A new holistic systems approach to the design of heat treated alloy steels using a biologically inspired multi-objective optimisation algorithm
The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedur...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 37; s. 103 - 114 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2015
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve ‘right-first-time’ production.
•We model mechanical properties of heat treated alloy steel using interpretable fuzzy models.•We demonstrate how to locate the ‘best’ processing parameters and chemical compositions.•We demonstrate how to achieve certain mechanical properties.•We demonstrated a holistic systems approach to achieve ‘right-first-time’ production.•We unravel the power of multi-objective optimisation and interpretable fuzzy modelling. |
|---|---|
| AbstractList | The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the 'best' processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve 'right-first-time' production. The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve ‘right-first-time’ production. •We model mechanical properties of heat treated alloy steel using interpretable fuzzy models.•We demonstrate how to locate the ‘best’ processing parameters and chemical compositions.•We demonstrate how to achieve certain mechanical properties.•We demonstrated a holistic systems approach to achieve ‘right-first-time’ production.•We unravel the power of multi-objective optimisation and interpretable fuzzy modelling. |
| Author | Chen, Jun Sidahmed, Gaffour Mahfouf, Mahdi |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-8545-2924 surname: Chen fullname: Chen, Jun email: juchen@lincoln.ac.uk organization: School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK – sequence: 2 givenname: Mahdi surname: Mahfouf fullname: Mahfouf, Mahdi email: m.mahfouf@shef.ac.uk organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, UK – sequence: 3 givenname: Gaffour surname: Sidahmed fullname: Sidahmed, Gaffour email: gaffoursid@yahoo.com organization: Sonatrach-Divicion AVAL Downstream Activity, Oran, Algeria |
| BookMark | eNqFkc2O1DAQhC20SMwuvALykUuCPXEcR-LAasWftBIXOFuO3Ul65NiD7Vk0T8Er42XgwmUvroPrK3V3XZOrEAMQ8pqzljMu3x5aCIs5Hg22e8ZFy1Rb5RnZcTV0jRzkeEV2bOz3DR8H-YJc53xgjHVKyB35dUsD_KRr9JgLWprPucCWac1L0diVlkjLCtRBxiXQONMVTKEl1RccNd7HM60I-ExPGcNCDZ0w-rigrZ9niiEfMVXrdvIFmzgdwBZ8ABqPBTfMpmAMNWeJCcu6vSTPZ-MzvPqrN-T7xw_f7j43918_fbm7vW9sJ_rSKCZmCQqcMcAMdBYM2yvXicEIySYhzDAy54SbYJCK9cJJNk_KCCOtM453N-TNJbeu-eMEueg6iwXvTYB4yprLnoteCTVWq7xYbYo5J5j1MeFm0llzph8b0Af9rwH92IBmSlep4Lv_QIvlz74lGfRP4-8veL0tPCAknS1CsODqPW3RLuJTEb8Bnp6t8w |
| CitedBy_id | crossref_primary_10_1002_srin_201800015 crossref_primary_10_1016_j_advengsoft_2018_04_012 crossref_primary_10_1016_j_engappai_2017_03_001 crossref_primary_10_1016_j_trc_2018_07_008 crossref_primary_10_1007_s42243_018_0101_8 |
| Cites_doi | 10.1111/j.1600-065X.1989.tb00025.x 10.1007/978-3-642-34156-4_11 10.1007/11823940_22 10.1080/18756891.2012.685311 10.1109/FUZZY.1994.343619 10.1016/j.cma.2007.03.003 10.1007/11536444_19 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8BQ 8FD F28 FR3 JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.engappai.2014.08.014 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 114 |
| ExternalDocumentID | 10_1016_j_engappai_2014_08_014 S0952197614002139 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8BQ 8FD F28 FR3 JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c345t-804f6e8edaae0ae3cea028d347a460b44a790dd4dbe768054d60fb8a4a6cdad13 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346453800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Sep 27 23:17:38 EDT 2025 Sat Nov 29 07:56:42 EST 2025 Tue Nov 18 21:49:28 EST 2025 Fri Feb 23 02:28:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mn Mo C ROA Fuzzy modelling AIS Al RMSE Artificial Immune Algorithm BEP PAIA2 Cr MOP Multi-objective optimisation Abs S UTS Si V ‘Right-First-Time’ production of alloy steels IMOFM Ni FRBS |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-804f6e8edaae0ae3cea028d347a460b44a790dd4dbe768054d60fb8a4a6cdad13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8545-2924 |
| PQID | 1651458489 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1651458489 crossref_primary_10_1016_j_engappai_2014_08_014 crossref_citationtrail_10_1016_j_engappai_2014_08_014 elsevier_sciencedirect_doi_10_1016_j_engappai_2014_08_014 |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, J., Mahfouf, M., Bingham, C., Zhang,Y., Yang, Z., Gallimore, M., 2012. An evolutionary based clustering aglorithm applied to data compression for industrial systems. In: Proceedings of the 11th International Symposium on Intelligent Data Analysis (IDA), Helsinki, Finland. Chen, Mahfouf (bib5) 2012; 5 Farmer, Packard (bib11) 1986; 22D Pickering (bib17) 1978 Tenner (bib18) 1999 Deb (bib9) 2002 Cooper, M.G., Vidal, J.J., 1994. Genetic design of fuzzy controllers: the cart and jointed-pole problem. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. 2, pp. 1332–1337. Chen (bib4) 2009 Deb, Agrawal (bib8) 1994 Energetics, Inc., 2003. Steel Indsutry Technology Roadmap Barriers and Pathways for Yield Improvements, American Iron and Steel Institute. Mahfouf, M., Linkens, D.A., Abbod, M.F., 2006. Optimisation of steel production incorporating economic factors In: Proceedings of the 1st IFAC Workshop on Applications of Large Scale Industrial Systems. Perelson (bib16) 1989; 110 Zitzler, Laumanns, Thiele (bib20) 2001 Magdalena (bib14) 1998; 13 Chen, J., Mahfouf, M., 2006. A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimisation Problems. In: Bersini, H. and Carneiro, J. (Eds.), ICARIS, LNCS 4163, Springer, Berlin/Heidelberg, pp. 280–293. Jerne (bib13) 1974; 125C Beyer, Sendhoff (bib1) 2007; 196 Burnet (bib2) 1959 Freschi, F., Reetto, M., 2005. Multiobjective Optimisation By a Modified Artificial Immune System Algorithm. In: Christian Jacob et al. (Eds.), ICARIS 2004, LNCS 3627, pp. 248–261. Zhang, Tenner (bib19) 2008 Burnet (10.1016/j.engappai.2014.08.014_bib2) 1959 10.1016/j.engappai.2014.08.014_bib7 Chen (10.1016/j.engappai.2014.08.014_bib5) 2012; 5 Jerne (10.1016/j.engappai.2014.08.014_bib13) 1974; 125C Deb (10.1016/j.engappai.2014.08.014_bib9) 2002 Zitzler (10.1016/j.engappai.2014.08.014_bib20) 2001 10.1016/j.engappai.2014.08.014_bib3 10.1016/j.engappai.2014.08.014_bib6 Tenner (10.1016/j.engappai.2014.08.014_bib18) 1999 Chen (10.1016/j.engappai.2014.08.014_bib4) 2009 Perelson (10.1016/j.engappai.2014.08.014_bib16) 1989; 110 Zhang (10.1016/j.engappai.2014.08.014_bib19) 2008 10.1016/j.engappai.2014.08.014_bib10 10.1016/j.engappai.2014.08.014_bib15 Farmer (10.1016/j.engappai.2014.08.014_bib11) 1986; 22D Magdalena (10.1016/j.engappai.2014.08.014_bib14) 1998; 13 10.1016/j.engappai.2014.08.014_bib12 Beyer (10.1016/j.engappai.2014.08.014_bib1) 2007; 196 Pickering (10.1016/j.engappai.2014.08.014_bib17) 1978 Deb (10.1016/j.engappai.2014.08.014_bib8) 1994 |
| References_xml | – reference: Mahfouf, M., Linkens, D.A., Abbod, M.F., 2006. Optimisation of steel production incorporating economic factors In: Proceedings of the 1st IFAC Workshop on Applications of Large Scale Industrial Systems. – year: 1999 ident: bib18 publication-title: Optimisation of the Heat Treatment of Steel Using Neural Networks (Ph.D. thesis) – reference: Cooper, M.G., Vidal, J.J., 1994. Genetic design of fuzzy controllers: the cart and jointed-pole problem. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. 2, pp. 1332–1337. – year: 2001 ident: bib20 article-title: SPEA2: improving the strength Pareto evolutionary algorithm publication-title: TIK-Report 103 – reference: Chen, J., Mahfouf, M., 2006. A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimisation Problems. In: Bersini, H. and Carneiro, J. (Eds.), ICARIS, LNCS 4163, Springer, Berlin/Heidelberg, pp. 280–293. – reference: Chen, J., Mahfouf, M., Bingham, C., Zhang,Y., Yang, Z., Gallimore, M., 2012. An evolutionary based clustering aglorithm applied to data compression for industrial systems. In: Proceedings of the 11th International Symposium on Intelligent Data Analysis (IDA), Helsinki, Finland. – volume: 110 start-page: 5 year: 1989 end-page: 36 ident: bib16 article-title: Imune network theory publication-title: Immunol. Rev. – volume: 196 start-page: 3190 year: 2007 end-page: 3218 ident: bib1 article-title: Robust optimisation—a comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. – volume: 5 start-page: 322 year: 2012 end-page: 342 ident: bib5 article-title: Improving transparency in approximate fuzzy modelling using multi-objective immune-inspired optimisation (special issue on evolutionary fuzzy systems) publication-title: Int. J. Comput. Intell. Syst. – reference: Freschi, F., Reetto, M., 2005. Multiobjective Optimisation By a Modified Artificial Immune System Algorithm. In: Christian Jacob et al. (Eds.), ICARIS 2004, LNCS 3627, pp. 248–261. – year: 2009 ident: bib4 publication-title: Biological Inspired Optimisation Algorithms for Transparent Knowledge Extraction Allied to Engineering Materials Process (Ph.D. thesis) – year: 1959 ident: bib2 article-title: The Clonal Selection Theory of Acquired Immunity – volume: 125C start-page: 373 year: 1974 end-page: 389 ident: bib13 article-title: Towards a network theory of the immune system publication-title: Ann. Immunol. (Inst. Pasteur) – volume: 22D start-page: 187 year: 1986 end-page: 204 ident: bib11 article-title: The immune system, adaptation, and machine learning publication-title: Physica – year: 2002 ident: bib9 article-title: Multi-objective Optimisation Using Evolutionary Aglorithms – year: 1978 ident: bib17 article-title: Physical Metallurgy and Design of Steels – reference: Energetics, Inc., 2003. Steel Indsutry Technology Roadmap Barriers and Pathways for Yield Improvements, American Iron and Steel Institute. – year: 2008 ident: bib19 article-title: Nature-Inspired Multi-Objective Optimisation and Transparent Knowledge Discovery via Hierarchical Fuzzy Modelling (Ph.D. thesis) – year: 1994 ident: bib8 article-title: Simulated binary crossover for continuous search space publication-title: Technical Reports IITK/ME/SMD-94027 – volume: 13 start-page: 1 year: 1998 end-page: 13 ident: bib14 article-title: Crossing unordered sets of rules in evolutionary fuzzy controllers publication-title: Int. J. Intell. Syst. – volume: 110 start-page: 5 year: 1989 ident: 10.1016/j.engappai.2014.08.014_bib16 article-title: Imune network theory publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.1989.tb00025.x – ident: 10.1016/j.engappai.2014.08.014_bib6 doi: 10.1007/978-3-642-34156-4_11 – ident: 10.1016/j.engappai.2014.08.014_bib3 doi: 10.1007/11823940_22 – year: 1994 ident: 10.1016/j.engappai.2014.08.014_bib8 article-title: Simulated binary crossover for continuous search space – year: 2008 ident: 10.1016/j.engappai.2014.08.014_bib19 – volume: 5 start-page: 322 issue: 2 year: 2012 ident: 10.1016/j.engappai.2014.08.014_bib5 article-title: Improving transparency in approximate fuzzy modelling using multi-objective immune-inspired optimisation (special issue on evolutionary fuzzy systems) publication-title: Int. J. Comput. Intell. Syst. doi: 10.1080/18756891.2012.685311 – ident: 10.1016/j.engappai.2014.08.014_bib7 doi: 10.1109/FUZZY.1994.343619 – year: 1999 ident: 10.1016/j.engappai.2014.08.014_bib18 – year: 1959 ident: 10.1016/j.engappai.2014.08.014_bib2 – volume: 13 start-page: 1 issue: 10 year: 1998 ident: 10.1016/j.engappai.2014.08.014_bib14 article-title: Crossing unordered sets of rules in evolutionary fuzzy controllers publication-title: Int. J. Intell. Syst. – ident: 10.1016/j.engappai.2014.08.014_bib15 – volume: 125C start-page: 373 year: 1974 ident: 10.1016/j.engappai.2014.08.014_bib13 article-title: Towards a network theory of the immune system publication-title: Ann. Immunol. (Inst. Pasteur) – volume: 196 start-page: 3190 year: 2007 ident: 10.1016/j.engappai.2014.08.014_bib1 article-title: Robust optimisation—a comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.03.003 – year: 2001 ident: 10.1016/j.engappai.2014.08.014_bib20 article-title: SPEA2: improving the strength Pareto evolutionary algorithm – year: 1978 ident: 10.1016/j.engappai.2014.08.014_bib17 – ident: 10.1016/j.engappai.2014.08.014_bib12 doi: 10.1007/11536444_19 – ident: 10.1016/j.engappai.2014.08.014_bib10 – year: 2009 ident: 10.1016/j.engappai.2014.08.014_bib4 – year: 2002 ident: 10.1016/j.engappai.2014.08.014_bib9 – volume: 22D start-page: 187 year: 1986 ident: 10.1016/j.engappai.2014.08.014_bib11 article-title: The immune system, adaptation, and machine learning publication-title: Physica |
| SSID | ssj0003846 |
| Score | 2.1210396 |
| Snippet | The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103 |
| SubjectTerms | Algorithms Alloy steels Artificial Immune Algorithm Artificial intelligence Design engineering Fuzzy Fuzzy modelling Fuzzy set theory Mechanical properties Multi-objective optimisation Optimization ‘Right-First-Time’ production of alloy steels |
| Title | A new holistic systems approach to the design of heat treated alloy steels using a biologically inspired multi-objective optimisation algorithm |
| URI | https://dx.doi.org/10.1016/j.engappai.2014.08.014 https://www.proquest.com/docview/1651458489 |
| Volume | 37 |
| WOSCitedRecordID | wos000346453800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUMp4deuhdNumAK9CaolSxq4dEo0g1t0ENa-CZQIhXbsKXAloPkK_JP_bION1lxlzSHXgyDFglJ8zx8M5yFkFdJOqoC_Mkv44z5NAmkz6JY-plkhRjFpQh03YLvn9Ojo2wyYV8Hgx8uF-ZskdZ1dn7OTv-rqHEMha1SZ28g7m5RHMDvKHT8RLHj5z8Jfqy6hHuo1HQJZluqed0VD3dkU-jQDcsVWxNwjuRTncNfeDgF90xvox0J3DOVmpQ4FypNUB3O46U6FtFvirnRmV6D2mdpo4NwnZNmNWunyyuu_23xQ69_cq6DEVY6akn3EOmVCd2GH7gskg7NX_i0ajaVyTiailnnLJoJPl0aJ-57XuE1q75vI4x7vg3npBz5ITMdYpy-NkVirMINg6i3d4cmIfWXbcF4KOavZX2CT8dnKqSP6tKtZsLVOtw7-2MXtegC4ua5WydX6-Sqj6fqpb43SmOWDcne-OPh5FPHB6LMpIu5Z-nlqf_-jv5EkXbIgmZAx_fIHWu6wNhA7j4ZyPoBuWvNGLCbxBqHXKcQN_aQXI4BQQkOlGBBCQ6U0DaAoAQDSmgqUKAEC0rQoAQDStCgBA59UIIDJeyAEvqghA6Uj8i3d4fHbz_4thWIX0Y0bpFH0SqRmRScy4DLqJQcibGIaMpRvxSU8pQFQlBRSLSf0QwRSVAVGac8KQUXYfSYDOumlk8I0ICJoAjiURkwyhJZpEWcpglN0baOkDbsk9i9_by0dfJVu5ZF_nf575M33bxTUynm2hnMCTe3fNfw2Bxxe-3clw4NOb5FdcrHa9ls1nmYoA2EZkXGDm58R0_J7e3f8BkZtquNfE5ulWftbL16YYH9E6J15pU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+holistic+systems+approach+to+the+design+of+heat+treated+alloy+steels+using+a+biologically+inspired+multi-objective+optimisation+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chen%2C+Jun&rft.au=Mahfouf%2C+Mahdi&rft.au=Sidahmed%2C+Gaffour&rft.date=2015-01-01&rft.issn=0952-1976&rft.volume=37&rft.spage=103&rft.epage=114&rft_id=info:doi/10.1016%2Fj.engappai.2014.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2014_08_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |