Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm
Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, ma...
Uloženo v:
| Vydáno v: | Atmospheric environment (1994) Ročník 208; s. 113 - 122 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2019
|
| Témata: | |
| ISSN: | 1352-2310, 1873-2844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration.
•A machine learning algorithm used to estimate hourly PM2.5 directly using TOA reflectance.•The performances of the model are comparable with those by using AOD.•Model has high performances on PM2.5 estimations at different temporal scales.•PM2.5 concentrations are estimated over three major polluted regions of China. |
|---|---|
| AbstractList | Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration. Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either measured on the ground or inferred from satellite-retrieved aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA) reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well across China with high accuracies at different temporal scales. The model has an overall cross-validation coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μg m−3 for hourly PM2.5 concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration. •A machine learning algorithm used to estimate hourly PM2.5 directly using TOA reflectance.•The performances of the model are comparable with those by using AOD.•Model has high performances on PM2.5 estimations at different temporal scales.•PM2.5 concentrations are estimated over three major polluted regions of China. |
| Author | Weng, Fuzhong Liu, Jianjun Li, Zhanqing |
| Author_xml | – sequence: 1 givenname: Jianjun orcidid: 0000-0001-8747-3334 surname: Liu fullname: Liu, Jianjun organization: Laboratory of Environmental Model and Data Optima (EMDO), Laurel, MD, USA – sequence: 2 givenname: Fuzhong surname: Weng fullname: Weng, Fuzhong email: fweng58@gmail.com organization: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China – sequence: 3 givenname: Zhanqing surname: Li fullname: Li, Zhanqing organization: Earth System Science Interdisciplinary Center and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA |
| BookMark | eNqFkE9vFDEMxSNUJNrCV0A5cpkhyWQmGYkDqOJPpSKQgHPkTZxuVjPJkmQrlU9PuksvXHrys-Vn-f0uyFlMEQl5zVnPGZ_e7nqoayoY73rB-Nwz2TMmnpFzrtXQCS3lWdPDKDoxcPaCXJSyY4wNalbn5M8PqLgsoWK3gYKOfv8q-pFiqWGFGlKkLmS0dbmnPqeVZvRLayFapFBp3SKtaU-TP8rjI_stZqSHEuItBbqC3YaIdEHI8ThablMOdbu-JM89LAVf_auX5Nenjz-vvnQ33z5fX3246ewgx9pp7abJT7P3So0AoDUHP7WgDkYnN-hwM3vUqKSTOM4KrbdqmLVnSgvu9HBJ3pzu7nP6fWjJzBqKbaEhYjoUI8SgRjnPgrfV6bRqcyqlZTX73Djke8OZeYBtduYRtnmAbZg0DXYzvvvPaEM98qsZwvK0_f3Jjo3DXcBsig3YGJ_gG5fCUyf-Au2XpQg |
| CitedBy_id | crossref_primary_10_1016_j_chemosphere_2020_128801 crossref_primary_10_1029_2022GH000669 crossref_primary_10_1016_j_atmosenv_2024_120560 crossref_primary_10_1016_j_jes_2021_01_022 crossref_primary_10_1016_j_scitotenv_2019_135056 crossref_primary_10_1016_j_atmosres_2023_106787 crossref_primary_10_3390_rs15235489 crossref_primary_10_1016_j_scitotenv_2020_144502 crossref_primary_10_3390_rs15204905 crossref_primary_10_1016_j_asoc_2024_111805 crossref_primary_10_3390_ijerph20031996 crossref_primary_10_1038_s41612_023_00559_0 crossref_primary_10_1016_j_apr_2021_02_007 crossref_primary_10_3390_rs14112714 crossref_primary_10_3390_atmos15040460 crossref_primary_10_5194_essd_13_529_2021 crossref_primary_10_1016_j_scitotenv_2022_153289 crossref_primary_10_1029_2021GL096066 crossref_primary_10_1016_j_apr_2024_102110 crossref_primary_10_3390_atmos12111452 crossref_primary_10_1289_EHP10831 crossref_primary_10_3390_rs16030467 crossref_primary_10_1016_j_atmosres_2020_105146 crossref_primary_10_1109_TGRS_2021_3064191 crossref_primary_10_1016_j_envint_2020_105801 crossref_primary_10_1016_j_atmosenv_2020_117671 crossref_primary_10_3390_rs16183363 crossref_primary_10_1016_j_atmosenv_2023_120021 crossref_primary_10_1016_j_isprsjprs_2022_03_002 crossref_primary_10_3390_atmos15030384 crossref_primary_10_1016_j_atmosres_2024_107281 crossref_primary_10_1016_j_envpol_2020_116327 crossref_primary_10_1007_s41810_025_00289_1 crossref_primary_10_1016_j_atmosenv_2021_118302 crossref_primary_10_1016_j_buildenv_2024_112141 crossref_primary_10_3390_rs15153826 crossref_primary_10_1016_j_ecoenv_2019_109386 crossref_primary_10_3390_rs11182120 crossref_primary_10_3390_rs14102366 crossref_primary_10_1016_j_scitotenv_2022_154363 crossref_primary_10_1016_j_uclim_2024_102148 crossref_primary_10_3390_rs13132525 crossref_primary_10_3390_rs13224545 crossref_primary_10_1016_j_envpol_2025_126012 crossref_primary_10_3390_rs16224306 crossref_primary_10_1007_s11869_022_01285_x crossref_primary_10_1016_j_envpol_2021_116459 crossref_primary_10_1016_j_envpol_2021_116932 crossref_primary_10_1016_j_atmosenv_2021_118898 crossref_primary_10_1016_j_atmosenv_2021_118930 crossref_primary_10_1016_j_gsf_2023_101686 crossref_primary_10_1016_j_swevo_2025_102069 crossref_primary_10_3390_rs17010049 crossref_primary_10_1016_j_envsoft_2022_105329 crossref_primary_10_1016_j_earscirev_2023_104634 crossref_primary_10_1038_s43247_023_01119_3 crossref_primary_10_3390_atmos13050825 crossref_primary_10_1016_j_envint_2020_105950 crossref_primary_10_1016_j_apr_2024_102259 crossref_primary_10_1016_j_chemosphere_2022_134003 crossref_primary_10_5194_amt_15_5497_2022 crossref_primary_10_1016_j_envpol_2021_118783 crossref_primary_10_1029_2021JD036393 crossref_primary_10_1016_j_earscirev_2021_103752 crossref_primary_10_1016_j_atmosenv_2023_120284 crossref_primary_10_1109_TGRS_2024_3382036 crossref_primary_10_1016_j_eswa_2022_117905 crossref_primary_10_1029_2019JD030758 crossref_primary_10_1109_TGRS_2020_2990791 crossref_primary_10_3390_rs16213944 crossref_primary_10_3390_rs15153724 |
| Cites_doi | 10.1007/s11356-015-6027-9 10.1080/02786826.2016.1236182 10.1002/2016JD025659 10.1038/nature15371 10.1016/j.rse.2015.05.016 10.1016/j.atmosenv.2017.07.054 10.1038/s41586-019-0912-1 10.1002/2015GL064479 10.1021/acs.est.7b01210 10.1126/science.1160606 10.3155/1047-3289.59.11.1358 10.1016/j.envpol.2018.01.053 10.1016/j.envres.2012.06.011 10.1016/j.rse.2006.05.022 10.1016/j.atmosenv.2017.02.023 10.1016/j.envres.2012.11.003 10.5194/acp-18-15921-2018 10.1289/ehp.0800123 10.1016/j.atmosenv.2015.02.030 10.4209/aaqr.2015.01.0009 10.1007/s00376-017-7106-2 10.1016/j.envpol.2013.08.002 10.1016/j.rse.2015.02.005 10.3390/rs8030184 10.1002/jgrd.50479 10.1016/j.atmosenv.2015.06.046 10.1016/j.rse.2017.07.023 10.1038/s41598-017-07478-0 10.1016/j.rse.2014.09.015 10.5194/acp-11-7991-2011 10.5194/angeo-27-2755-2009 10.1021/acs.est.5b01413 10.5194/amt-6-2989-2013 10.1016/j.rse.2016.08.027 10.1016/j.scitotenv.2016.12.049 10.1109/TGRS.2011.2166120 10.1186/1471-2105-9-307 10.1214/ss/1009213726 10.1289/ehp.0901623 10.5194/amt-9-3293-2016 10.1002/2015RG000500 10.1016/j.atmosenv.2004.01.039 10.1016/j.atmosenv.2017.01.004 10.1002/2017GL075710 10.1289/ehp.1409481 10.1021/es5009399 10.1021/acs.est.5b05940 10.1029/96JD03988 10.1126/science.1064034 10.1016/j.rse.2014.08.008 10.1080/16742834.2017.1381547 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.atmosenv.2019.04.002 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Public Health |
| EISSN | 1873-2844 |
| EndPage | 122 |
| ExternalDocumentID | 10_1016_j_atmosenv_2019_04_002 S1352231019302171 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SEN SES SPC SPCBC SSE SSJ SSZ T5K TAE ~02 ~G- .HR 186 3O- 53G 9DU AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ R2- SEP SEW T9H VH1 WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-88d66f69ff775aaa881af6019da5d4bedeb9fe8e74d4e597ecfc7398f07821d83 |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467661500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1352-2310 |
| IngestDate | Sun Sep 28 12:24:40 EDT 2025 Sat Nov 29 07:00:44 EST 2025 Tue Nov 18 20:53:09 EST 2025 Fri Feb 23 02:19:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PM2.5 concentration TOA reflectances Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-88d66f69ff775aaa881af6019da5d4bedeb9fe8e74d4e597ecfc7398f07821d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8747-3334 |
| PQID | 2237549921 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2237549921 crossref_primary_10_1016_j_atmosenv_2019_04_002 crossref_citationtrail_10_1016_j_atmosenv_2019_04_002 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2019_04_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 2019-07-00 20190701 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Atmospheric environment (1994) |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Hoff, Engel-Cox (bib60) 2009; 59 Liu, Li (bib30) 2018; 35 Engel-Cox, Holloman, Coutant, Hoff (bib3) 2004; 38 Lelieveld, Evans, Fnais, Giannadaki, Pozzer (bib18) 2015; 525 Levy, Remer, Mattoo, Vermote, Kaufman (bib20) 2007; 112 Zhan, Luo, Deng, Chen, Grieneisen, Shen, Zhu, Zhang (bib59) 2017; 155 Gupta, Christopher (bib8) 2009; 114 Ma, Hu, Huang, Bi, Liu (bib37) 2014; 48 Kaufman, Tanré, Remer, Vermote, Chu, Holben (bib15) 1997; 102 Ristovski, Vucetic, Obradovic (bib43) 2012; 50 Song, Jia, Huang, Zhang (bib46) 2014; 154 Yu, Liu, Ma, Bi (bib58) 2017; 7 Li, Gong, Chen, Wang (bib21) 2015; 15 Zhang, Geng, Wang, Richter, He (bib61) 2012 Xiao, Wang, Chang, Meng, Geng, Lyapustin, Liu (bib54) 2017; 199 Liu, Paciorek, Koutrakis (bib33) 2009; 117 Li, Lau, Ramanathan, Wu, Ding, Manoj, Liu, Qian, Li, Zhou, Fan, Rosenfeld, Ming, Wang, Huang, Wang, Xu, Lee, Cribb, Zhang, Yang, Zhao, Takemura, Wang, Xia, Yin, Zhang, Guo, Zhai, Sugimoto, Babu, Brasseur (bib24) 2016; 54 He, Huang (bib10) 2018; 236 Li, Rosenfeld, Fan (bib25) 2017 Liu, Zheng, Li, Flynn, Cribb (bib29) 2012; 117 Gupta, Levy, Mattoo, Remer, Munchak (bib9) 2016; 9 Geng, Zhang, Martin, Van Donkelaar, Huo, Che, Lin, He (bib7) 2015; 166 Liu, Franklin, Kahn, Koutrakis (bib34) 2007; 107 You, Zang, Zhang, Li, Pan, Wang (bib57) 2016; 8 Hu, Belle, Meng, Wildani, Waller, Strickland, Liu (bib13) 2017; 51 Ramanathan, Crutzen, Kiehl, Rosenfeld (bib41) 2001; 294 Liaw, Wiener (bib27) 2002; 2 Lin, Li, Yuan, Lau, Li, Fung (bib28) 2015; 156 Van Donkelaar, Martin, Spurr, Drury, Remer, Levy, Wang (bib53) 2013; 118 Lee, Liu, Coull, Schwartz, Koutrakis (bib17) 2011; 11 Feng, Li, Zhu, Hou, Jin, Wang (bib6) 2015; 107 Li, Shen, Zeng, Yuan, Zhang (bib23) 2017; 152 Shang, Chen, Letu, Zhao, Li, Bao (bib45) 2017; 122 Aerosol Product Application (bib1) 2012 Li, Shen, Yuan, Zhang, Zhang (bib22) 2017; 44 Price, Kacarab, Cocker, Purvis-Roberts, Silva (bib40) 2016; 50 Fang, Zou, Liu, Sternberg, Zhai (bib5) 2016; 186 You, Zang, Zhang, Li, Wang (bib56) 2016; 23 Fan, Rosenfeld, Yang, Zhao, Ruby Leung, Li (bib4) 2015; 42 Breiman (bib2) 2001; 16 Strobl, Boulesteix, Kneib, Augustin, Zeileis (bib48) 2008; 9 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib42) 2019; 566 Rosenfeld, Lohmann, Raga, O'Dowd, Kulmala, Fuzzi, Reissell, Andreae (bib44) 2008; 321 Hou, Li, Zhang, Xu, Zhang, Li, Li, Wei, Ma (bib11) 2014; 17 Su, Li, Li, Lau, Yang, Shen (bib49) 2017; 166 Su, Li, Kahn (bib50) 2018; 18 Li, Zhao, Kahn, Mishchenko, Remer, Lee, Wang, Laszlo, Nakajima, Maring (bib26) 2009; 27 MEPC (bib39) 2015 Lee, Coull, Bell, Koutrakis (bib16) 2012; 118 Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (bib38) 2016; 124 Zheng, Zhang, Liu, Geng, He (bib63) 2016; 124 Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (bib12) 2013; 121 Liu (bib32) 2014; 6 Levy, Mattoo, Munchak, Remer, Sayer, Patadia, Hsu (bib19) 2013; 6 Lv, Hu, Chang, Russell, Cai, Xu, Bai (bib35) 2017; 580 Liu, Park, Jacob, Li, Kilaru, Sarnat (bib31) 2004; 109 Van Donkelaar, Martin, Brauer, Kahn, Levy, Verduzco, Villeneuve (bib52) 2010; 118 Kan, Chen (bib14) 2002; 19 Lv, Hu, Chang, Russell, Bai (bib36) 2016; 50 Sorek-Hamer, Strawa, Chatfield, Esswein, Cohen, Broday (bib47) 2013; 182 Zhang, Li (bib62) 2015; 160 Tan, Zhang, Wang, Chen, Shi, Shi (bib51) 2018; 11 Xie, Wang, Zhang, Dong, Lv, Bai (bib55) 2015; 49 Hu (10.1016/j.atmosenv.2019.04.002_bib12) 2013; 121 Liu (10.1016/j.atmosenv.2019.04.002_bib31) 2004; 109 Ma (10.1016/j.atmosenv.2019.04.002_bib37) 2014; 48 Engel-Cox (10.1016/j.atmosenv.2019.04.002_bib3) 2004; 38 Li (10.1016/j.atmosenv.2019.04.002_bib23) 2017; 152 Gupta (10.1016/j.atmosenv.2019.04.002_bib9) 2016; 9 Zhang (10.1016/j.atmosenv.2019.04.002_bib62) 2015; 160 Ristovski (10.1016/j.atmosenv.2019.04.002_bib43) 2012; 50 Fan (10.1016/j.atmosenv.2019.04.002_bib4) 2015; 42 Kaufman (10.1016/j.atmosenv.2019.04.002_bib15) 1997; 102 Price (10.1016/j.atmosenv.2019.04.002_bib40) 2016; 50 Sorek-Hamer (10.1016/j.atmosenv.2019.04.002_bib47) 2013; 182 Li (10.1016/j.atmosenv.2019.04.002_bib24) 2016; 54 Reichstein (10.1016/j.atmosenv.2019.04.002_bib42) 2019; 566 Zhan (10.1016/j.atmosenv.2019.04.002_bib59) 2017; 155 Li (10.1016/j.atmosenv.2019.04.002_bib21) 2015; 15 Tan (10.1016/j.atmosenv.2019.04.002_bib51) 2018; 11 Aerosol Product Application (10.1016/j.atmosenv.2019.04.002_bib1) 2012 Gupta (10.1016/j.atmosenv.2019.04.002_bib8) 2009; 114 Breiman (10.1016/j.atmosenv.2019.04.002_bib2) 2001; 16 Shang (10.1016/j.atmosenv.2019.04.002_bib45) 2017; 122 Su (10.1016/j.atmosenv.2019.04.002_bib49) 2017; 166 Kan (10.1016/j.atmosenv.2019.04.002_bib14) 2002; 19 Lelieveld (10.1016/j.atmosenv.2019.04.002_bib18) 2015; 525 Xie (10.1016/j.atmosenv.2019.04.002_bib55) 2015; 49 Liu (10.1016/j.atmosenv.2019.04.002_bib33) 2009; 117 Liaw (10.1016/j.atmosenv.2019.04.002_bib27) 2002; 2 Lv (10.1016/j.atmosenv.2019.04.002_bib36) 2016; 50 Rosenfeld (10.1016/j.atmosenv.2019.04.002_bib44) 2008; 321 Levy (10.1016/j.atmosenv.2019.04.002_bib20) 2007; 112 Liu (10.1016/j.atmosenv.2019.04.002_bib32) 2014; 6 Van Donkelaar (10.1016/j.atmosenv.2019.04.002_bib52) 2010; 118 Feng (10.1016/j.atmosenv.2019.04.002_bib6) 2015; 107 Hu (10.1016/j.atmosenv.2019.04.002_bib13) 2017; 51 Liu (10.1016/j.atmosenv.2019.04.002_bib34) 2007; 107 Hou (10.1016/j.atmosenv.2019.04.002_bib11) 2014; 17 Li (10.1016/j.atmosenv.2019.04.002_bib26) 2009; 27 Zhang (10.1016/j.atmosenv.2019.04.002_bib61) 2012 Lv (10.1016/j.atmosenv.2019.04.002_bib35) 2017; 580 Zheng (10.1016/j.atmosenv.2019.04.002_bib63) 2016; 124 Van Donkelaar (10.1016/j.atmosenv.2019.04.002_bib53) 2013; 118 Zhang (10.1016/j.atmosenv.2019.04.002_bib60) 2009; 59 Ma (10.1016/j.atmosenv.2019.04.002_bib38) 2016; 124 You (10.1016/j.atmosenv.2019.04.002_bib56) 2016; 23 You (10.1016/j.atmosenv.2019.04.002_bib57) 2016; 8 MEPC (10.1016/j.atmosenv.2019.04.002_bib39) 2015 Su (10.1016/j.atmosenv.2019.04.002_bib50) 2018; 18 Levy (10.1016/j.atmosenv.2019.04.002_bib19) 2013; 6 Xiao (10.1016/j.atmosenv.2019.04.002_bib54) 2017; 199 Lin (10.1016/j.atmosenv.2019.04.002_bib28) 2015; 156 Geng (10.1016/j.atmosenv.2019.04.002_bib7) 2015; 166 Lee (10.1016/j.atmosenv.2019.04.002_bib16) 2012; 118 Song (10.1016/j.atmosenv.2019.04.002_bib46) 2014; 154 Liu (10.1016/j.atmosenv.2019.04.002_bib29) 2012; 117 Liu (10.1016/j.atmosenv.2019.04.002_bib30) 2018; 35 Li (10.1016/j.atmosenv.2019.04.002_bib25) 2017 Ramanathan (10.1016/j.atmosenv.2019.04.002_bib41) 2001; 294 Fang (10.1016/j.atmosenv.2019.04.002_bib5) 2016; 186 Lee (10.1016/j.atmosenv.2019.04.002_bib17) 2011; 11 Strobl (10.1016/j.atmosenv.2019.04.002_bib48) 2008; 9 Yu (10.1016/j.atmosenv.2019.04.002_bib58) 2017; 7 Li (10.1016/j.atmosenv.2019.04.002_bib22) 2017; 44 He (10.1016/j.atmosenv.2019.04.002_bib10) 2018; 236 |
| References_xml | – volume: 321 start-page: 1309 year: 2008 end-page: 1313 ident: bib44 article-title: Flood or drought: how do aerosols affect precipitation? publication-title: Science – volume: 182 start-page: 417 year: 2013 end-page: 423 ident: bib47 article-title: Improved retrieval of PM publication-title: Environ. Pollut. – volume: 121 start-page: 1 year: 2013 end-page: 10 ident: bib12 article-title: Estimating ground-level PM publication-title: Environ. Res. – volume: 6 start-page: 6 year: 2014 end-page: 10 ident: bib32 article-title: Monitoring PM publication-title: Environ. Manag. – volume: 17 start-page: 012268 year: 2014 ident: bib11 article-title: Using support vector regression to predict PM publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 112 year: 2007 ident: bib20 article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance publication-title: J. Geophys. Res. D Atmos. – volume: 236 start-page: 1027 year: 2018 end-page: 1037 ident: bib10 article-title: Satellite-based high-resolution PM publication-title: Environ. Pollut. – volume: 107 start-page: 118 year: 2015 end-page: 128 ident: bib6 article-title: Artificial neural networks forecasting of PM publication-title: Atmos. Environ. – volume: 156 start-page: 117 year: 2015 end-page: 128 ident: bib28 article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM publication-title: Remote Sens. Environ. – volume: 23 start-page: 8327 year: 2016 end-page: 8338 ident: bib56 article-title: Estimating national-scale ground-level PM publication-title: Environ. Sci. Pollut. Control Ser. – volume: 107 start-page: 33 year: 2007 end-page: 44 ident: bib34 article-title: Using aerosol optical thickness to predict ground-level PM publication-title: Remote Sens. Environ. – volume: 155 start-page: 129 year: 2017 end-page: 139 ident: bib59 article-title: Spatiotemporal prediction of continuous daily PM publication-title: Atmos. Environ. – year: 2012 ident: bib61 article-title: Satellite remote sensing of changes in NO publication-title: Chin. Sci. Bull. – volume: 152 start-page: 477 year: 2017 end-page: 489 ident: bib23 article-title: Point-surface fusion of station measurements and satellite observations for mapping PM publication-title: Atmos. Environ. – volume: 160 start-page: 252 year: 2015 end-page: 262 ident: bib62 article-title: Remote sensing of atmospheric fine particulate matter PM publication-title: Remote Sens. Environ. – volume: 118 start-page: 8 year: 2012 end-page: 15 ident: bib16 article-title: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM publication-title: Environ. Res. – volume: 124 start-page: 232 year: 2016 end-page: 242 ident: bib63 article-title: Estimating ground-level PM publication-title: Atmos. Environ. – volume: 199 start-page: 437 year: 2017 end-page: 446 ident: bib54 article-title: Full-coverage high-resolution daily PM publication-title: Remote Sens. Environ. – volume: 166 start-page: 262 year: 2015 end-page: 270 ident: bib7 article-title: Estimating long-term PM publication-title: Remote Sens. Environ. – volume: 44 start-page: 11,985 year: 2017 end-page: 11,993 ident: bib22 article-title: Estimating ground level PM publication-title: Geophys. Res. Lett. – volume: 48 start-page: 7436 year: 2014 end-page: 7444 ident: bib37 article-title: Estimating ground-level PM publication-title: Environ. Sci. Technol. – year: 2015 ident: bib39 article-title: Air Quality Daily Report.: Ministry of Environmental Protection of the People's Republic of China – volume: 118 start-page: 5621 year: 2013 end-page: 5636 ident: bib53 article-title: Optimal estimation for global ground-level fine particulate matter concentrations publication-title: J. Geophys. Res.: Atmosphere – volume: 51 start-page: 6936 year: 2017 end-page: 6944 ident: bib13 article-title: Estimating PM publication-title: Environ. Sci. Technol. – volume: 49 start-page: 12280 year: 2015 end-page: 12288 ident: bib55 article-title: Daily estimation of ground-level PM publication-title: Environ. Sci. Technol. – volume: 9 start-page: 307 year: 2008 ident: bib48 article-title: Conditional variable importance for random forests publication-title: BMC Bioinf. – volume: 117 start-page: 886 year: 2009 end-page: 892 ident: bib33 article-title: Estimating regional spatial and temporal variability of PM publication-title: Environ. Health Perspect. – year: 2017 ident: bib25 article-title: Aerosols and their impact on radiation, clouds, precipitation, and severe weather events publication-title: Oxf. Res. Encyclopedias – volume: 16 start-page: 199 year: 2001 end-page: 215 ident: bib2 article-title: Statistical modeling: the two cultures publication-title: Stat. Sci. – volume: 525 start-page: 367 year: 2015 end-page: 371 ident: bib18 article-title: The contribution of out-door air pollution sources to premature mortality on a global scale publication-title: Nature – volume: 109 year: 2004 ident: bib31 article-title: Mapping annual mean ground-level PM publication-title: J. Geophys. Res.: Atmosphere – volume: 154 start-page: 1 year: 2014 end-page: 7 ident: bib46 article-title: A satellite-based geographically weighted regression model for regional PM publication-title: Remote Sens. Environ. – volume: 19 start-page: 422 year: 2002 end-page: 424 ident: bib14 article-title: Meta-analysis of exposure–response functions of air particulate matter and adverse health outcomes in China publication-title: J. Environ. Health – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib27 article-title: Classification and regression by random forest publication-title: R. News – volume: 124 start-page: 184 year: 2016 end-page: 192 ident: bib38 article-title: Satellite-based spatiotemporal trends in PM publication-title: Environ. Health Perspect. – volume: 18 start-page: 15921 year: 2018 end-page: 15935 ident: bib50 article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 3293 year: 2016 end-page: 3308 ident: bib9 article-title: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm publication-title: Atmos. Meas. Tech. – volume: 186 start-page: 152 year: 2016 end-page: 163 ident: bib5 article-title: Satellite-based ground PM publication-title: Remote Sens. Environ. – volume: 114 year: 2009 ident: bib8 article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach publication-title: J. Geophys. Res. – volume: 50 start-page: 409 year: 2012 end-page: 414 ident: bib43 article-title: Uncertainty analysis of neural-network-based aerosol retrieval publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 50 start-page: 4752 year: 2016 end-page: 4759 ident: bib36 article-title: Improving the accuracy of daily PM publication-title: Environ. Sci. Technol. – volume: 15 start-page: 1347 year: 2015 end-page: 1356 ident: bib21 article-title: Estimating ground-level PM publication-title: Aerosol Air Qual. Res. – volume: 54 start-page: 4 year: 2016 ident: bib24 article-title: Aerosol and monsoon climate interactions over Asia publication-title: Rev. Geophys. – volume: 35 start-page: 169 year: 2018 end-page: 181 ident: bib30 article-title: First surface-based estimation of the aerosol indirect effect over a site in southeastern China publication-title: Adv. Atmos. Sci. – volume: 50 start-page: 1216 year: 2016 end-page: 1226 ident: bib40 article-title: Effects of temperature on the formation of secondary organic aerosol from amine precursors publication-title: Aerosol Sci. Technol. – volume: 122 start-page: 3528 year: 2017 end-page: 3543 ident: bib45 article-title: Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China publication-title: J. Geophys. Res.: Atmosphere – volume: 27 start-page: 2755 year: 2009 end-page: 2770 ident: bib26 article-title: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective publication-title: Ann. Geophys. – volume: 11 start-page: 86 year: 2018 end-page: 93 ident: bib51 article-title: Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China publication-title: Atmos. Ocean. Sci. Lett. – volume: 166 start-page: 531 year: 2017 end-page: 542 ident: bib49 article-title: An intercomparison of AOD-converted PM publication-title: Atmos. Environ. – volume: 294 start-page: 2119 year: 2001 end-page: 2124 ident: bib41 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science – volume: 117 year: 2012 ident: bib29 article-title: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China publication-title: J. Geophys. Res. – year: 2012 ident: bib1 article-title: Team of the AWG Aerosols/Air Quality/Atmospheric Chemistry Team: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter, NOAA, NESDIS, Center for Satellite Applications and Research, Version 3.0, July 30 – volume: 580 start-page: 235 year: 2017 end-page: 244 ident: bib35 article-title: Daily estimation of ground-level PM publication-title: Sci. Total Environ. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bib42 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 11 start-page: 7991 year: 2011 end-page: 8002 ident: bib17 article-title: A novel calibration approach of MODIS AOD data to predict PM publication-title: Atmos. Chem. Phys. – volume: 59 start-page: 1358 year: 2009 end-page: 1369 ident: bib60 article-title: The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM publication-title: J. Air Waste Manag. Assoc. – volume: 38 start-page: 2495 year: 2004 end-page: 2509 ident: bib3 article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality publication-title: Atmos. Environ. – volume: 6 start-page: 2989 year: 2013 end-page: 3034 ident: bib19 article-title: The Collection 6 MODIS aerosol products over land and ocean publication-title: Atmos. Meas. Tech. – volume: 102 start-page: 17 051 year: 1997 end-page: 17 067 ident: bib15 article-title: Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer publication-title: J. Geophys. Res. – volume: 7 start-page: 7048 year: 2017 ident: bib58 article-title: Improving satellite-based PM publication-title: Sci. Rep. – volume: 42 start-page: 6066 year: 2015 end-page: 6075 ident: bib4 article-title: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China publication-title: Geophys. Res. Lett. – volume: 118 start-page: 847 year: 2010 end-page: 855 ident: bib52 article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application publication-title: Environ. Health Perspect. – volume: 8 start-page: 184 year: 2016 ident: bib57 article-title: National-scale estimates of ground-level PM publication-title: Rem. Sens. – volume: 23 start-page: 8327 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib56 article-title: Estimating national-scale ground-level PM2.5 concentration in China using geographically weighted regression based on MODIS and MISR AOD publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-015-6027-9 – volume: 50 start-page: 1216 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib40 article-title: Effects of temperature on the formation of secondary organic aerosol from amine precursors publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2016.1236182 – volume: 122 start-page: 3528 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib45 article-title: Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China publication-title: J. Geophys. Res.: Atmosphere doi: 10.1002/2016JD025659 – volume: 525 start-page: 367 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib18 article-title: The contribution of out-door air pollution sources to premature mortality on a global scale publication-title: Nature doi: 10.1038/nature15371 – volume: 166 start-page: 262 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib7 article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.05.016 – volume: 166 start-page: 531 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib49 article-title: An intercomparison of AOD-converted PM2.5 concentrations using different approaches for estimating aerosol vertical distribution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.07.054 – volume: 109 year: 2004 ident: 10.1016/j.atmosenv.2019.04.002_bib31 article-title: Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States publication-title: J. Geophys. Res.: Atmosphere – volume: 117 year: 2012 ident: 10.1016/j.atmosenv.2019.04.002_bib29 article-title: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China publication-title: J. Geophys. Res. – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.atmosenv.2019.04.002_bib42 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 42 start-page: 6066 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib4 article-title: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL064479 – volume: 51 start-page: 6936 issue: 12 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib13 article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01210 – volume: 321 start-page: 1309 year: 2008 ident: 10.1016/j.atmosenv.2019.04.002_bib44 article-title: Flood or drought: how do aerosols affect precipitation? publication-title: Science doi: 10.1126/science.1160606 – volume: 59 start-page: 1358 issue: 11 year: 2009 ident: 10.1016/j.atmosenv.2019.04.002_bib60 article-title: The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency regions publication-title: J. Air Waste Manag. Assoc. doi: 10.3155/1047-3289.59.11.1358 – volume: 236 start-page: 1027 year: 2018 ident: 10.1016/j.atmosenv.2019.04.002_bib10 article-title: Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.053 – volume: 118 start-page: 8 year: 2012 ident: 10.1016/j.atmosenv.2019.04.002_bib16 article-title: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations publication-title: Environ. Res. doi: 10.1016/j.envres.2012.06.011 – volume: 107 start-page: 33 year: 2007 ident: 10.1016/j.atmosenv.2019.04.002_bib34 article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.05.022 – volume: 155 start-page: 129 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib59 article-title: Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.02.023 – volume: 121 start-page: 1 year: 2013 ident: 10.1016/j.atmosenv.2019.04.002_bib12 article-title: Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – volume: 18 start-page: 15921 year: 2018 ident: 10.1016/j.atmosenv.2019.04.002_bib50 article-title: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-15921-2018 – volume: 117 start-page: 886 issue: 6 year: 2009 ident: 10.1016/j.atmosenv.2019.04.002_bib33 article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0800123 – volume: 107 start-page: 118 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib6 article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.02.030 – volume: 15 start-page: 1347 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib21 article-title: Estimating ground-level PM2.5 using fine-resolution satellite data in the megacity of beijing, China publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2015.01.0009 – volume: 35 start-page: 169 issue: 2 year: 2018 ident: 10.1016/j.atmosenv.2019.04.002_bib30 article-title: First surface-based estimation of the aerosol indirect effect over a site in southeastern China publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-017-7106-2 – volume: 182 start-page: 417 year: 2013 ident: 10.1016/j.atmosenv.2019.04.002_bib47 article-title: Improved retrieval of PM2.5 from satellite data products using non-linear methods publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.08.002 – year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib25 article-title: Aerosols and their impact on radiation, clouds, precipitation, and severe weather events publication-title: Oxf. Res. Encyclopedias – volume: 160 start-page: 252 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib62 article-title: Remote sensing of atmospheric fine particulate matter PM2.5 mass concentration near the ground from satellite observation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.005 – volume: 8 start-page: 184 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib57 article-title: National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD publication-title: Rem. Sens. doi: 10.3390/rs8030184 – volume: 118 start-page: 5621 year: 2013 ident: 10.1016/j.atmosenv.2019.04.002_bib53 article-title: Optimal estimation for global ground-level fine particulate matter concentrations publication-title: J. Geophys. Res.: Atmosphere doi: 10.1002/jgrd.50479 – volume: 124 start-page: 232 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib63 article-title: Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.06.046 – volume: 199 start-page: 437 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib54 article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.023 – volume: 7 start-page: 7048 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib58 article-title: Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting publication-title: Sci. Rep. doi: 10.1038/s41598-017-07478-0 – volume: 156 start-page: 117 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib28 article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.015 – volume: 11 start-page: 7991 year: 2011 ident: 10.1016/j.atmosenv.2019.04.002_bib17 article-title: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-7991-2011 – volume: 27 start-page: 2755 year: 2009 ident: 10.1016/j.atmosenv.2019.04.002_bib26 article-title: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective publication-title: Ann. Geophys. doi: 10.5194/angeo-27-2755-2009 – volume: 49 start-page: 12280 issue: 20 year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib55 article-title: Daily estimation of ground-level PM2.5 concentrations over beijing using 3 km resolution MODIS AOD publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01413 – volume: 19 start-page: 422 issue: 6 year: 2002 ident: 10.1016/j.atmosenv.2019.04.002_bib14 article-title: Meta-analysis of exposure–response functions of air particulate matter and adverse health outcomes in China publication-title: J. Environ. Health – volume: 6 start-page: 2989 year: 2013 ident: 10.1016/j.atmosenv.2019.04.002_bib19 article-title: The Collection 6 MODIS aerosol products over land and ocean publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-2989-2013 – volume: 186 start-page: 152 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib5 article-title: Satellite-based ground PM2.5 estimation using timely structure adaptive modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.027 – volume: 580 start-page: 235 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib35 article-title: Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.049 – volume: 50 start-page: 409 year: 2012 ident: 10.1016/j.atmosenv.2019.04.002_bib43 article-title: Uncertainty analysis of neural-network-based aerosol retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2166120 – volume: 9 start-page: 307 issue: 1 year: 2008 ident: 10.1016/j.atmosenv.2019.04.002_bib48 article-title: Conditional variable importance for random forests publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-307 – volume: 16 start-page: 199 year: 2001 ident: 10.1016/j.atmosenv.2019.04.002_bib2 article-title: Statistical modeling: the two cultures publication-title: Stat. Sci. doi: 10.1214/ss/1009213726 – year: 2012 ident: 10.1016/j.atmosenv.2019.04.002_bib1 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.atmosenv.2019.04.002_bib27 article-title: Classification and regression by random forest publication-title: R. News – volume: 118 start-page: 847 year: 2010 ident: 10.1016/j.atmosenv.2019.04.002_bib52 article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0901623 – volume: 9 start-page: 3293 issue: 7 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib9 article-title: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-9-3293-2016 – volume: 54 start-page: 4 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib24 article-title: Aerosol and monsoon climate interactions over Asia publication-title: Rev. Geophys. doi: 10.1002/2015RG000500 – volume: 6 start-page: 6 year: 2014 ident: 10.1016/j.atmosenv.2019.04.002_bib32 article-title: Monitoring PM2.5 from space for health: past, present, and future directions publication-title: Environ. Manag. – volume: 38 start-page: 2495 year: 2004 ident: 10.1016/j.atmosenv.2019.04.002_bib3 article-title: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.01.039 – year: 2015 ident: 10.1016/j.atmosenv.2019.04.002_bib39 – volume: 152 start-page: 477 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib23 article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.004 – volume: 44 start-page: 11,985 year: 2017 ident: 10.1016/j.atmosenv.2019.04.002_bib22 article-title: Estimating ground level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 124 start-page: 184 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib38 article-title: Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1409481 – volume: 112 year: 2007 ident: 10.1016/j.atmosenv.2019.04.002_bib20 article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance publication-title: J. Geophys. Res. D Atmos. – volume: 114 year: 2009 ident: 10.1016/j.atmosenv.2019.04.002_bib8 article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach publication-title: J. Geophys. Res. – volume: 48 start-page: 7436 year: 2014 ident: 10.1016/j.atmosenv.2019.04.002_bib37 article-title: Estimating ground-level PM2.5 in China using satellite remote sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es5009399 – volume: 50 start-page: 4752 year: 2016 ident: 10.1016/j.atmosenv.2019.04.002_bib36 article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05940 – volume: 102 start-page: 17 051 year: 1997 ident: 10.1016/j.atmosenv.2019.04.002_bib15 article-title: Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer publication-title: J. Geophys. Res. doi: 10.1029/96JD03988 – volume: 294 start-page: 2119 issue: 5549 year: 2001 ident: 10.1016/j.atmosenv.2019.04.002_bib41 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science doi: 10.1126/science.1064034 – volume: 154 start-page: 1 year: 2014 ident: 10.1016/j.atmosenv.2019.04.002_bib46 article-title: A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.008 – year: 2012 ident: 10.1016/j.atmosenv.2019.04.002_bib61 article-title: Satellite remote sensing of changes in NOx emissions over China during 1996–2010 publication-title: Chin. Sci. Bull. – volume: 17 start-page: 012268 issue: 1 year: 2014 ident: 10.1016/j.atmosenv.2019.04.002_bib11 article-title: Using support vector regression to predict PM10 and PM2.5 publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 11 start-page: 86 year: 2018 ident: 10.1016/j.atmosenv.2019.04.002_bib51 article-title: Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2017.1381547 |
| SSID | ssj0003797 |
| Score | 2.5596302 |
| Snippet | Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to public health whose concentration has been either... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113 |
| SubjectTerms | aerosols algorithms artificial intelligence atmospheric chemistry China Machine learning meteorological parameters monitoring particle size particulates PM2.5 concentration pollution public health reflectance satellites seasonal variation TOA reflectances |
| Title | Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2019.04.002 https://www.proquest.com/docview/2237549921 |
| Volume | 208 |
| WOSCitedRecordID | wos000467661500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgNoQlCY2PiQkRAvUUbz1cSPFWoFqJRJdKJvlhM7a6s26dpkGvsf-J85f7XRAG088BJZrt2kvl_vLmf_7hB6ywWPwzTwXcHS2A0BJS6BB3ZzlggS5iJLA66KTcSjUTKZkNNW66flwlwu4qJIrq7I6r-KGvpA2JI6-w_i3n4pdEAbhA5XEDtc7yT4b0wl2ayEKy0Ud06_-CeRI5NpaJaio63Y4oemloCFlJF7zRxQxEZwR1f26ACrluVGZh4QTq2iCsxZquOXwtabgK7FebmeVdNl09Ht2YmzrEmmU3mhCAkbAYjhrFZQApzO6y1UvwuthAb19bQ01lUNVrspU1ZcWJtrQhaKJWVDFlrLgtfnSseyqYb9TuKsZIkZ19NMZaNSPc1VNdbZfPab4tcxiPmJWhb4WfLQHlFJbDv-ztTZ7f3RVzo4Gw7puD8Zv1tduLIImdysNxVZ7qF9P44IKMn93qf-5PPWtAexrtZjn79BOf_zrf_m7dyw-8qZGT9Gj8xbCO5p9DxBLVG00cNGbso2OuzvpAZDjQ3YtNGBjvRiTWB7iq5vAA4rwOEd4LAFHJaAww3AYVZhQBkGwOEyV80d4LACHGbYAA5bwOEt4J6hs0F__OGjayp6uFkQRpWbJLzbzbtynyCOGGNJ4rG8C8vFWcTDVHCRklwkIg55KOBVV2R5FgckyaUj6_EkOER7RVmI5whHPGMR8wQnsRdCmwSsIwhPU1kFK8rZEYrsytPMpLuXVVcW1J5rnFMrMSolRjshBYkdoffbeSud8OXWGcQKlhq3Va8rBXDeOveNRQIFvS4361ghynpDwW2PZezG947vMOYFerD7o71Ee9W6Fq_Q_eyymm3Wrw2MfwHU5Mu7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite-based+PM2.5+estimation+directly+from+reflectance+at+the+top+of+the+atmosphere+using+a+machine+learning+algorithm&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Liu%2C+Jianjun&rft.au=Weng%2C+Fuzhong&rft.au=Li%2C+Zhanqing&rft.date=2019-07-01&rft.issn=1352-2310&rft.volume=208+p.113-122&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.atmosenv.2019.04.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |