The road to electrification: Bus fleet replacement strategies

The public transport market in most global cities is dominated by diesel buses, which can have significant adverse impacts on the environment and human health. To reach carbon neutrality, many public transport operators are attempting to replace their existing bus fleets with electric buses (EBs). T...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 337; p. 120903
Main Authors: Zhou, Yu, Ong, Ghim Ping, Meng, Qiang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2023
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The public transport market in most global cities is dominated by diesel buses, which can have significant adverse impacts on the environment and human health. To reach carbon neutrality, many public transport operators are attempting to replace their existing bus fleets with electric buses (EBs). This paper develops a generic bus replacement model to help public transit (PT) operators progressively renew their existing bus fleets so as to reach particular electrification goals within a given planning horizon. Unlike existing studies, our model more comprehensively considers the external costs, which include external climate costs, external health costs and used battery recycling costs/profits. Furthermore, by incorporating different incentives, variants on the model can be adopted to investigate how different government incentives can affect the replacement behaviors of PT operators. Finally, our proposed approach is applied to real-world data from a bus operator in Singapore which is aiming to achieve a 100% cleaner energy bus fleet within 20 years. The experiments indicate that an EB subsidy can effectively accelerate the electrification process, and a 25% EB subsidy could achieve full electrification eight years earlier than if no EB subsidy were applied. Moreover, we explore how the diesel tax and diesel bus (DB) tax affect EB replacement. Our experiments suggest a 10% diesel tax rate can achieve good results but imposing a DB tax will not encourage PT operators to purchase EBs earlier. •A novel model for the bus fleet replacement problem is proposed.•Various external costs that borne by the society and environment are considered.•Our approach evaluates different policy incentives.•Our real case study provides managerial insights for PT operators and policymakers.
AbstractList The public transport market in most global cities is dominated by diesel buses, which can have significant adverse impacts on the environment and human health. To reach carbon neutrality, many public transport operators are attempting to replace their existing bus fleets with electric buses (EBs). This paper develops a generic bus replacement model to help public transit (PT) operators progressively renew their existing bus fleets so as to reach particular electrification goals within a given planning horizon. Unlike existing studies, our model more comprehensively considers the external costs, which include external climate costs, external health costs and used battery recycling costs/profits. Furthermore, by incorporating different incentives, variants on the model can be adopted to investigate how different government incentives can affect the replacement behaviors of PT operators. Finally, our proposed approach is applied to real-world data from a bus operator in Singapore which is aiming to achieve a 100% cleaner energy bus fleet within 20 years. The experiments indicate that an EB subsidy can effectively accelerate the electrification process, and a 25% EB subsidy could achieve full electrification eight years earlier than if no EB subsidy were applied. Moreover, we explore how the diesel tax and diesel bus (DB) tax affect EB replacement. Our experiments suggest a 10% diesel tax rate can achieve good results but imposing a DB tax will not encourage PT operators to purchase EBs earlier.
The public transport market in most global cities is dominated by diesel buses, which can have significant adverse impacts on the environment and human health. To reach carbon neutrality, many public transport operators are attempting to replace their existing bus fleets with electric buses (EBs). This paper develops a generic bus replacement model to help public transit (PT) operators progressively renew their existing bus fleets so as to reach particular electrification goals within a given planning horizon. Unlike existing studies, our model more comprehensively considers the external costs, which include external climate costs, external health costs and used battery recycling costs/profits. Furthermore, by incorporating different incentives, variants on the model can be adopted to investigate how different government incentives can affect the replacement behaviors of PT operators. Finally, our proposed approach is applied to real-world data from a bus operator in Singapore which is aiming to achieve a 100% cleaner energy bus fleet within 20 years. The experiments indicate that an EB subsidy can effectively accelerate the electrification process, and a 25% EB subsidy could achieve full electrification eight years earlier than if no EB subsidy were applied. Moreover, we explore how the diesel tax and diesel bus (DB) tax affect EB replacement. Our experiments suggest a 10% diesel tax rate can achieve good results but imposing a DB tax will not encourage PT operators to purchase EBs earlier. •A novel model for the bus fleet replacement problem is proposed.•Various external costs that borne by the society and environment are considered.•Our approach evaluates different policy incentives.•Our real case study provides managerial insights for PT operators and policymakers.
ArticleNumber 120903
Author Ong, Ghim Ping
Zhou, Yu
Meng, Qiang
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
– sequence: 2
  givenname: Ghim Ping
  surname: Ong
  fullname: Ong, Ghim Ping
  email: ceeongr@nus.edu.sg
– sequence: 3
  givenname: Qiang
  surname: Meng
  fullname: Meng, Qiang
BookMark eNqFkE1LAzEQhoNUsK3-Bdmjl10zyX6Kgrb4BQUv9RzS7GxN2W7WJBX6701dvXgpc5jL-7zMPBMy6kyHhFwCTYBCfr1JZI8d2vU-YZTxBBitKD8hYygLFlcA5YiMKad5zHKozsjEuQ2llIXcmNwtPzCyRtaRNxG2qLzVjVbSa9PdRLOdi5oW0UcW-1Yq3GLnI-et9LjW6M7JaSNbhxe_e0renx6X85d48fb8On9YxIqnmY-Lkjc8WzWYVqxoEPMMVFrITKVyJdMCKUisFMg0TCFz5CynAURgksGqpnxKrobe3prPHTovttopbFvZodk5wSHjRZlVJYTo7RBV1jhnsRFK-593wtW6FUDFwZrYiD9r4mBNDNYCnv_De6u30u6Pg_cDiMHDl0YrnNLYKay1DVZFbfSxim_8do1N
CitedBy_id crossref_primary_10_1016_j_energy_2025_135603
crossref_primary_10_1016_j_rser_2024_115035
crossref_primary_10_1016_j_rtbm_2025_101413
crossref_primary_10_1016_j_ets_2025_100036
crossref_primary_10_1016_j_tre_2024_103690
crossref_primary_10_1109_ACCESS_2024_3516612
crossref_primary_10_1016_j_tre_2024_103572
crossref_primary_10_3390_wevj15030081
crossref_primary_10_1016_j_tre_2024_103463
crossref_primary_10_3390_en17236140
crossref_primary_10_1016_j_apenergy_2025_126166
crossref_primary_10_1016_j_apenergy_2025_126011
crossref_primary_10_1016_j_trc_2024_104553
crossref_primary_10_1016_j_trd_2025_104711
crossref_primary_10_1016_j_apenergy_2025_125935
crossref_primary_10_1016_j_tre_2024_103516
crossref_primary_10_1016_j_etran_2024_100379
crossref_primary_10_1038_s44333_025_00048_2
crossref_primary_10_1016_j_energy_2025_137025
crossref_primary_10_1016_j_energy_2025_137135
crossref_primary_10_1016_j_trc_2025_105079
crossref_primary_10_3390_en17194813
Cites_doi 10.1007/s12205-016-0370-3
10.1016/j.trd.2019.05.007
10.1016/j.trc.2019.10.012
10.1016/j.cor.2021.105449
10.1016/j.apenergy.2020.116408
10.1016/j.tre.2020.102056
10.1016/j.tra.2018.08.013
10.1016/j.tra.2018.11.002
10.1109/TITS.2020.3043687
10.1080/03081060.2020.1763656
10.1016/j.cor.2010.03.015
10.1016/j.trb.2022.03.002
10.1016/j.apenergy.2016.10.065
10.1016/j.trd.2018.08.014
10.1016/j.trc.2021.103197
10.1080/0013791X.2013.862891
10.1016/j.trd.2015.09.022
10.1016/j.trd.2022.103410
10.1016/j.isci.2021.102787
10.1016/j.apenergy.2018.12.032
10.1016/j.apenergy.2015.12.031
10.1038/nenergy.2017.110
10.1016/j.econlet.2012.05.032
10.1016/j.jclepro.2019.04.276
10.3390/en13164239
10.1108/JICV-04-2022-0008
10.1016/j.trd.2016.10.001
10.1108/JICV-03-2022-0006
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.120903
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2023_120903
S0306261923002672
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-783f35bfe4927fee651c47a5c4aba47e01ae9c1a4a4a7a6e3260345e12a21bd03
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965884100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 06:54:16 EDT 2025
Sat Nov 29 07:19:21 EST 2025
Tue Nov 18 21:45:44 EST 2025
Fri Feb 23 02:35:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrification
Emission reduction
Electric bus
Integer programming model
Bus replacement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-783f35bfe4927fee651c47a5c4aba47e01ae9c1a4a4a7a6e3260345e12a21bd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153785981
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153785981
crossref_citationtrail_10_1016_j_apenergy_2023_120903
crossref_primary_10_1016_j_apenergy_2023_120903
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_120903
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hartman, Tan (bb0110) 2014; 59
Emiliano, Alvelos, Telhada, Lanzer (bb0070) 2020; 43
Schneider (bb0175) 2019
Zhou, Liu, Wei, Golub (bb0130) 2021; 22
He, Liu, Song (bb0105) 2020; 142
He, Yan, Zhang, Wang (bb0250) 2022; 4
Wouter Botzen, van den Bergh (bb0190) 2012; 117
Bloomberg New Energy Finance (bb0005) 2020
Curry (bb0025) 2017
Quarles, Kockelman, Mohamed (bb0040) 2020; 12
Hoff, Andersson, Christiansen, Hasle, Løkketangen (bb0145) 2010; 37
Zhou (bb0165) 2018
Schmidt, Hawkes, Gambhir, Staffell (bb0220) 2017; 2
de Ortúzar, Willumsen (bb0150) 2011
UNFCCC (bb0050) 2015
Singapore Government's Open Data Portal. 2020. Retrieved from https
Yıldırım, Yıldız (bb0140) 2021; 129
Zhou, Meng, Ong (bb0230) 2022; 159
Zhou, Wang, Wang, Li (bb0235) 2022; 110
Pelletier, Jabali, Mendoza, Laporte (bb0035) 2019; 109
Mathieu (bb0045) 2018
Land Transport Authority (bb0020) 2019
.
Hardman (bb0075) 2019; 119
Ambrose, Pappas, Kendall, Alissa (bb0155) 2017
Bloomberg New Energy Finance (bb0160) 2018
Algunaibet, Guillén-Gosálbez (bb0240) 2018; 229
Tower Transit (bb0215) 2021
Kolmar (bb0180) 2019
Lander, Cleaver, Rajaeifar, Nguyen-Tien, Elliott, Heidrich (bb0210) 2021; 24
Toronto Transit Commission (bb0010) 2019
Liu, Wang, Zeng, Bie (bb0245) 2022; 5
Jung, Yeo, Oh, Lee, Park, Song (bb0195) 2016; 20
Peng, He, Xiong (bb0090) 2017; 185
Miola, Paccagnan, Turvani, Andreoni, Massarutto, Perujo (bb0200) 2008
Zhang, Xiong, He, Qu, Pecht (bb0170) 2019; 255
European Commission (bb0125) 2019
Guschinsky, Kovalyov, Rozin, Brauner (bb0135) 2021; 135
Xie, Hu, Xin, Brighton (bb0095) 2019; 236
Jochem, Doll, Fichtner (bb0205) 2017; 42
Islam, Lownes (bb0065) 2019; 72
Meisel, Merfeld (bb0080) 2018; 65
Deliali, Chhan, Oliver, Sayess, Godri Pollitt, Christofa (bb0115) 2021; 41
Li, Lo, Xiao, Cen (bb0060) 2018; 60
Li, Jin, Xiong (bb0085) 2017; 194
Comello, Glenk, Reichelstein (bb0100) 2021; 285
California Air Resources Board (bb0015) 2018
Ngo, Shah, Mishra (bb0055) 2018; 117
Guerrero (bb0030) 2017
Ong (bb0185) 2019
Brdulak, Chaberek, Jagodzinski (bb0120) 2020; 13
European Commission (10.1016/j.apenergy.2023.120903_bb0125) 2019
Toronto Transit Commission (10.1016/j.apenergy.2023.120903_bb0010)
Deliali (10.1016/j.apenergy.2023.120903_bb0115) 2021; 41
Zhou (10.1016/j.apenergy.2023.120903_bb0230) 2022; 159
Bloomberg New Energy Finance (10.1016/j.apenergy.2023.120903_bb0160) 2018
de Ortúzar (10.1016/j.apenergy.2023.120903_bb0150) 2011
Zhang (10.1016/j.apenergy.2023.120903_bb0170) 2019; 255
Algunaibet (10.1016/j.apenergy.2023.120903_bb0240) 2018; 229
He (10.1016/j.apenergy.2023.120903_bb0105) 2020; 142
Lander (10.1016/j.apenergy.2023.120903_bb0210) 2021; 24
Li (10.1016/j.apenergy.2023.120903_bb0060) 2018; 60
Emiliano (10.1016/j.apenergy.2023.120903_bb0070) 2020; 43
Ambrose (10.1016/j.apenergy.2023.120903_bb0155) 2017
Zhou (10.1016/j.apenergy.2023.120903_bb0130) 2021; 22
Yıldırım (10.1016/j.apenergy.2023.120903_bb0140) 2021; 129
Hoff (10.1016/j.apenergy.2023.120903_bb0145) 2010; 37
Peng (10.1016/j.apenergy.2023.120903_bb0090) 2017; 185
Jung (10.1016/j.apenergy.2023.120903_bb0195) 2016; 20
Liu (10.1016/j.apenergy.2023.120903_bb0245) 2022; 5
Ong (10.1016/j.apenergy.2023.120903_bb0185)
10.1016/j.apenergy.2023.120903_bb0225
He (10.1016/j.apenergy.2023.120903_bb0250) 2022; 4
Zhou (10.1016/j.apenergy.2023.120903_bb0165)
Comello (10.1016/j.apenergy.2023.120903_bb0100) 2021; 285
Quarles (10.1016/j.apenergy.2023.120903_bb0040) 2020; 12
Ngo (10.1016/j.apenergy.2023.120903_bb0055) 2018; 117
UNFCCC (10.1016/j.apenergy.2023.120903_bb0050)
Kolmar (10.1016/j.apenergy.2023.120903_bb0180)
Meisel (10.1016/j.apenergy.2023.120903_bb0080) 2018; 65
Xie (10.1016/j.apenergy.2023.120903_bb0095) 2019; 236
Bloomberg New Energy Finance (10.1016/j.apenergy.2023.120903_bb0005)
Tower Transit (10.1016/j.apenergy.2023.120903_bb0215)
Guerrero (10.1016/j.apenergy.2023.120903_bb0030)
Pelletier (10.1016/j.apenergy.2023.120903_bb0035) 2019; 109
Schmidt (10.1016/j.apenergy.2023.120903_bb0220) 2017; 2
Li (10.1016/j.apenergy.2023.120903_bb0085) 2017; 194
Islam (10.1016/j.apenergy.2023.120903_bb0065) 2019; 72
Brdulak (10.1016/j.apenergy.2023.120903_bb0120) 2020; 13
Land Transport Authority (10.1016/j.apenergy.2023.120903_bb0020)
Hardman (10.1016/j.apenergy.2023.120903_bb0075) 2019; 119
Guschinsky (10.1016/j.apenergy.2023.120903_bb0135) 2021; 135
Schneider (10.1016/j.apenergy.2023.120903_bb0175)
California Air Resources Board (10.1016/j.apenergy.2023.120903_bb0015)
Jochem (10.1016/j.apenergy.2023.120903_bb0205) 2017; 42
Wouter Botzen (10.1016/j.apenergy.2023.120903_bb0190) 2012; 117
Hartman (10.1016/j.apenergy.2023.120903_bb0110) 2014; 59
Mathieu (10.1016/j.apenergy.2023.120903_bb0045)
Curry (10.1016/j.apenergy.2023.120903_bb0025) 2017
Miola (10.1016/j.apenergy.2023.120903_bb0200) 2008
Zhou (10.1016/j.apenergy.2023.120903_bb0235) 2022; 110
References_xml – volume: 135
  year: 2021
  ident: bb0135
  article-title: Fleet and charging infrastructure decisions for fast-charging city electric bus service
  publication-title: Comput Oper Res
– volume: 229
  start-page: 886
  year: 2018
  end-page: 901
  ident: bb0240
  article-title: Life cycle burden-shifting in energy systems designed to minimize greenhouse gas emissions: novel analytical method and application to the United States
  publication-title: J Clean Prod
– year: 2017
  ident: bb0030
  article-title: Are hybrid and electric buses viable just yet?
– year: 2017
  ident: bb0155
  article-title: Exploring the costs of electrification for California’s Transit agencies
– volume: 194
  start-page: 798
  year: 2017
  end-page: 807
  ident: bb0085
  article-title: Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus
  publication-title: Appl Energy
– volume: 117
  start-page: 372
  year: 2012
  end-page: 374
  ident: bb0190
  article-title: How sensitive is Nordhaus to Weitzman? Climate policy in DICE with an alternative damage function
  publication-title: Econ Lett
– volume: 65
  start-page: 264
  year: 2018
  end-page: 287
  ident: bb0080
  article-title: Economic incentives for the adoption of electric vehicles: a classification and review of e-vehicle services
  publication-title: Transp Res Part D Transp Environ
– year: 2018
  ident: bb0160
  article-title: Electric buses in cities: Driving towards cleaner air and lower CO2
  publication-title: On behalf of: financing sustainable cities initiative, C40 cities
– year: 2018
  ident: bb0015
  article-title: California transitioning to all-electric public bus fleet by 2040
– year: 2021
  ident: bb0215
  article-title: Bus route information
– year: 2018
  ident: bb0045
  article-title: Electric buses arrive on time
– volume: 43
  start-page: 488
  year: 2020
  end-page: 502
  ident: bb0070
  article-title: An optimization model for bus fleet replacement with budgetary and environmental constraints
  publication-title: Transp Plan Technol
– volume: 185
  start-page: 1633
  year: 2017
  end-page: 1643
  ident: bb0090
  article-title: Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming
  publication-title: Appl Energy
– volume: 119
  start-page: 1
  year: 2019
  end-page: 14
  ident: bb0075
  article-title: Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review
  publication-title: Transp Res Part A Policy Pract
– volume: 110
  year: 2022
  ident: bb0235
  article-title: Robust optimization for integrated planning of electric-bus charger deployment and charging scheduling
  publication-title: Transp Res Part D Transp Environ
– volume: 12
  year: 2020
  ident: bb0040
  article-title: Costs and benefits of electrifying and automating bus transit fleets
  publication-title: Sustain.
– volume: 117
  start-page: 103
  year: 2018
  end-page: 116
  ident: bb0055
  article-title: Optimal asset management strategies for mixed transit fleet
  publication-title: Transp Res Part A Policy Pract
– volume: 60
  start-page: 104
  year: 2018
  end-page: 118
  ident: bb0060
  article-title: Mixed bus fleet management strategy for minimizing overall and emissions external costs
  publication-title: Transp Res Part D Transp Environ
– volume: 5
  start-page: 123
  year: 2022
  end-page: 137
  ident: bb0245
  article-title: Optimal charging plan for electric bus considering time-of-day electricity tariff
  publication-title: J Intell Connect Vehicles
– volume: 42
  start-page: 60
  year: 2017
  end-page: 76
  ident: bb0205
  article-title: External costs of electric vehicles
  publication-title: Transp Res Part D Transp Environ
– volume: 2
  year: 2017
  ident: bb0220
  article-title: The future cost of electrical energy storage based on experience rates
  publication-title: Nat Energy
– year: 2020
  ident: bb0005
  article-title: Electric vehicle outlook 2020
– volume: 236
  start-page: 893
  year: 2019
  end-page: 905
  ident: bb0095
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
– volume: 129
  year: 2021
  ident: bb0140
  article-title: Electric bus fleet composition and scheduling
  publication-title: Transp Res Part C Emerg Technol
– year: 2018
  ident: bb0165
  article-title: Contracts worth $50 million for 60 electric buses awarded to 3 firms: LTA
– volume: 142
  year: 2020
  ident: bb0105
  article-title: Optimal charging scheduling and management for a fast-charging battery electric bus system
  publication-title: Transp Res Part E Logist Transp Rev
– volume: 20
  start-page: 3031
  year: 2016
  end-page: 3044
  ident: bb0195
  article-title: The economic effect of green roofs on non-point pollutant sources management using the replacement cost approach
  publication-title: KSCE J Civ Eng
– volume: 4
  start-page: 138
  year: 2022
  end-page: 145
  ident: bb0250
  article-title: Battery electric buses charging schedule optimization considering time-of-use electricity price
  publication-title: J Intell Connect Vehicles
– year: 2008
  ident: bb0200
  article-title: Review of the measurement of external costs of transportation in theory and practice
– volume: 72
  start-page: 299
  year: 2019
  end-page: 311
  ident: bb0065
  article-title: When to go electric? A parallel bus fleet replacement study
  publication-title: Transp Res Part D Transp Environ
– year: 2019
  ident: bb0020
  article-title: Land transport master plan (LTMP) 2040
– year: 2017
  ident: bb0025
  article-title: Lithium-ion battery costs and market
– volume: 22
  start-page: 2487
  year: 2021
  end-page: 2497
  ident: bb0130
  article-title: Bi-objective optimization for battery electric bus deployment considering cost and environmental equity
  publication-title: IEEE Trans Intell Transp Syst
– year: 2019
  ident: bb0010
  article-title: TTC green initiatives
– volume: 255
  year: 2019
  ident: bb0170
  article-title: State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: capacity loss modeling and remaining useful life prediction
  publication-title: Appl Energy
– year: 2019
  ident: bb0180
  article-title: The 10 states with the highest bus driver salaries for 2019
– volume: 159
  start-page: 49
  year: 2022
  end-page: 75
  ident: bb0230
  article-title: Electric bus charging scheduling for a single public transport route considering nonlinear charging profile and battery degradation effect
  publication-title: Transp Res Part B Metho
– volume: 109
  start-page: 174
  year: 2019
  end-page: 193
  ident: bb0035
  article-title: The electric bus fleet transition problem
  publication-title: Transp Res Part C Emerg Technol
– volume: 285
  year: 2021
  ident: bb0100
  article-title: Transitioning to clean energy transportation services: life-cycle cost analysis for vehicle fleets
  publication-title: Appl Energy
– volume: 24
  year: 2021
  ident: bb0210
  article-title: Financial viability of electric vehicle lithium-ion battery recycling
  publication-title: iScience
– volume: 41
  start-page: 164
  year: 2021
  end-page: 191
  ident: bb0115
  article-title: Transitioning to zero-emission bus fleets: state of practice of implementations in the United States
  publication-title: Transplant Rev
– year: 2015
  ident: bb0050
  article-title: The Paris Agreement
– year: 2019
  ident: bb0185
  article-title: New bus drivers in Singapore can get up to $3,500 monthly salary & 21 days annual leave
– year: 2019
  ident: bb0125
  article-title: Handbook on external costs of transport
– volume: 37
  start-page: 2041
  year: 2010
  end-page: 2061
  ident: bb0145
  article-title: Industrial aspects and literature survey: Fleet composition and routing
  publication-title: Comput Oper Res
– volume: 59
  start-page: 136
  year: 2014
  end-page: 153
  ident: bb0110
  article-title: Equipment replacement analysis: a literature review and directions for future research
  publication-title: Eng Econ
– year: 2019
  ident: bb0175
  article-title: Chattanooga looks to extend electric bus range with wireless charging
– volume: 13
  year: 2020
  ident: bb0120
  article-title: Development forecasts for the zero-emission bus fleet in servicing public transport in chosen EU member countries
  publication-title: Energies
– reference: /.
– year: 2011
  ident: bb0150
  article-title: Modelling transport, Modelling transport
– reference: Singapore Government's Open Data Portal. 2020. Retrieved from https://
– year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0125
– volume: 20
  start-page: 3031
  year: 2016
  ident: 10.1016/j.apenergy.2023.120903_bb0195
  article-title: The economic effect of green roofs on non-point pollutant sources management using the replacement cost approach
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-016-0370-3
– year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0155
– year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0025
– volume: 72
  start-page: 299
  year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0065
  article-title: When to go electric? A parallel bus fleet replacement study
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2019.05.007
– volume: 109
  start-page: 174
  year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0035
  article-title: The electric bus fleet transition problem
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2019.10.012
– volume: 135
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0135
  article-title: Fleet and charging infrastructure decisions for fast-charging city electric bus service
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2021.105449
– ident: 10.1016/j.apenergy.2023.120903_bb0165
– volume: 285
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0100
  article-title: Transitioning to clean energy transportation services: life-cycle cost analysis for vehicle fleets
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116408
– volume: 142
  year: 2020
  ident: 10.1016/j.apenergy.2023.120903_bb0105
  article-title: Optimal charging scheduling and management for a fast-charging battery electric bus system
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2020.102056
– volume: 117
  start-page: 103
  year: 2018
  ident: 10.1016/j.apenergy.2023.120903_bb0055
  article-title: Optimal asset management strategies for mixed transit fleet
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/j.tra.2018.08.013
– ident: 10.1016/j.apenergy.2023.120903_bb0010
– volume: 119
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0075
  article-title: Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/j.tra.2018.11.002
– volume: 22
  start-page: 2487
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0130
  article-title: Bi-objective optimization for battery electric bus deployment considering cost and environmental equity
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3043687
– volume: 43
  start-page: 488
  year: 2020
  ident: 10.1016/j.apenergy.2023.120903_bb0070
  article-title: An optimization model for bus fleet replacement with budgetary and environmental constraints
  publication-title: Transp Plan Technol
  doi: 10.1080/03081060.2020.1763656
– volume: 37
  start-page: 2041
  issue: 12
  year: 2010
  ident: 10.1016/j.apenergy.2023.120903_bb0145
  article-title: Industrial aspects and literature survey: Fleet composition and routing
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2010.03.015
– volume: 159
  start-page: 49
  year: 2022
  ident: 10.1016/j.apenergy.2023.120903_bb0230
  article-title: Electric bus charging scheduling for a single public transport route considering nonlinear charging profile and battery degradation effect
  publication-title: Transp Res Part B Metho
  doi: 10.1016/j.trb.2022.03.002
– volume: 194
  start-page: 798
  year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0085
  article-title: Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.065
– volume: 65
  start-page: 264
  year: 2018
  ident: 10.1016/j.apenergy.2023.120903_bb0080
  article-title: Economic incentives for the adoption of electric vehicles: a classification and review of e-vehicle services
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2018.08.014
– ident: 10.1016/j.apenergy.2023.120903_bb0215
– volume: 129
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0140
  article-title: Electric bus fleet composition and scheduling
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2021.103197
– volume: 59
  start-page: 136
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2023.120903_bb0110
  article-title: Equipment replacement analysis: a literature review and directions for future research
  publication-title: Eng Econ
  doi: 10.1080/0013791X.2013.862891
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0205
  article-title: External costs of electric vehicles
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2015.09.022
– volume: 110
  year: 2022
  ident: 10.1016/j.apenergy.2023.120903_bb0235
  article-title: Robust optimization for integrated planning of electric-bus charger deployment and charging scheduling
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2022.103410
– year: 2018
  ident: 10.1016/j.apenergy.2023.120903_bb0160
  article-title: Electric buses in cities: Driving towards cleaner air and lower CO2
– ident: 10.1016/j.apenergy.2023.120903_bb0030
– ident: 10.1016/j.apenergy.2023.120903_bb0045
– volume: 24
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0210
  article-title: Financial viability of electric vehicle lithium-ion battery recycling
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102787
– volume: 255
  issue: August
  year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0170
  article-title: State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: capacity loss modeling and remaining useful life prediction
  publication-title: Appl Energy
– ident: 10.1016/j.apenergy.2023.120903_bb0020
– ident: 10.1016/j.apenergy.2023.120903_bb0005
– volume: 236
  start-page: 893
  year: 2019
  ident: 10.1016/j.apenergy.2023.120903_bb0095
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.032
– ident: 10.1016/j.apenergy.2023.120903_bb0050
– volume: 41
  start-page: 164
  year: 2021
  ident: 10.1016/j.apenergy.2023.120903_bb0115
  article-title: Transitioning to zero-emission bus fleets: state of practice of implementations in the United States
  publication-title: Transplant Rev
– year: 2008
  ident: 10.1016/j.apenergy.2023.120903_bb0200
– ident: 10.1016/j.apenergy.2023.120903_bb0225
– volume: 12
  year: 2020
  ident: 10.1016/j.apenergy.2023.120903_bb0040
  article-title: Costs and benefits of electrifying and automating bus transit fleets
  publication-title: Sustain.
– ident: 10.1016/j.apenergy.2023.120903_bb0180
– year: 2011
  ident: 10.1016/j.apenergy.2023.120903_bb0150
– volume: 185
  start-page: 1633
  year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0090
  article-title: Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.031
– ident: 10.1016/j.apenergy.2023.120903_bb0185
– volume: 2
  year: 2017
  ident: 10.1016/j.apenergy.2023.120903_bb0220
  article-title: The future cost of electrical energy storage based on experience rates
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.110
– volume: 117
  start-page: 372
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2023.120903_bb0190
  article-title: How sensitive is Nordhaus to Weitzman? Climate policy in DICE with an alternative damage function
  publication-title: Econ Lett
  doi: 10.1016/j.econlet.2012.05.032
– volume: 229
  start-page: 886
  year: 2018
  ident: 10.1016/j.apenergy.2023.120903_bb0240
  article-title: Life cycle burden-shifting in energy systems designed to minimize greenhouse gas emissions: novel analytical method and application to the United States
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.04.276
– volume: 13
  year: 2020
  ident: 10.1016/j.apenergy.2023.120903_bb0120
  article-title: Development forecasts for the zero-emission bus fleet in servicing public transport in chosen EU member countries
  publication-title: Energies
  doi: 10.3390/en13164239
– ident: 10.1016/j.apenergy.2023.120903_bb0015
– volume: 5
  start-page: 123
  issue: 2
  year: 2022
  ident: 10.1016/j.apenergy.2023.120903_bb0245
  article-title: Optimal charging plan for electric bus considering time-of-day electricity tariff
  publication-title: J Intell Connect Vehicles
  doi: 10.1108/JICV-04-2022-0008
– ident: 10.1016/j.apenergy.2023.120903_bb0175
– volume: 60
  start-page: 104
  year: 2018
  ident: 10.1016/j.apenergy.2023.120903_bb0060
  article-title: Mixed bus fleet management strategy for minimizing overall and emissions external costs
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2016.10.001
– volume: 4
  start-page: 138
  issue: 2
  year: 2022
  ident: 10.1016/j.apenergy.2023.120903_bb0250
  article-title: Battery electric buses charging schedule optimization considering time-of-use electricity price
  publication-title: J Intell Connect Vehicles
  doi: 10.1108/JICV-03-2022-0006
SSID ssj0002120
Score 2.5609758
Snippet The public transport market in most global cities is dominated by diesel buses, which can have significant adverse impacts on the environment and human health....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120903
SubjectTerms batteries
Bus replacement
carbon
climate
Electric bus
Electrification
Emission reduction
energy
human health
Integer programming model
markets
public transportation
Singapore
taxes
Title The road to electrification: Bus fleet replacement strategies
URI https://dx.doi.org/10.1016/j.apenergy.2023.120903
https://www.proquest.com/docview/3153785981
Volume 337
WOSCitedRecordID wos000965884100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHCQYTYwwZCXGpXJI4sRNuG-r4UFWG1KHeLCdxxqaRhCZB-_N5TuwkmoY2DqhSVKV5SeTf63s_2-8DoTeUBm4CtJ8oqWCCEjOXRMqRhMs0yeI4pXFbS-_7gi-X4XodnZiWflXbToDneXh1FZX_FWo4B2Dr1Nl_gLu_KZyA7wA6HAF2ON4Z-E0hU80quyY3OhqoD-I4aqppdql3ojeqDchqowGq2paMGLNVS1FVmyA4rDEXTWu5m36FtjMYH3-c_5yeWF_YVvXtfvgGOng2Xl_wRtF8Nq_KYUTPs8Y2k1I-LWc679ah5EZL3C0KXMxk2b3jTN_bSAy-x-63L7-K49PFQqzm69Xb8hfRXcH07rlpkXIfbXk8iMIJ2jr8PF9_6X2tZwpv2ncc5YDf_Oi_0Y9rjrhlF6vHaNtMC_BhB-cTdE_lO-jRqFjkDtqdDzmJcKkxytVTpBHHGnFcF_ga4u8x4I1bvPEIbzzg_QydHs9XHz4R0xWDJNQPasJDmtEgzpQfeTxTiuk_G5dB4stY-lw5rlRR4kofPlwyBfzcAUHletJz49Shu2iSF7l6jjCLHCkVCzPqxj5LfZmxjFEVOinT016-hwI7WCIxJeN155JLYWMDL4QdZKEHWXSDvIfe9XJlVzTlVonIYiEM9esonQB9ulX2tQVPgG3UG14yV0VTCQrunIegN-6LO1yzjx4O-v8STepNow7Qg-R3fV5tXhnN-wPCT4YR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+road+to+electrification%3A+Bus+fleet+replacement+strategies&rft.jtitle=Applied+energy&rft.au=Zhou%2C+Yu&rft.au=Ong%2C+Ghim+Ping&rft.au=Meng%2C+Qiang&rft.date=2023-05-01&rft.issn=0306-2619&rft.volume=337+p.120903-&rft_id=info:doi/10.1016%2Fj.apenergy.2023.120903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon