Density-Based Multifeature Background Subtraction with Support Vector Machine
Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentati...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 5; s. 1017 - 1023 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Los Alamitos, CA
IEEE
01.05.2012
IEEE Computer Society |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively. |
|---|---|
| AbstractList | Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively. Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively. |
| Author | Davis, L. S. Bohyung Han |
| Author_xml | – sequence: 1 surname: Bohyung Han fullname: Bohyung Han email: bhhan@postech.ac.kr organization: Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea – sequence: 2 givenname: L. S. surname: Davis fullname: Davis, L. S. email: lsd@cs.umd.edu organization: Dept. of Comput. Sci., Univ. of Maryland, College Park, MD, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103804$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22156099$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1LHEEQxRsx6Lrx6kWQuQRymbX6Y3qmj2o-FFwUol6b3u6a2Do7s-nuIfjfpze7GggIBQXF71UV7x2Q3X7okZAjCjNKQZ3e3Z7Nr2YMKJ0xwXfIhFEJpWKK7ZIJUMnKpmHNPjmI8QmAigr4HtlnjFYSlJqQ-Rfso08v5bmJ6Ir52CXfokljwOLc2OefYRh7V_wYFykYm_zQF799esyD1WoIqXhAm4ZQzI199D1-JB9a00U83PYpuf_29e7isry--X51cXZdWi6qVNZSLNBxpNRWrVGtdA3WRjinnABTKdVwBGVrCyBycVy4GiqJVipunbR8Sj5v9q7C8GvEmPTSR4tdZ3ocxqgpMM5ULWua0ZMtOi6W6PQq-KUJL_rVggx82gImWtO1wfTWx3-cpMCb_MSUiA1nwxBjwFZbn8zakeyM7_JNvU5E_01ErxPROZEsm_0ne938ruB4I_CI-AbnLwRIwf8ABt6VEw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_electronics9122142 crossref_primary_10_1007_s10044_019_00795_2 crossref_primary_10_1109_TCSVT_2012_2203199 crossref_primary_10_1007_s00429_013_0687_3 crossref_primary_10_1109_TCSVT_2018_2854273 crossref_primary_10_1109_TNNLS_2015_2411613 crossref_primary_10_3758_s13428_017_0880_z crossref_primary_10_1016_j_neucom_2016_01_037 crossref_primary_10_1109_ACCESS_2020_3019973 crossref_primary_10_1109_JSEN_2014_2355914 crossref_primary_10_1109_ACCESS_2024_3452633 crossref_primary_10_1109_TEVC_2017_2694160 crossref_primary_10_1109_TNSRE_2019_2950143 crossref_primary_10_1109_TCSVT_2014_2333132 crossref_primary_10_1016_j_procs_2024_03_013 crossref_primary_10_1080_0954898X_2024_2435492 crossref_primary_10_1109_TNNLS_2021_3060747 crossref_primary_10_1109_TASE_2021_3126476 crossref_primary_10_1109_TCSVT_2019_2951778 crossref_primary_10_1109_JSEN_2024_3404031 crossref_primary_10_1049_iet_ipr_2019_1029 crossref_primary_10_1109_TPAMI_2016_2610973 crossref_primary_10_1080_0952813X_2022_2108146 crossref_primary_10_1016_j_neucom_2018_10_012 crossref_primary_10_1109_TIP_2018_2828329 crossref_primary_10_7717_peerj_cs_962 crossref_primary_10_3390_app7100989 crossref_primary_10_1007_s10586_025_05330_z crossref_primary_10_1111_cgf_12211 crossref_primary_10_1109_TITS_2021_3077883 crossref_primary_10_1109_JSEN_2019_2940694 crossref_primary_10_1007_s11042_018_6618_9 crossref_primary_10_1109_TIP_2020_2983598 crossref_primary_10_1007_s00138_013_0552_7 crossref_primary_10_1109_ACCESS_2020_2992494 crossref_primary_10_1007_s00500_018_3106_0 crossref_primary_10_1109_ACCESS_2018_2812880 crossref_primary_10_1109_TCSVT_2017_2711659 crossref_primary_10_1109_TPAMI_2017_2717828 crossref_primary_10_1016_j_cviu_2013_12_003 crossref_primary_10_1109_TIP_2016_2598680 crossref_primary_10_1109_TIP_2017_2768828 crossref_primary_10_1109_TIP_2022_3162961 crossref_primary_10_1007_s11042_018_7037_7 crossref_primary_10_1016_j_jvcir_2018_06_024 crossref_primary_10_1016_j_cviu_2020_103032 crossref_primary_10_1016_j_procs_2015_10_030 crossref_primary_10_1109_TIE_2013_2284131 crossref_primary_10_1016_S1005_8885_15_60658_6 crossref_primary_10_1109_TIP_2017_2695882 crossref_primary_10_1007_s00138_017_0893_8 crossref_primary_10_3390_app8060885 crossref_primary_10_1007_s12559_018_9594_5 crossref_primary_10_1109_TGRS_2024_3378311 crossref_primary_10_1109_TVT_2015_2509465 crossref_primary_10_1186_s13634_015_0194_1 crossref_primary_10_1016_j_cviu_2014_12_007 crossref_primary_10_1108_K_01_2014_0007 crossref_primary_10_1016_j_measen_2023_100859 crossref_primary_10_1007_s11042_018_6972_7 crossref_primary_10_1088_1742_6596_1345_2_022041 crossref_primary_10_1007_s40745_014_0022_8 crossref_primary_10_1016_j_patrec_2015_09_007 crossref_primary_10_1016_j_jisa_2025_104044 crossref_primary_10_1109_TIP_2018_2874289 crossref_primary_10_1109_TIP_2014_2346013 crossref_primary_10_1016_j_knosys_2025_114506 crossref_primary_10_1109_TCSVT_2020_3042559 crossref_primary_10_1007_s13198_019_00868_9 crossref_primary_10_1109_TIP_2018_2882926 crossref_primary_10_1145_3391743 crossref_primary_10_3390_s19112611 crossref_primary_10_1049_iet_ipr_2015_0103 crossref_primary_10_1007_s11042_021_11071_z crossref_primary_10_1002_cpe_6868 crossref_primary_10_1109_TCSVT_2016_2555719 crossref_primary_10_1109_TTE_2023_3345349 crossref_primary_10_1007_s40815_015_0044_1 |
| Cites_doi | 10.1007/3-540-47979-1_23 10.1016/j.patrec.2005.11.005 10.1109/TSP.2009.2014810 10.1007/978-94-011-5014-9_12 10.1016/0031-3203(93)90130-O 10.1109/CVPR.2006.24 10.1109/THS.2007.370021 10.1109/34.598236 10.1201/9781439813300-c4 10.1109/TIP.2004.836169 10.1109/TPAMI.2005.102 10.1109/CVPR.2001.990644 10.1109/CVPR.2001.990517 10.1007/3-540-45053-X_48 10.1109/TPAMI.2007.70771 10.1109/ICCV.2003.1238312 10.1109/CVPR.2004.1315179 10.1109/ICCV.1999.791228 10.1109/34.868677 10.1007/BF00116037 10.1109/CVPR.2000.854767 10.1109/CVPR.2001.990505 10.1109/TPAMI.2006.68 10.1016/j.rti.2004.12.004 10.1109/cvpr.2003.1211453 10.1109/34.868683 10.1016/S0262-8856(98)00104-8 10.1007/978-3-540-74695-9_62 10.1109/ICCV.2003.1238641 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1109/TPAMI.2011.243 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1023 |
| ExternalDocumentID | 22156099 26103804 10_1109_TPAMI_2011_243 6104064 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG NPM 7X8 |
| ID | FETCH-LOGICAL-c345t-764bed3e11c5fa9f6d8e7a4dd9d40a59983e09c7c0040043ebd7056ec693cd6c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301747400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 01:45:09 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Mon Jul 21 09:16:49 EDT 2025 Tue Nov 18 21:42:10 EST 2025 Sat Nov 29 08:11:23 EST 2025 Wed Aug 27 02:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Computer vision Gradient Segmentation Image processing Video signal Shadow Haar-like features Background modeling and subtraction Haar function Spatial variation Object recognition Modeling Search algorithm Luminance Subtraction support vector machine Scene analysis Object detection Vector support machine Illumination Generative model kernel density approximation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-764bed3e11c5fa9f6d8e7a4dd9d40a59983e09c7c0040043ebd7056ec693cd6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22156099 |
| PQID | 1023297671 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_6104064 crossref_citationtrail_10_1109_TPAMI_2011_243 proquest_miscellaneous_1023297671 pascalfrancis_primary_26103804 pubmed_primary_22156099 crossref_primary_10_1109_TPAMI_2011_243 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2012 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Han (ref3) Friedman (ref12) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 (ref32) 2012 |
| References_xml | – ident: ref20 doi: 10.1007/3-540-47979-1_23 – volume-title: Proc. 13th Conf. Uncertainty in Artificial Intelligence ident: ref12 article-title: Image Segmenation in Video Sequences: A Probabilistic Approach – ident: ref5 doi: 10.1016/j.patrec.2005.11.005 – ident: ref29 doi: 10.1109/TSP.2009.2014810 – ident: ref14 doi: 10.1007/978-94-011-5014-9_12 – ident: ref16 doi: 10.1016/0031-3203(93)90130-O – ident: ref27 doi: 10.1109/CVPR.2006.24 – ident: ref31 doi: 10.1109/THS.2007.370021 – ident: ref11 doi: 10.1109/34.598236 – ident: ref8 doi: 10.1201/9781439813300-c4 – volume-title: Proc. Asian Conf. Computer Vision ident: ref3 article-title: Sequential Kernel Density Approximation through Mode Propagation: Applications to Background Modeling – ident: ref26 doi: 10.1109/TIP.2004.836169 – ident: ref4 doi: 10.1109/TPAMI.2005.102 – ident: ref21 doi: 10.1109/CVPR.2001.990644 – volume-title: “CAVIAR: Context Aware Vision using Image-Based Active Recognition year: 2012 ident: ref32 – ident: ref6 doi: 10.1109/CVPR.2001.990517 – ident: ref1 doi: 10.1007/3-540-45053-X_48 – ident: ref7 doi: 10.1109/TPAMI.2007.70771 – ident: ref24 doi: 10.1109/ICCV.2003.1238312 – ident: ref18 doi: 10.1109/CVPR.2004.1315179 – ident: ref19 doi: 10.1109/ICCV.1999.791228 – ident: ref2 doi: 10.1109/34.868677 – ident: ref28 doi: 10.1007/BF00116037 – ident: ref13 doi: 10.1109/CVPR.2000.854767 – ident: ref15 doi: 10.1109/CVPR.2001.990505 – ident: ref25 doi: 10.1109/TPAMI.2006.68 – ident: ref10 doi: 10.1016/j.rti.2004.12.004 – ident: ref22 doi: 10.1109/cvpr.2003.1211453 – ident: ref9 doi: 10.1109/34.868683 – ident: ref17 doi: 10.1016/S0262-8856(98)00104-8 – ident: ref30 doi: 10.1007/978-3-540-74695-9_62 – ident: ref23 doi: 10.1109/ICCV.2003.1238641 |
| SSID | ssj0014503 |
| Score | 2.4548872 |
| Snippet | Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1017 |
| SubjectTerms | Applied sciences Artificial intelligence Background modeling and subtraction Computational modeling Computer science; control theory; systems Convergence Data processing. List processing. Character string processing Density functional theory Exact sciences and technology Haar-like features Image color analysis Kernel kernel density approximation Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Software support vector machine Support vector machines Vectors |
| Title | Density-Based Multifeature Background Subtraction with Support Vector Machine |
| URI | https://ieeexplore.ieee.org/document/6104064 https://www.ncbi.nlm.nih.gov/pubmed/22156099 https://www.proquest.com/docview/1023297671 |
| Volume | 34 |
| WOSCitedRecordID | wos000301747400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8qaAd2gAEblLHKk5C4LCONHTs-wka1HYo4AOotcu0XCYFS1KZI_Pc822kYEhx2sxRHsd5H3nt-Hz-AIwp6jDUyT7SqikSgMLTKdaJJdgyniKSYpgFsQl1cFJOJvuzBj64XBhFD8Rn-9MuQy3czu_RXZSdk6sn-iDVYU0rGXq0uYyDygIJMHgxpOIUR7YDGYapPri5Px3_jtM5MeOCcLPP9w2Hc64stCuAqvjTSLIg6VYS1eN_vDPZntPV_J_8Em62fyU6jYGxDD-sd2FphOLBWpXfg4z8DCXdh_NvXszdPyRkZN8dCd26FYfYnOzP2zveA1I7R36aZx44I5i9ymccGJT-e3YQcABuHCk38DNej86tff5IWcCGxXORNoqSYouM4HNq8MrqSrkBlhHPaidTkFJlxTLVVNqo-x6lT5EChlZpbJy3_Auv1rMZ9YOQ2pZmzUmIuhHWusBWnyLCY-jKc3Mk-JCvSl7adRu5BMe7LEJWkugxcKz3XSuJaH467_Q9xDse7O3c9_btdLen7MHjF2e45hZApL1La8H3F6pJUzOdNTI2z5aL00y0yctvUsA97UQZe3m5F6eDtr36FDTpXFiskD2G9mS_xG3ywj83tYj4gOZ4UgyDHz3vN7Gw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QH3wPtYzguCLdbtNeuTRE0V38WEV30o2mYIoXdntCv57J2m3KuiDb4GmNMzRmckcH8AhBT1Kqyj0ZJwlnkChaBVKT5LsKE4RSdLzHdhE3OkkT0_yfgKO614YRHTFZ3hily6Xb_p6ZK_KmmTqyf6ISZi2yFlVt1adMxChw0EmH4Z0nAKJakRjy5fN7v1p-6ac1xkIC50TBLaD2A18_bJGDl7FFkeqIdEnK4Et_vY8nQW6Wvzf2ZdgofI02WkpGsswgfkKLI5RHFil1Csw_20k4Sq0L2xFe_HhnZF5M8z152bopn-yM6VfbBdIbhj9b4pB2RPB7FUus-ig5MmzR5cFYG1Xo4lr8HB12T2_9irIBU9zERZeHIkeGo6tlg4zJbPIJBgrYYw0wlchxWYcfaljXSo_x56JyYVCHUmuTaT5Okzl_Rw3gZHj5AdGRxESs7Qxic44xYZJzxbihCZqgDcmfaqreeQWFuM1dXGJL1PHtdRyLSWuNeCo3v9WTuL4c-eqpX-9qyJ9A_Z-cLZ-TkGkzxOfNhyMWZ2SktnMicqxPxqmdr5FQI5b3GrARikDX29XorT1-1f3Yfa6275L7246t9swR2cMynrJHZgqBiPchRn9XjwPB3tOmj8BXqDuzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-based+multifeature+background+subtraction+with+support+vector+machine&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Han%2C+Bohyung&rft.au=Davis%2C+Larry+S&rft.date=2012-05-01&rft.eissn=1939-3539&rft.volume=34&rft.issue=5&rft.spage=1017&rft_id=info:doi/10.1109%2FTPAMI.2011.243&rft_id=info%3Apmid%2F22156099&rft.externalDocID=22156099 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |