) 2011; 11
Feng, Li, Zhu, Hou, Jin, Wang (bib6) 2015; 107
Li, Shen, Zeng, Yuan, Zhang (bib23) 2017; 152
Shang, Chen, Letu, Zhao, Li, Bao (bib45) 2017; 122
Aerosol Product Application (bib1) 2012
Li, Shen, Yuan, Zhang, Zhang (bib22) 2017; 44
Price, Kacarab, Cocker, Purvis-Roberts, Silva (bib40) 2016; 50
Fang, Zou, Liu, Sternberg, Zhai (bib5) 2016; 186
You, Zang, Zhang, Li, Wang (bib56) 2016; 23
Fan, Rosenfeld, Yang, Zhao, Ruby Leung, Li (bib4) 2015; 42
Breiman (bib2) 2001; 16
Strobl, Boulesteix, Kneib, Augustin, Zeileis (bib48) 2008; 9
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib42) 2019; 566
Rosenfeld, Lohmann, Raga, O'Dowd, Kulmala, Fuzzi, Reissell, Andreae (bib44) 2008; 321
Hou, Li, Zhang, Xu, Zhang, Li, Li, Wei, Ma (bib11) 2014; 17
Su, Li, Li, Lau, Yang, Shen (bib49) 2017; 166
Su, Li, Kahn (bib50) 2018; 18
Li, Zhao, Kahn, Mishchenko, Remer, Lee, Wang, Laszlo, Nakajima, Maring (bib26) 2009; 27
MEPC (bib39) 2015
Lee, Coull, Bell, Koutrakis (bib16) 2012; 118
Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (bib38) 2016; 124
Zheng, Zhang, Liu, Geng, He (bib63) 2016; 124
Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (bib12) 2013; 121
Liu (bib32) 2014; 6
Levy, Mattoo, Munchak, Remer, Sayer, Patadia, Hsu (bib19) 2013; 6
Lv, Hu, Chang, Russell, Cai, Xu, Bai (bib35) 2017; 580
Liu, Park, Jacob, Li, Kilaru, Sarnat (bib31) 2004; 109
Van Donkelaar, Martin, Brauer, Kahn, Levy, Verduzco, Villeneuve (bib52) 2010; 118
Kan, Chen (bib14) 2002; 19
Lv, Hu, Chang, Russell, Bai (bib36) 2016; 50
Sorek-Hamer, Strawa, Chatfield, Esswein, Cohen, Broday (bib47) 2013; 182
Zhang, Li (bib62) 2015; 160
Tan, Zhang, Wang, Chen, Shi, Shi (bib51) 2018; 11
Xie, Wang, Zhang, Dong, Lv, Bai (bib55) 2015; 49
Hu (10.1016/j.atmosenv.2019.04.002_bib12) 2013; 121
Liu (10.1016/j.atmosenv.2019.04.002_bib31) 2004; 109
Ma (10.1016/j.atmosenv.2019.04.002_bib37) 2014; 48
Engel-Cox (10.1016/j.atmosenv.2019.04.002_bib3) 2004; 38
Li (10.1016/j.atmosenv.2019.04.002_bib23) 2017; 152
Gupta (10.1016/j.atmosenv.2019.04.002_bib9) 2016; 9
Zhang (10.1016/j.atmosenv.2019.04.002_bib62) 2015; 160
Ristovski (10.1016/j.atmosenv.2019.04.002_bib43) 2012; 50
Fan (10.1016/j.atmosenv.2019.04.002_bib4) 2015; 42
Kaufman (10.1016/j.atmosenv.2019.04.002_bib15) 1997; 102
Price (10.1016/j.atmosenv.2019.04.002_bib40) 2016; 50
Sorek-Hamer (10.1016/j.atmosenv.2019.04.002_bib47) 2013; 182
Li (10.1016/j.atmosenv.2019.04.002_bib24) 2016; 54
Reichstein (10.1016/j.atmosenv.2019.04.002_bib42) 2019; 566
Zhan (10.1016/j.atmosenv.2019.04.002_bib59) 2017; 155
Li (10.1016/j.atmosenv.2019.04.002_bib21) 2015; 15
Tan (10.1016/j.atmosenv.2019.04.002_bib51) 2018; 11
Aerosol Product Application (10.1016/j.atmosenv.2019.04.002_bib1) 2012
Gupta (10.1016/j.atmosenv.2019.04.002_bib8) 2009; 114
Breiman (10.1016/j.atmosenv.2019.04.002_bib2) 2001; 16
Shang (10.1016/j.atmosenv.2019.04.002_bib45) 2017; 122
Su (10.1016/j.atmosenv.2019.04.002_bib49) 2017; 166
Kan (10.1016/j.atmosenv.2019.04.002_bib14) 2002; 19
Lelieveld (10.1016/j.atmosenv.2019.04.002_bib18) 2015; 525
Xie (10.1016/j.atmosenv.2019.04.002_bib55) 2015; 49
Liu (10.1016/j.atmosenv.2019.04.002_bib33) 2009; 117
Liaw (10.1016/j.atmosenv.2019.04.002_bib27) 2002; 2
Lv (10.1016/j.atmosenv.2019.04.002_bib36) 2016; 50
Rosenfeld (10.1016/j.atmosenv.2019.04.002_bib44) 2008; 321
Levy (10.1016/j.atmosenv.2019.04.002_bib20) 2007; 112
Liu (10.1016/j.atmosenv.2019.04.002_bib32) 2014; 6
Van Donkelaar (10.1016/j.atmosenv.2019.04.002_bib52) 2010; 118
Feng (10.1016/j.atmosenv.2019.04.002_bib6) 2015; 107
Hu (10.1016/j.atmosenv.2019.04.002_bib13) 2017; 51
Liu (10.1016/j.atmosenv.2019.04.002_bib34) 2007; 107
Hou (10.1016/j.atmosenv.2019.04.002_bib11) 2014; 17
Li (10.1016/j.atmosenv.2019.04.002_bib26) 2009; 27
Zhang (10.1016/j.atmosenv.2019.04.002_bib61) 2012
Lv (10.1016/j.atmosenv.2019.04.002_bib35) 2017; 580
Zheng (10.1016/j.atmosenv.2019.04.002_bib63) 2016; 124
Van Donkelaar (10.1016/j.atmosenv.2019.04.002_bib53) 2013; 118
Zhang (10.1016/j.atmosenv.2019.04.002_bib60) 2009; 59
Ma (10.1016/j.atmosenv.2019.04.002_bib38) 2016; 124
You (10.1016/j.atmosenv.2019.04.002_bib56) 2016; 23
You (10.1016/j.atmosenv.2019.04.002_bib57) 2016; 8
MEPC (10.1016/j.atmosenv.2019.04.002_bib39) 2015
Su (10.1016/j.atmosenv.2019.04.002_bib50) 2018; 18
Levy (10.1016/j.atmosenv.2019.04.002_bib19) 2013; 6
Xiao (10.1016/j.atmosenv.2019.04.002_bib54) 2017; 199
Lin (10.1016/j.atmosenv.2019.04.002_bib28) 2015; 156
Geng (10.1016/j.atmosenv.2019.04.002_bib7) 2015; 166
Lee (10.1016/j.atmosenv.2019.04.002_bib16) 2012; 118
Song (10.1016/j.atmosenv.2019.04.002_bib46) 2014; 154
Liu (10.1016/j.atmosenv.2019.04.002_bib29) 2012; 117
Liu (10.1016/j.atmosenv.2019.04.002_bib30) 2018; 35
Li (10.1016/j.atmosenv.2019.04.002_bib25) 2017
Ramanathan (10.1016/j.atmosenv.2019.04.002_bib41) 2001; 294
Fang (10.1016/j.atmosenv.2019.04.002_bib5) 2016; 186
Lee (10.1016/j.atmosenv.2019.04.002_bib17) 2011; 11
Strobl (10.1016/j.atmosenv.2019.04.002_bib48) 2008; 9
Yu (10.1016/j.atmosenv.2019.04.002_bib58) 2017; 7
Li (10.1016/j.atmosenv.2019.04.002_bib22) 2017; 44
He (10.1016/j.atmosenv.2019.04.002_bib10) 2018; 236
References_xml – volume: 321
  start-page: 1309
  year: 2008
  end-page: 1313
  ident: bib44
  article-title: Flood or drought: how do aerosols affect precipitation?
  publication-title: Science
– volume: 182
  start-page: 417
  year: 2013
  end-page: 423
  ident: bib47
  article-title: Improved retrieval of PM
  publication-title: Environ. Pollut.
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib12
  article-title: Estimating ground-level PM
  publication-title: Environ. Res.
– volume: 6
  start-page: 6
  year: 2014
  end-page: 10
  ident: bib32
  article-title: Monitoring PM
  publication-title: Environ. Manag.
– volume: 17
  start-page: 012268
  year: 2014
  ident: bib11
  article-title: Using support vector regression to predict PM
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 112
  year: 2007
  ident: bib20
  article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance
  publication-title: J. Geophys. Res. D Atmos.
– volume: 236
  start-page: 1027
  year: 2018
  end-page: 1037
  ident: bib10
  article-title: Satellite-based high-resolution PM
  publication-title: Environ. Pollut.
– volume: 107
  start-page: 118
  year: 2015
  end-page: 128
  ident: bib6
  article-title: Artificial neural networks forecasting of PM
  publication-title: Atmos. Environ.
– volume: 156
  start-page: 117
  year: 2015
  end-page: 128
  ident: bib28
  article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 8327
  year: 2016
  end-page: 8338
  ident: bib56
  article-title: Estimating national-scale ground-level PM
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 107
  start-page: 33
  year: 2007
  end-page: 44
  ident: bib34
  article-title: Using aerosol optical thickness to predict ground-level PM
  publication-title: Remote Sens. Environ.
– volume: 155
  start-page: 129
  year: 2017
  end-page: 139
  ident: bib59
  article-title: Spatiotemporal prediction of continuous daily PM
  publication-title: Atmos. Environ.
– year: 2012
  ident: bib61
  article-title: Satellite remote sensing of changes in NO
  publication-title: Chin. Sci. Bull.
– volume: 152
  start-page: 477
  year: 2017
  end-page: 489
  ident: bib23
  article-title: Point-surface fusion of station measurements and satellite observations for mapping PM
  publication-title: Atmos. Environ.
– volume: 160
  start-page: 252
  year: 2015
  end-page: 262
  ident: bib62
  article-title: Remote sensing of atmospheric fine particulate matter PM
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 8
  year: 2012
  end-page: 15
  ident: bib16
  article-title: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM
  publication-title: Environ. Res.
– volume: 124
  start-page: 232
  year: 2016
  end-page: 242
  ident: bib63
  article-title: Estimating ground-level PM
  publication-title: Atmos. Environ.
– volume: 199
  start-page: 437
  year: 2017
  end-page: 446
  ident: bib54
  article-title: Full-coverage high-resolution daily PM
  publication-title: Remote Sens. Environ.
– volume: 166
  start-page: 262
  year: 2015
  end-page: 270
  ident: bib7
  article-title: Estimating long-term PM
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 11,985
  year: 2017
  end-page: 11,993
  ident: bib22
  article-title: Estimating ground level PM
  publication-title: Geophys. Res. Lett.
– volume: 48
  start-page: 7436
  year: 2014
  end-page: 7444
  ident: bib37
  article-title: Estimating ground-level PM
  publication-title: Environ. Sci. Technol.
– year: 2015
  ident: bib39
  article-title: Air Quality Daily Report.: Ministry of Environmental Protection of the People's Republic of China
– volume: 118
  start-page: 5621
  year: 2013
  end-page: 5636
  ident: bib53
  article-title: Optimal estimation for global ground-level fine particulate matter concentrations
  publication-title: J. Geophys. Res.: Atmosphere
– volume: 51
  start-page: 6936
  year: 2017
  end-page: 6944
  ident: bib13
  article-title: Estimating PM
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 12280
  year: 2015
  end-page: 12288
  ident: bib55
  article-title: Daily estimation of ground-level PM
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 307
  year: 2008
  ident: bib48
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinf.
– volume: 117
  start-page: 886
  year: 2009
  end-page: 892
  ident: bib33
  article-title: Estimating regional spatial and temporal variability of PM
  publication-title: Environ. Health Perspect.
– year: 2017
  ident: bib25
  article-title: Aerosols and their impact on radiation, clouds, precipitation, and severe weather events
  publication-title: Oxf. Res. Encyclopedias
– volume: 16
  start-page: 199
  year: 2001
  end-page: 215
  ident: bib2
  article-title: Statistical modeling: the two cultures
  publication-title: Stat. Sci.
– volume: 525
  start-page: 367
  year: 2015
  end-page: 371
  ident: bib18
  article-title: The contribution of out-door air pollution sources to premature mortality on a global scale
  publication-title: Nature
– volume: 109
  year: 2004
  ident: bib31
  article-title: Mapping annual mean ground-level PM
  publication-title: J. Geophys. Res.: Atmosphere
– volume: 154
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib46
  article-title: A satellite-based geographically weighted regression model for regional PM
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 422
  year: 2002
  end-page: 424
  ident: bib14
  article-title: Meta-analysis of exposure–response functions of air particulate matter and adverse health outcomes in China
  publication-title: J. Environ. Health
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib27
  article-title: Classification and regression by random forest
  publication-title: R. News
– volume: 124
  start-page: 184
  year: 2016
  end-page: 192
  ident: bib38
  article-title: Satellite-based spatiotemporal trends in PM
  publication-title: Environ. Health Perspect.
– volume: 18
  start-page: 15921
  year: 2018
  end-page: 15935
  ident: bib50
  article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 3293
  year: 2016
  end-page: 3308
  ident: bib9
  article-title: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm
  publication-title: Atmos. Meas. Tech.
– volume: 186
  start-page: 152
  year: 2016
  end-page: 163
  ident: bib5
  article-title: Satellite-based ground PM
  publication-title: Remote Sens. Environ.
– volume: 114
  year: 2009
  ident: bib8
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach
  publication-title: J. Geophys. Res.
– volume: 50
  start-page: 409
  year: 2012
  end-page: 414
  ident: bib43
  article-title: Uncertainty analysis of neural-network-based aerosol retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  start-page: 4752
  year: 2016
  end-page: 4759
  ident: bib36
  article-title: Improving the accuracy of daily PM
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 1347
  year: 2015
  end-page: 1356
  ident: bib21
  article-title: Estimating ground-level PM
  publication-title: Aerosol Air Qual. Res.
– volume: 54
  start-page: 4
  year: 2016
  ident: bib24
  article-title: Aerosol and monsoon climate interactions over Asia
  publication-title: Rev. Geophys.
– volume: 35
  start-page: 169
  year: 2018
  end-page: 181
  ident: bib30
  article-title: First surface-based estimation of the aerosol indirect effect over a site in southeastern China
  publication-title: Adv. Atmos. Sci.
– volume: 50
  start-page: 1216
  year: 2016
  end-page: 1226
  ident: bib40
  article-title: Effects of temperature on the formation of secondary organic aerosol from amine precursors
  publication-title: Aerosol Sci. Technol.
– volume: 122
  start-page: 3528
  year: 2017
  end-page: 3543
  ident: bib45
  article-title: Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China
  publication-title: J. Geophys. Res.: Atmosphere
– volume: 27
  start-page: 2755
  year: 2009
  end-page: 2770
  ident: bib26
  article-title: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective
  publication-title: Ann. Geophys.
– volume: 11
  start-page: 86
  year: 2018
  end-page: 93
  ident: bib51
  article-title: Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China
  publication-title: Atmos. Ocean. Sci. Lett.
– volume: 166
  start-page: 531
  year: 2017
  end-page: 542
  ident: bib49
  article-title: An intercomparison of AOD-converted PM
  publication-title: Atmos. Environ.
– volume: 294
  start-page: 2119
  year: 2001
  end-page: 2124
  ident: bib41
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
– volume: 117
  year: 2012
  ident: bib29
  article-title: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China
  publication-title: J. Geophys. Res.
– year: 2012
  ident: bib1
  article-title: Team of the AWG Aerosols/Air Quality/Atmospheric Chemistry Team: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter, NOAA, NESDIS, Center for Satellite Applications and Research, Version 3.0, July 30
– volume: 580
  start-page: 235
  year: 2017
  end-page: 244
  ident: bib35
  article-title: Daily estimation of ground-level PM
  publication-title: Sci. Total Environ.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib42
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 11
  start-page: 7991
  year: 2011
  end-page: 8002
  ident: bib17
  article-title: A novel calibration approach of MODIS AOD data to predict PM
  publication-title: Atmos. Chem. Phys.
– volume: 59
  start-page: 1358
  year: 2009
  end-page: 1369
  ident: bib60
  article-title: The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM
  publication-title: J. Air Waste Manag. Assoc.
– volume: 38
  start-page: 2495
  year: 2004
  end-page: 2509
  ident: bib3
  article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality
  publication-title: Atmos. Environ.
– volume: 6
  start-page: 2989
  year: 2013
  end-page: 3034
  ident: bib19
  article-title: The Collection 6 MODIS aerosol products over land and ocean
  publication-title: Atmos. Meas. Tech.
– volume: 102
  start-page: 17 051
  year: 1997
  end-page: 17 067
  ident: bib15
  article-title: Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 7048
  year: 2017
  ident: bib58
  article-title: Improving satellite-based PM
  publication-title: Sci. Rep.
– volume: 42
  start-page: 6066
  year: 2015
  end-page: 6075
  ident: bib4
  article-title: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China
  publication-title: Geophys. Res. Lett.
– volume: 118
  start-page: 847
  year: 2010
  end-page: 855
  ident: bib52
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
– volume: 8
  start-page: 184
  year: 2016
  ident: bib57
  article-title: National-scale estimates of ground-level PM
  publication-title: Rem. Sens.
– volume: 23
  start-page: 8327
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib56
  article-title: Estimating national-scale ground-level PM2.5 concentration in China using geographically weighted regression based on MODIS and MISR AOD
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-015-6027-9
– volume: 50
  start-page: 1216
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib40
  article-title: Effects of temperature on the formation of secondary organic aerosol from amine precursors
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2016.1236182
– volume: 122
  start-page: 3528
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib45
  article-title: Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China
  publication-title: J. Geophys. Res.: Atmosphere
  doi: 10.1002/2016JD025659
– volume: 525
  start-page: 367
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib18
  article-title: The contribution of out-door air pollution sources to premature mortality on a global scale
  publication-title: Nature
  doi: 10.1038/nature15371
– volume: 166
  start-page: 262
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib7
  article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.016
– volume: 166
  start-page: 531
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib49
  article-title: An intercomparison of AOD-converted PM2.5 concentrations using different approaches for estimating aerosol vertical distribution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.07.054
– volume: 109
  year: 2004
  ident: 10.1016/j.atmosenv.2019.04.002_bib31
  article-title: Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States
  publication-title: J. Geophys. Res.: Atmosphere
– volume: 117
  year: 2012
  ident: 10.1016/j.atmosenv.2019.04.002_bib29
  article-title: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China
  publication-title: J. Geophys. Res.
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.atmosenv.2019.04.002_bib42
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 42
  start-page: 6066
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib4
  article-title: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL064479
– volume: 51
  start-page: 6936
  issue: 12
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib13
  article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01210
– volume: 321
  start-page: 1309
  year: 2008
  ident: 10.1016/j.atmosenv.2019.04.002_bib44
  article-title: Flood or drought: how do aerosols affect precipitation?
  publication-title: Science
  doi: 10.1126/science.1160606
– volume: 59
  start-page: 1358
  issue: 11
  year: 2009
  ident: 10.1016/j.atmosenv.2019.04.002_bib60
  article-title: The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency regions
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.3155/1047-3289.59.11.1358
– volume: 236
  start-page: 1027
  year: 2018
  ident: 10.1016/j.atmosenv.2019.04.002_bib10
  article-title: Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.053
– volume: 118
  start-page: 8
  year: 2012
  ident: 10.1016/j.atmosenv.2019.04.002_bib16
  article-title: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.06.011
– volume: 107
  start-page: 33
  year: 2007
  ident: 10.1016/j.atmosenv.2019.04.002_bib34
  article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.05.022
– volume: 155
  start-page: 129
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib59
  article-title: Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.02.023
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.atmosenv.2019.04.002_bib12
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– volume: 18
  start-page: 15921
  year: 2018
  ident: 10.1016/j.atmosenv.2019.04.002_bib50
  article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-15921-2018
– volume: 117
  start-page: 886
  issue: 6
  year: 2009
  ident: 10.1016/j.atmosenv.2019.04.002_bib33
  article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0800123
– volume: 107
  start-page: 118
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib6
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.030
– volume: 15
  start-page: 1347
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib21
  article-title: Estimating ground-level PM2.5 using fine-resolution satellite data in the megacity of beijing, China
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.01.0009
– volume: 35
  start-page: 169
  issue: 2
  year: 2018
  ident: 10.1016/j.atmosenv.2019.04.002_bib30
  article-title: First surface-based estimation of the aerosol indirect effect over a site in southeastern China
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-017-7106-2
– volume: 182
  start-page: 417
  year: 2013
  ident: 10.1016/j.atmosenv.2019.04.002_bib47
  article-title: Improved retrieval of PM2.5 from satellite data products using non-linear methods
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.08.002
– year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib25
  article-title: Aerosols and their impact on radiation, clouds, precipitation, and severe weather events
  publication-title: Oxf. Res. Encyclopedias
– volume: 160
  start-page: 252
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib62
  article-title: Remote sensing of atmospheric fine particulate matter PM2.5 mass concentration near the ground from satellite observation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.005
– volume: 8
  start-page: 184
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib57
  article-title: National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD
  publication-title: Rem. Sens.
  doi: 10.3390/rs8030184
– volume: 118
  start-page: 5621
  year: 2013
  ident: 10.1016/j.atmosenv.2019.04.002_bib53
  article-title: Optimal estimation for global ground-level fine particulate matter concentrations
  publication-title: J. Geophys. Res.: Atmosphere
  doi: 10.1002/jgrd.50479
– volume: 124
  start-page: 232
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib63
  article-title: Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.06.046
– volume: 199
  start-page: 437
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib54
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.023
– volume: 7
  start-page: 7048
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib58
  article-title: Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07478-0
– volume: 156
  start-page: 117
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib28
  article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.015
– volume: 11
  start-page: 7991
  year: 2011
  ident: 10.1016/j.atmosenv.2019.04.002_bib17
  article-title: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-7991-2011
– volume: 27
  start-page: 2755
  year: 2009
  ident: 10.1016/j.atmosenv.2019.04.002_bib26
  article-title: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-27-2755-2009
– volume: 49
  start-page: 12280
  issue: 20
  year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib55
  article-title: Daily estimation of ground-level PM2.5 concentrations over beijing using 3 km resolution MODIS AOD
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01413
– volume: 19
  start-page: 422
  issue: 6
  year: 2002
  ident: 10.1016/j.atmosenv.2019.04.002_bib14
  article-title: Meta-analysis of exposure–response functions of air particulate matter and adverse health outcomes in China
  publication-title: J. Environ. Health
– volume: 6
  start-page: 2989
  year: 2013
  ident: 10.1016/j.atmosenv.2019.04.002_bib19
  article-title: The Collection 6 MODIS aerosol products over land and ocean
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-2989-2013
– volume: 186
  start-page: 152
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib5
  article-title: Satellite-based ground PM2.5 estimation using timely structure adaptive modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.027
– volume: 580
  start-page: 235
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib35
  article-title: Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.049
– volume: 50
  start-page: 409
  year: 2012
  ident: 10.1016/j.atmosenv.2019.04.002_bib43
  article-title: Uncertainty analysis of neural-network-based aerosol retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2166120
– volume: 9
  start-page: 307
  issue: 1
  year: 2008
  ident: 10.1016/j.atmosenv.2019.04.002_bib48
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-9-307
– volume: 16
  start-page: 199
  year: 2001
  ident: 10.1016/j.atmosenv.2019.04.002_bib2
  article-title: Statistical modeling: the two cultures
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– year: 2012
  ident: 10.1016/j.atmosenv.2019.04.002_bib1
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.atmosenv.2019.04.002_bib27
  article-title: Classification and regression by random forest
  publication-title: R. News
– volume: 118
  start-page: 847
  year: 2010
  ident: 10.1016/j.atmosenv.2019.04.002_bib52
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0901623
– volume: 9
  start-page: 3293
  issue: 7
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib9
  article-title: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-9-3293-2016
– volume: 54
  start-page: 4
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib24
  article-title: Aerosol and monsoon climate interactions over Asia
  publication-title: Rev. Geophys.
  doi: 10.1002/2015RG000500
– volume: 6
  start-page: 6
  year: 2014
  ident: 10.1016/j.atmosenv.2019.04.002_bib32
  article-title: Monitoring PM2.5 from space for health: past, present, and future directions
  publication-title: Environ. Manag.
– volume: 38
  start-page: 2495
  year: 2004
  ident: 10.1016/j.atmosenv.2019.04.002_bib3
  article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.01.039
– year: 2015
  ident: 10.1016/j.atmosenv.2019.04.002_bib39
– volume: 152
  start-page: 477
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib23
  article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.004
– volume: 44
  start-page: 11,985
  year: 2017
  ident: 10.1016/j.atmosenv.2019.04.002_bib22
  article-title: Estimating ground level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075710
– volume: 124
  start-page: 184
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib38
  article-title: Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1409481
– volume: 112
  year: 2007
  ident: 10.1016/j.atmosenv.2019.04.002_bib20
  article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance
  publication-title: J. Geophys. Res. D Atmos.
– volume: 114
  year: 2009
  ident: 10.1016/j.atmosenv.2019.04.002_bib8
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach
  publication-title: J. Geophys. Res.
– volume: 48
  start-page: 7436
  year: 2014
  ident: 10.1016/j.atmosenv.2019.04.002_bib37
  article-title: Estimating ground-level PM2.5 in China using satellite remote sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5009399
– volume: 50
  start-page: 4752
  year: 2016
  ident: 10.1016/j.atmosenv.2019.04.002_bib36
  article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05940
– volume: 102
  start-page: 17 051
  year: 1997
  ident: 10.1016/j.atmosenv.2019.04.002_bib15
  article-title: Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JD03988
– volume: 294
  start-page: 2119
  issue: 5549
  year: 2001
  ident: 10.1016/j.atmosenv.2019.04.002_bib41
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
  doi: 10.1126/science.1064034
– volume: 154
  start-page: 1
  year: 2014
  ident: 10.1016/j.atmosenv.2019.04.002_bib46
  article-title: A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.008
– year: 2012
  ident: 10.1016/j.atmosenv.2019.04.002_bib61
  article-title: Satellite remote sensing of changes in NOx emissions over China during 1996–2010
  publication-title: Chin. Sci. Bull.
– volume: 17
  start-page: 012268
  issue: 1
  year: 2014
  ident: 10.1016/j.atmosenv.2019.04.002_bib11
  article-title: Using support vector regression to predict PM10 and PM2.5
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 11
  start-page: 86
  year: 2018
  ident: 10.1016/j.atmosenv.2019.04.002_bib51
  article-title: Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2017.1381547
SSID ssj0003797
Score 2.5596302
Snippet Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms aerosols
algorithms
artificial intelligence
atmospheric chemistry
China
Machine learning
meteorological parameters
monitoring
particle size
particulates
PM2.5 concentration
pollution
public health
reflectance
satellites
seasonal variation
TOA reflectances
Title Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm
URI https://dx.doi.org/10.1016/j.atmosenv.2019.04.002
https://www.proquest.com/docview/2237549921
Volume 208
WOSCitedRecordID wos000467661500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgNoQlCY2PiQkRAvUUbz1cSPFWoFqJRJdKJvlhM7a6s26dpkGvsf-J85f7XRAG088BJZrt2kvl_vLmf_7hB6ywWPwzTwXcHS2A0BJS6BB3ZzlggS5iJLA66KTcSjUTKZkNNW66flwlwu4qJIrq7I6r-KGvpA2JI6-w_i3n4pdEAbhA5XEDtc7yT4b0wl2ayEKy0Ud06_-CeRI5NpaJaio63Y4oemloCFlJF7zRxQxEZwR1f26ACrluVGZh4QTq2iCsxZquOXwtabgK7FebmeVdNl09Ht2YmzrEmmU3mhCAkbAYjhrFZQApzO6y1UvwuthAb19bQ01lUNVrspU1ZcWJtrQhaKJWVDFlrLgtfnSseyqYb9TuKsZIkZ19NMZaNSPc1VNdbZfPab4tcxiPmJWhb4WfLQHlFJbDv-ztTZ7f3RVzo4Gw7puD8Zv1tduLIImdysNxVZ7qF9P44IKMn93qf-5PPWtAexrtZjn79BOf_zrf_m7dyw-8qZGT9Gj8xbCO5p9DxBLVG00cNGbso2OuzvpAZDjQ3YtNGBjvRiTWB7iq5vAA4rwOEd4LAFHJaAww3AYVZhQBkGwOEyV80d4LACHGbYAA5bwOEt4J6hs0F__OGjayp6uFkQRpWbJLzbzbtynyCOGGNJ4rG8C8vFWcTDVHCRklwkIg55KOBVV2R5FgckyaUj6_EkOER7RVmI5whHPGMR8wQnsRdCmwSsIwhPU1kFK8rZEYrsytPMpLuXVVcW1J5rnFMrMSolRjshBYkdoffbeSud8OXWGcQKlhq3Va8rBXDeOveNRQIFvS4361ghynpDwW2PZezG947vMOYFerD7o71Ee9W6Fq_Q_eyymm3Wrw2MfwHU5Mu7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite-based+PM2.5+estimation+directly+from+reflectance+at+the+top+of+the+atmosphere+using+a+machine+learning+algorithm&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Liu%2C+Jianjun&rft.au=Weng%2C+Fuzhong&rft.au=Li%2C+Zhanqing&rft.date=2019-07-01&rft.issn=1352-2310&rft.volume=208+p.113-122&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.atmosenv.2019.04.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon