Density-Based Multifeature Background Subtraction with Support Vector Machine

Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 5; s. 1017 - 1023
Hlavní autori: Bohyung Han, Davis, L. S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Los Alamitos, CA IEEE 01.05.2012
IEEE Computer Society
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.
AbstractList Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.
Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.
Author Davis, L. S.
Bohyung Han
Author_xml – sequence: 1
  surname: Bohyung Han
  fullname: Bohyung Han
  email: bhhan@postech.ac.kr
  organization: Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea
– sequence: 2
  givenname: L. S.
  surname: Davis
  fullname: Davis, L. S.
  email: lsd@cs.umd.edu
  organization: Dept. of Comput. Sci., Univ. of Maryland, College Park, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103804$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22156099$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHEEQxRsx6Lrx6kWQuQRymbX6Y3qmj2o-FFwUol6b3u6a2Do7s-nuIfjfpze7GggIBQXF71UV7x2Q3X7okZAjCjNKQZ3e3Z7Nr2YMKJ0xwXfIhFEJpWKK7ZIJUMnKpmHNPjmI8QmAigr4HtlnjFYSlJqQ-Rfso08v5bmJ6Ir52CXfokljwOLc2OefYRh7V_wYFykYm_zQF799esyD1WoIqXhAm4ZQzI199D1-JB9a00U83PYpuf_29e7isry--X51cXZdWi6qVNZSLNBxpNRWrVGtdA3WRjinnABTKdVwBGVrCyBycVy4GiqJVipunbR8Sj5v9q7C8GvEmPTSR4tdZ3ocxqgpMM5ULWua0ZMtOi6W6PQq-KUJL_rVggx82gImWtO1wfTWx3-cpMCb_MSUiA1nwxBjwFZbn8zakeyM7_JNvU5E_01ErxPROZEsm_0ne938ruB4I_CI-AbnLwRIwf8ABt6VEw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_electronics9122142
crossref_primary_10_1007_s10044_019_00795_2
crossref_primary_10_1109_TCSVT_2012_2203199
crossref_primary_10_1007_s00429_013_0687_3
crossref_primary_10_1109_TCSVT_2018_2854273
crossref_primary_10_1109_TNNLS_2015_2411613
crossref_primary_10_3758_s13428_017_0880_z
crossref_primary_10_1016_j_neucom_2016_01_037
crossref_primary_10_1109_ACCESS_2020_3019973
crossref_primary_10_1109_JSEN_2014_2355914
crossref_primary_10_1109_ACCESS_2024_3452633
crossref_primary_10_1109_TEVC_2017_2694160
crossref_primary_10_1109_TNSRE_2019_2950143
crossref_primary_10_1109_TCSVT_2014_2333132
crossref_primary_10_1016_j_procs_2024_03_013
crossref_primary_10_1080_0954898X_2024_2435492
crossref_primary_10_1109_TNNLS_2021_3060747
crossref_primary_10_1109_TASE_2021_3126476
crossref_primary_10_1109_TCSVT_2019_2951778
crossref_primary_10_1109_JSEN_2024_3404031
crossref_primary_10_1049_iet_ipr_2019_1029
crossref_primary_10_1109_TPAMI_2016_2610973
crossref_primary_10_1080_0952813X_2022_2108146
crossref_primary_10_1016_j_neucom_2018_10_012
crossref_primary_10_1109_TIP_2018_2828329
crossref_primary_10_7717_peerj_cs_962
crossref_primary_10_3390_app7100989
crossref_primary_10_1007_s10586_025_05330_z
crossref_primary_10_1111_cgf_12211
crossref_primary_10_1109_TITS_2021_3077883
crossref_primary_10_1109_JSEN_2019_2940694
crossref_primary_10_1007_s11042_018_6618_9
crossref_primary_10_1109_TIP_2020_2983598
crossref_primary_10_1007_s00138_013_0552_7
crossref_primary_10_1109_ACCESS_2020_2992494
crossref_primary_10_1007_s00500_018_3106_0
crossref_primary_10_1109_ACCESS_2018_2812880
crossref_primary_10_1109_TCSVT_2017_2711659
crossref_primary_10_1109_TPAMI_2017_2717828
crossref_primary_10_1016_j_cviu_2013_12_003
crossref_primary_10_1109_TIP_2016_2598680
crossref_primary_10_1109_TIP_2017_2768828
crossref_primary_10_1109_TIP_2022_3162961
crossref_primary_10_1007_s11042_018_7037_7
crossref_primary_10_1016_j_jvcir_2018_06_024
crossref_primary_10_1016_j_cviu_2020_103032
crossref_primary_10_1016_j_procs_2015_10_030
crossref_primary_10_1109_TIE_2013_2284131
crossref_primary_10_1016_S1005_8885_15_60658_6
crossref_primary_10_1109_TIP_2017_2695882
crossref_primary_10_1007_s00138_017_0893_8
crossref_primary_10_3390_app8060885
crossref_primary_10_1007_s12559_018_9594_5
crossref_primary_10_1109_TGRS_2024_3378311
crossref_primary_10_1109_TVT_2015_2509465
crossref_primary_10_1186_s13634_015_0194_1
crossref_primary_10_1016_j_cviu_2014_12_007
crossref_primary_10_1108_K_01_2014_0007
crossref_primary_10_1016_j_measen_2023_100859
crossref_primary_10_1007_s11042_018_6972_7
crossref_primary_10_1088_1742_6596_1345_2_022041
crossref_primary_10_1007_s40745_014_0022_8
crossref_primary_10_1016_j_patrec_2015_09_007
crossref_primary_10_1016_j_jisa_2025_104044
crossref_primary_10_1109_TIP_2018_2874289
crossref_primary_10_1109_TIP_2014_2346013
crossref_primary_10_1016_j_knosys_2025_114506
crossref_primary_10_1109_TCSVT_2020_3042559
crossref_primary_10_1007_s13198_019_00868_9
crossref_primary_10_1109_TIP_2018_2882926
crossref_primary_10_1145_3391743
crossref_primary_10_3390_s19112611
crossref_primary_10_1049_iet_ipr_2015_0103
crossref_primary_10_1007_s11042_021_11071_z
crossref_primary_10_1002_cpe_6868
crossref_primary_10_1109_TCSVT_2016_2555719
crossref_primary_10_1109_TTE_2023_3345349
crossref_primary_10_1007_s40815_015_0044_1
Cites_doi 10.1007/3-540-47979-1_23
10.1016/j.patrec.2005.11.005
10.1109/TSP.2009.2014810
10.1007/978-94-011-5014-9_12
10.1016/0031-3203(93)90130-O
10.1109/CVPR.2006.24
10.1109/THS.2007.370021
10.1109/34.598236
10.1201/9781439813300-c4
10.1109/TIP.2004.836169
10.1109/TPAMI.2005.102
10.1109/CVPR.2001.990644
10.1109/CVPR.2001.990517
10.1007/3-540-45053-X_48
10.1109/TPAMI.2007.70771
10.1109/ICCV.2003.1238312
10.1109/CVPR.2004.1315179
10.1109/ICCV.1999.791228
10.1109/34.868677
10.1007/BF00116037
10.1109/CVPR.2000.854767
10.1109/CVPR.2001.990505
10.1109/TPAMI.2006.68
10.1016/j.rti.2004.12.004
10.1109/cvpr.2003.1211453
10.1109/34.868683
10.1016/S0262-8856(98)00104-8
10.1007/978-3-540-74695-9_62
10.1109/ICCV.2003.1238641
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1109/TPAMI.2011.243
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1023
ExternalDocumentID 22156099
26103804
10_1109_TPAMI_2011_243
6104064
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
NPM
7X8
ID FETCH-LOGICAL-c345t-764bed3e11c5fa9f6d8e7a4dd9d40a59983e09c7c0040043ebd7056ec693cd6c3
IEDL.DBID RIE
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301747400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 01:45:09 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Mon Jul 21 09:16:49 EDT 2025
Tue Nov 18 21:42:10 EST 2025
Sat Nov 29 08:11:23 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Computer vision
Gradient
Segmentation
Image processing
Video signal
Shadow
Haar-like features
Background modeling and subtraction
Haar function
Spatial variation
Object recognition
Modeling
Search algorithm
Luminance
Subtraction
support vector machine
Scene analysis
Object detection
Vector support machine
Illumination
Generative model
kernel density approximation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-764bed3e11c5fa9f6d8e7a4dd9d40a59983e09c7c0040043ebd7056ec693cd6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22156099
PQID 1023297671
PQPubID 23479
PageCount 7
ParticipantIDs ieee_primary_6104064
crossref_citationtrail_10_1109_TPAMI_2011_243
proquest_miscellaneous_1023297671
pascalfrancis_primary_26103804
pubmed_primary_22156099
crossref_primary_10_1109_TPAMI_2011_243
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2012
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Han (ref3)
Friedman (ref12)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
(ref32) 2012
References_xml – ident: ref20
  doi: 10.1007/3-540-47979-1_23
– volume-title: Proc. 13th Conf. Uncertainty in Artificial Intelligence
  ident: ref12
  article-title: Image Segmenation in Video Sequences: A Probabilistic Approach
– ident: ref5
  doi: 10.1016/j.patrec.2005.11.005
– ident: ref29
  doi: 10.1109/TSP.2009.2014810
– ident: ref14
  doi: 10.1007/978-94-011-5014-9_12
– ident: ref16
  doi: 10.1016/0031-3203(93)90130-O
– ident: ref27
  doi: 10.1109/CVPR.2006.24
– ident: ref31
  doi: 10.1109/THS.2007.370021
– ident: ref11
  doi: 10.1109/34.598236
– ident: ref8
  doi: 10.1201/9781439813300-c4
– volume-title: Proc. Asian Conf. Computer Vision
  ident: ref3
  article-title: Sequential Kernel Density Approximation through Mode Propagation: Applications to Background Modeling
– ident: ref26
  doi: 10.1109/TIP.2004.836169
– ident: ref4
  doi: 10.1109/TPAMI.2005.102
– ident: ref21
  doi: 10.1109/CVPR.2001.990644
– volume-title: “CAVIAR: Context Aware Vision using Image-Based Active Recognition
  year: 2012
  ident: ref32
– ident: ref6
  doi: 10.1109/CVPR.2001.990517
– ident: ref1
  doi: 10.1007/3-540-45053-X_48
– ident: ref7
  doi: 10.1109/TPAMI.2007.70771
– ident: ref24
  doi: 10.1109/ICCV.2003.1238312
– ident: ref18
  doi: 10.1109/CVPR.2004.1315179
– ident: ref19
  doi: 10.1109/ICCV.1999.791228
– ident: ref2
  doi: 10.1109/34.868677
– ident: ref28
  doi: 10.1007/BF00116037
– ident: ref13
  doi: 10.1109/CVPR.2000.854767
– ident: ref15
  doi: 10.1109/CVPR.2001.990505
– ident: ref25
  doi: 10.1109/TPAMI.2006.68
– ident: ref10
  doi: 10.1016/j.rti.2004.12.004
– ident: ref22
  doi: 10.1109/cvpr.2003.1211453
– ident: ref9
  doi: 10.1109/34.868683
– ident: ref17
  doi: 10.1016/S0262-8856(98)00104-8
– ident: ref30
  doi: 10.1007/978-3-540-74695-9_62
– ident: ref23
  doi: 10.1109/ICCV.2003.1238641
SSID ssj0014503
Score 2.4548872
Snippet Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1017
SubjectTerms Applied sciences
Artificial intelligence
Background modeling and subtraction
Computational modeling
Computer science; control theory; systems
Convergence
Data processing. List processing. Character string processing
Density functional theory
Exact sciences and technology
Haar-like features
Image color analysis
Kernel
kernel density approximation
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Software
support vector machine
Support vector machines
Vectors
Title Density-Based Multifeature Background Subtraction with Support Vector Machine
URI https://ieeexplore.ieee.org/document/6104064
https://www.ncbi.nlm.nih.gov/pubmed/22156099
https://www.proquest.com/docview/1023297671
Volume 34
WOSCitedRecordID wos000301747400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8qaAd2gAEblLHKk5C4LCONHTs-wka1HYo4AOotcu0XCYFS1KZI_Pc822kYEhx2sxRHsd5H3nt-Hz-AIwp6jDUyT7SqikSgMLTKdaJJdgyniKSYpgFsQl1cFJOJvuzBj64XBhFD8Rn-9MuQy3czu_RXZSdk6sn-iDVYU0rGXq0uYyDygIJMHgxpOIUR7YDGYapPri5Px3_jtM5MeOCcLPP9w2Hc64stCuAqvjTSLIg6VYS1eN_vDPZntPV_J_8Em62fyU6jYGxDD-sd2FphOLBWpXfg4z8DCXdh_NvXszdPyRkZN8dCd26FYfYnOzP2zveA1I7R36aZx44I5i9ymccGJT-e3YQcABuHCk38DNej86tff5IWcCGxXORNoqSYouM4HNq8MrqSrkBlhHPaidTkFJlxTLVVNqo-x6lT5EChlZpbJy3_Auv1rMZ9YOQ2pZmzUmIuhHWusBWnyLCY-jKc3Mk-JCvSl7adRu5BMe7LEJWkugxcKz3XSuJaH467_Q9xDse7O3c9_btdLen7MHjF2e45hZApL1La8H3F6pJUzOdNTI2z5aL00y0yctvUsA97UQZe3m5F6eDtr36FDTpXFiskD2G9mS_xG3ywj83tYj4gOZ4UgyDHz3vN7Gw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QH3wPtYzguCLdbtNeuTRE0V38WEV30o2mYIoXdntCv57J2m3KuiDb4GmNMzRmckcH8AhBT1Kqyj0ZJwlnkChaBVKT5LsKE4RSdLzHdhE3OkkT0_yfgKO614YRHTFZ3hily6Xb_p6ZK_KmmTqyf6ISZi2yFlVt1adMxChw0EmH4Z0nAKJakRjy5fN7v1p-6ac1xkIC50TBLaD2A18_bJGDl7FFkeqIdEnK4Et_vY8nQW6Wvzf2ZdgofI02WkpGsswgfkKLI5RHFil1Csw_20k4Sq0L2xFe_HhnZF5M8z152bopn-yM6VfbBdIbhj9b4pB2RPB7FUus-ig5MmzR5cFYG1Xo4lr8HB12T2_9irIBU9zERZeHIkeGo6tlg4zJbPIJBgrYYw0wlchxWYcfaljXSo_x56JyYVCHUmuTaT5Okzl_Rw3gZHj5AdGRxESs7Qxic44xYZJzxbihCZqgDcmfaqreeQWFuM1dXGJL1PHtdRyLSWuNeCo3v9WTuL4c-eqpX-9qyJ9A_Z-cLZ-TkGkzxOfNhyMWZ2SktnMicqxPxqmdr5FQI5b3GrARikDX29XorT1-1f3Yfa6275L7246t9swR2cMynrJHZgqBiPchRn9XjwPB3tOmj8BXqDuzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-based+multifeature+background+subtraction+with+support+vector+machine&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Han%2C+Bohyung&rft.au=Davis%2C+Larry+S&rft.date=2012-05-01&rft.eissn=1939-3539&rft.volume=34&rft.issue=5&rft.spage=1017&rft_id=info:doi/10.1109%2FTPAMI.2011.243&rft_id=info%3Apmid%2F22156099&rft.externalDocID=22156099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon