A new holistic systems approach to the design of heat treated alloy steels using a biologically inspired multi-objective optimisation algorithm

The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 37; s. 103 - 114
Hlavní autoři: Chen, Jun, Mahfouf, Mahdi, Sidahmed, Gaffour
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2015
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve ‘right-first-time’ production. •We model mechanical properties of heat treated alloy steel using interpretable fuzzy models.•We demonstrate how to locate the ‘best’ processing parameters and chemical compositions.•We demonstrate how to achieve certain mechanical properties.•We demonstrated a holistic systems approach to achieve ‘right-first-time’ production.•We unravel the power of multi-objective optimisation and interpretable fuzzy modelling.
AbstractList The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the 'best' processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve 'right-first-time' production.
The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve ‘right-first-time’ production. •We model mechanical properties of heat treated alloy steel using interpretable fuzzy models.•We demonstrate how to locate the ‘best’ processing parameters and chemical compositions.•We demonstrate how to achieve certain mechanical properties.•We demonstrated a holistic systems approach to achieve ‘right-first-time’ production.•We unravel the power of multi-objective optimisation and interpretable fuzzy modelling.
Author Chen, Jun
Sidahmed, Gaffour
Mahfouf, Mahdi
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-8545-2924
  surname: Chen
  fullname: Chen, Jun
  email: juchen@lincoln.ac.uk
  organization: School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
– sequence: 2
  givenname: Mahdi
  surname: Mahfouf
  fullname: Mahfouf, Mahdi
  email: m.mahfouf@shef.ac.uk
  organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, UK
– sequence: 3
  givenname: Gaffour
  surname: Sidahmed
  fullname: Sidahmed, Gaffour
  email: gaffoursid@yahoo.com
  organization: Sonatrach-Divicion AVAL Downstream Activity, Oran, Algeria
BookMark eNqFkc2O1DAQhC20SMwuvALykUuCPXEcR-LAasWftBIXOFuO3Ul65NiD7Vk0T8Er42XgwmUvroPrK3V3XZOrEAMQ8pqzljMu3x5aCIs5Hg22e8ZFy1Rb5RnZcTV0jRzkeEV2bOz3DR8H-YJc53xgjHVKyB35dUsD_KRr9JgLWprPucCWac1L0diVlkjLCtRBxiXQONMVTKEl1RccNd7HM60I-ExPGcNCDZ0w-rigrZ9niiEfMVXrdvIFmzgdwBZ8ABqPBTfMpmAMNWeJCcu6vSTPZ-MzvPqrN-T7xw_f7j43918_fbm7vW9sJ_rSKCZmCQqcMcAMdBYM2yvXicEIySYhzDAy54SbYJCK9cJJNk_KCCOtM453N-TNJbeu-eMEueg6iwXvTYB4yprLnoteCTVWq7xYbYo5J5j1MeFm0llzph8b0Af9rwH92IBmSlep4Lv_QIvlz74lGfRP4-8veL0tPCAknS1CsODqPW3RLuJTEb8Bnp6t8w
CitedBy_id crossref_primary_10_1002_srin_201800015
crossref_primary_10_1016_j_advengsoft_2018_04_012
crossref_primary_10_1016_j_engappai_2017_03_001
crossref_primary_10_1016_j_trc_2018_07_008
crossref_primary_10_1007_s42243_018_0101_8
Cites_doi 10.1111/j.1600-065X.1989.tb00025.x
10.1007/978-3-642-34156-4_11
10.1007/11823940_22
10.1080/18756891.2012.685311
10.1109/FUZZY.1994.343619
10.1016/j.cma.2007.03.003
10.1007/11536444_19
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8BQ
8FD
F28
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2014.08.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 114
ExternalDocumentID 10_1016_j_engappai_2014_08_014
S0952197614002139
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8BQ
8FD
F28
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c345t-804f6e8edaae0ae3cea028d347a460b44a790dd4dbe768054d60fb8a4a6cdad13
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346453800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Sep 27 23:17:38 EDT 2025
Sat Nov 29 07:56:42 EST 2025
Tue Nov 18 21:49:28 EST 2025
Fri Feb 23 02:28:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mn
Mo
C
ROA
Fuzzy modelling
AIS
Al
RMSE
Artificial Immune Algorithm
BEP
PAIA2
Cr
MOP
Multi-objective optimisation
Abs
S
UTS
Si
V
‘Right-First-Time’ production of alloy steels
IMOFM
Ni
FRBS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-804f6e8edaae0ae3cea028d347a460b44a790dd4dbe768054d60fb8a4a6cdad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8545-2924
PQID 1651458489
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1651458489
crossref_primary_10_1016_j_engappai_2014_08_014
crossref_citationtrail_10_1016_j_engappai_2014_08_014
elsevier_sciencedirect_doi_10_1016_j_engappai_2014_08_014
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, J., Mahfouf, M., Bingham, C., Zhang,Y., Yang, Z., Gallimore, M., 2012. An evolutionary based clustering aglorithm applied to data compression for industrial systems. In: Proceedings of the 11th International Symposium on Intelligent Data Analysis (IDA), Helsinki, Finland.
Chen, Mahfouf (bib5) 2012; 5
Farmer, Packard (bib11) 1986; 22D
Pickering (bib17) 1978
Tenner (bib18) 1999
Deb (bib9) 2002
Cooper, M.G., Vidal, J.J., 1994. Genetic design of fuzzy controllers: the cart and jointed-pole problem. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. 2, pp. 1332–1337.
Chen (bib4) 2009
Deb, Agrawal (bib8) 1994
Energetics, Inc., 2003. Steel Indsutry Technology Roadmap Barriers and Pathways for Yield Improvements, American Iron and Steel Institute.
Mahfouf, M., Linkens, D.A., Abbod, M.F., 2006. Optimisation of steel production incorporating economic factors In: Proceedings of the 1st IFAC Workshop on Applications of Large Scale Industrial Systems.
Perelson (bib16) 1989; 110
Zitzler, Laumanns, Thiele (bib20) 2001
Magdalena (bib14) 1998; 13
Chen, J., Mahfouf, M., 2006. A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimisation Problems. In: Bersini, H. and Carneiro, J. (Eds.), ICARIS, LNCS 4163, Springer, Berlin/Heidelberg, pp. 280–293.
Jerne (bib13) 1974; 125C
Beyer, Sendhoff (bib1) 2007; 196
Burnet (bib2) 1959
Freschi, F., Reetto, M., 2005. Multiobjective Optimisation By a Modified Artificial Immune System Algorithm. In: Christian Jacob et al. (Eds.), ICARIS 2004, LNCS 3627, pp. 248–261.
Zhang, Tenner (bib19) 2008
Burnet (10.1016/j.engappai.2014.08.014_bib2) 1959
10.1016/j.engappai.2014.08.014_bib7
Chen (10.1016/j.engappai.2014.08.014_bib5) 2012; 5
Jerne (10.1016/j.engappai.2014.08.014_bib13) 1974; 125C
Deb (10.1016/j.engappai.2014.08.014_bib9) 2002
Zitzler (10.1016/j.engappai.2014.08.014_bib20) 2001
10.1016/j.engappai.2014.08.014_bib3
10.1016/j.engappai.2014.08.014_bib6
Tenner (10.1016/j.engappai.2014.08.014_bib18) 1999
Chen (10.1016/j.engappai.2014.08.014_bib4) 2009
Perelson (10.1016/j.engappai.2014.08.014_bib16) 1989; 110
Zhang (10.1016/j.engappai.2014.08.014_bib19) 2008
10.1016/j.engappai.2014.08.014_bib10
10.1016/j.engappai.2014.08.014_bib15
Farmer (10.1016/j.engappai.2014.08.014_bib11) 1986; 22D
Magdalena (10.1016/j.engappai.2014.08.014_bib14) 1998; 13
10.1016/j.engappai.2014.08.014_bib12
Beyer (10.1016/j.engappai.2014.08.014_bib1) 2007; 196
Pickering (10.1016/j.engappai.2014.08.014_bib17) 1978
Deb (10.1016/j.engappai.2014.08.014_bib8) 1994
References_xml – reference: Mahfouf, M., Linkens, D.A., Abbod, M.F., 2006. Optimisation of steel production incorporating economic factors In: Proceedings of the 1st IFAC Workshop on Applications of Large Scale Industrial Systems.
– year: 1999
  ident: bib18
  publication-title: Optimisation of the Heat Treatment of Steel Using Neural Networks (Ph.D. thesis)
– reference: Cooper, M.G., Vidal, J.J., 1994. Genetic design of fuzzy controllers: the cart and jointed-pole problem. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. 2, pp. 1332–1337.
– year: 2001
  ident: bib20
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm
  publication-title: TIK-Report 103
– reference: Chen, J., Mahfouf, M., 2006. A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimisation Problems. In: Bersini, H. and Carneiro, J. (Eds.), ICARIS, LNCS 4163, Springer, Berlin/Heidelberg, pp. 280–293.
– reference: Chen, J., Mahfouf, M., Bingham, C., Zhang,Y., Yang, Z., Gallimore, M., 2012. An evolutionary based clustering aglorithm applied to data compression for industrial systems. In: Proceedings of the 11th International Symposium on Intelligent Data Analysis (IDA), Helsinki, Finland.
– volume: 110
  start-page: 5
  year: 1989
  end-page: 36
  ident: bib16
  article-title: Imune network theory
  publication-title: Immunol. Rev.
– volume: 196
  start-page: 3190
  year: 2007
  end-page: 3218
  ident: bib1
  article-title: Robust optimisation—a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 5
  start-page: 322
  year: 2012
  end-page: 342
  ident: bib5
  article-title: Improving transparency in approximate fuzzy modelling using multi-objective immune-inspired optimisation (special issue on evolutionary fuzzy systems)
  publication-title: Int. J. Comput. Intell. Syst.
– reference: Freschi, F., Reetto, M., 2005. Multiobjective Optimisation By a Modified Artificial Immune System Algorithm. In: Christian Jacob et al. (Eds.), ICARIS 2004, LNCS 3627, pp. 248–261.
– year: 2009
  ident: bib4
  publication-title: Biological Inspired Optimisation Algorithms for Transparent Knowledge Extraction Allied to Engineering Materials Process (Ph.D. thesis)
– year: 1959
  ident: bib2
  article-title: The Clonal Selection Theory of Acquired Immunity
– volume: 125C
  start-page: 373
  year: 1974
  end-page: 389
  ident: bib13
  article-title: Towards a network theory of the immune system
  publication-title: Ann. Immunol. (Inst. Pasteur)
– volume: 22D
  start-page: 187
  year: 1986
  end-page: 204
  ident: bib11
  article-title: The immune system, adaptation, and machine learning
  publication-title: Physica
– year: 2002
  ident: bib9
  article-title: Multi-objective Optimisation Using Evolutionary Aglorithms
– year: 1978
  ident: bib17
  article-title: Physical Metallurgy and Design of Steels
– reference: Energetics, Inc., 2003. Steel Indsutry Technology Roadmap Barriers and Pathways for Yield Improvements, American Iron and Steel Institute.
– year: 2008
  ident: bib19
  article-title: Nature-Inspired Multi-Objective Optimisation and Transparent Knowledge Discovery via Hierarchical Fuzzy Modelling (Ph.D. thesis)
– year: 1994
  ident: bib8
  article-title: Simulated binary crossover for continuous search space
  publication-title: Technical Reports IITK/ME/SMD-94027
– volume: 13
  start-page: 1
  year: 1998
  end-page: 13
  ident: bib14
  article-title: Crossing unordered sets of rules in evolutionary fuzzy controllers
  publication-title: Int. J. Intell. Syst.
– volume: 110
  start-page: 5
  year: 1989
  ident: 10.1016/j.engappai.2014.08.014_bib16
  article-title: Imune network theory
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.1989.tb00025.x
– ident: 10.1016/j.engappai.2014.08.014_bib6
  doi: 10.1007/978-3-642-34156-4_11
– ident: 10.1016/j.engappai.2014.08.014_bib3
  doi: 10.1007/11823940_22
– year: 1994
  ident: 10.1016/j.engappai.2014.08.014_bib8
  article-title: Simulated binary crossover for continuous search space
– year: 2008
  ident: 10.1016/j.engappai.2014.08.014_bib19
– volume: 5
  start-page: 322
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2014.08.014_bib5
  article-title: Improving transparency in approximate fuzzy modelling using multi-objective immune-inspired optimisation (special issue on evolutionary fuzzy systems)
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2012.685311
– ident: 10.1016/j.engappai.2014.08.014_bib7
  doi: 10.1109/FUZZY.1994.343619
– year: 1999
  ident: 10.1016/j.engappai.2014.08.014_bib18
– year: 1959
  ident: 10.1016/j.engappai.2014.08.014_bib2
– volume: 13
  start-page: 1
  issue: 10
  year: 1998
  ident: 10.1016/j.engappai.2014.08.014_bib14
  article-title: Crossing unordered sets of rules in evolutionary fuzzy controllers
  publication-title: Int. J. Intell. Syst.
– ident: 10.1016/j.engappai.2014.08.014_bib15
– volume: 125C
  start-page: 373
  year: 1974
  ident: 10.1016/j.engappai.2014.08.014_bib13
  article-title: Towards a network theory of the immune system
  publication-title: Ann. Immunol. (Inst. Pasteur)
– volume: 196
  start-page: 3190
  year: 2007
  ident: 10.1016/j.engappai.2014.08.014_bib1
  article-title: Robust optimisation—a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.03.003
– year: 2001
  ident: 10.1016/j.engappai.2014.08.014_bib20
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm
– year: 1978
  ident: 10.1016/j.engappai.2014.08.014_bib17
– ident: 10.1016/j.engappai.2014.08.014_bib12
  doi: 10.1007/11536444_19
– ident: 10.1016/j.engappai.2014.08.014_bib10
– year: 2009
  ident: 10.1016/j.engappai.2014.08.014_bib4
– year: 2002
  ident: 10.1016/j.engappai.2014.08.014_bib9
– volume: 22D
  start-page: 187
  year: 1986
  ident: 10.1016/j.engappai.2014.08.014_bib11
  article-title: The immune system, adaptation, and machine learning
  publication-title: Physica
SSID ssj0003846
Score 2.1210396
Snippet The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Algorithms
Alloy steels
Artificial Immune Algorithm
Artificial intelligence
Design engineering
Fuzzy
Fuzzy modelling
Fuzzy set theory
Mechanical properties
Multi-objective optimisation
Optimization
‘Right-First-Time’ production of alloy steels
Title A new holistic systems approach to the design of heat treated alloy steels using a biologically inspired multi-objective optimisation algorithm
URI https://dx.doi.org/10.1016/j.engappai.2014.08.014
https://www.proquest.com/docview/1651458489
Volume 37
WOSCitedRecordID wos000346453800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUMp4deuhdNumAK9CaolSxq4dEo0g1t0ENa-CZQIhXbsKXAloPkK_JP_bION1lxlzSHXgyDFglJ8zx8M5yFkFdJOqoC_Mkv44z5NAmkz6JY-plkhRjFpQh03YLvn9Ojo2wyYV8Hgx8uF-ZskdZ1dn7OTv-rqHEMha1SZ28g7m5RHMDvKHT8RLHj5z8Jfqy6hHuo1HQJZluqed0VD3dkU-jQDcsVWxNwjuRTncNfeDgF90xvox0J3DOVmpQ4FypNUB3O46U6FtFvirnRmV6D2mdpo4NwnZNmNWunyyuu_23xQ69_cq6DEVY6akn3EOmVCd2GH7gskg7NX_i0ajaVyTiailnnLJoJPl0aJ-57XuE1q75vI4x7vg3npBz5ITMdYpy-NkVirMINg6i3d4cmIfWXbcF4KOavZX2CT8dnKqSP6tKtZsLVOtw7-2MXtegC4ua5WydX6-Sqj6fqpb43SmOWDcne-OPh5FPHB6LMpIu5Z-nlqf_-jv5EkXbIgmZAx_fIHWu6wNhA7j4ZyPoBuWvNGLCbxBqHXKcQN_aQXI4BQQkOlGBBCQ6U0DaAoAQDSmgqUKAEC0rQoAQDStCgBA59UIIDJeyAEvqghA6Uj8i3d4fHbz_4thWIX0Y0bpFH0SqRmRScy4DLqJQcibGIaMpRvxSU8pQFQlBRSLSf0QwRSVAVGac8KQUXYfSYDOumlk8I0ICJoAjiURkwyhJZpEWcpglN0baOkDbsk9i9_by0dfJVu5ZF_nf575M33bxTUynm2hnMCTe3fNfw2Bxxe-3clw4NOb5FdcrHa9ls1nmYoA2EZkXGDm58R0_J7e3f8BkZtquNfE5ulWftbL16YYH9E6J15pU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+holistic+systems+approach+to+the+design+of+heat+treated+alloy+steels+using+a+biologically+inspired+multi-objective+optimisation+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chen%2C+Jun&rft.au=Mahfouf%2C+Mahdi&rft.au=Sidahmed%2C+Gaffour&rft.date=2015-01-01&rft.issn=0952-1976&rft.volume=37&rft.spage=103&rft.epage=114&rft_id=info:doi/10.1016%2Fj.engappai.2014.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2014_08_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon