Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in...
Uloženo v:
| Vydáno v: | Briefings in bioinformatics Ročník 21; číslo 2; s. 408 - 420 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
23.03.2020
Oxford Publishing Limited (England) |
| Témata: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges. |
|---|---|
| AbstractList | Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges. Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges.Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges. Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges. |
| Author | Su, Ran Manavalan, Balachandran Wei, Leyi Zou, Quan Hu, Jie |
| Author_xml | – sequence: 1 givenname: Ran surname: Su fullname: Su, Ran organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 2 givenname: Jie surname: Hu fullname: Hu, Jie organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Quan orcidid: 0000-0001-6406-1142 surname: Zou fullname: Zou, Quan organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Balachandran orcidid: 0000-0003-0697-9419 surname: Manavalan fullname: Manavalan, Balachandran email: bala@ajou.ac.kr organization: Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea – sequence: 5 givenname: Leyi orcidid: 0000-0003-1444-190X surname: Wei fullname: Wei, Leyi email: weileyi@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30649170$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoOsuLp68QdIQQQR6iZN0m6PIn6B4EXBW8jHVLK0TUxaZP-9KauXRTwMM4fnHead9wjNetcDQqcEXxNc06WyaqnUhhRsDx0SVlU5w5zNprmscs5KOkdHMa4xLnC1IgdoTnHJalLhQ_R-13kbrJZtpl3nZbDR9ZnsTSrZbqKNmWuyL1C5khFMpqFtcw89DEEOtv_IPPjBGsh8AGP1YJN6cK6Nx2i_kW2Ek5--QG_3d6-3j_nzy8PT7c1zrinjQ15xyijBYDivi5I1ujFNCWSFGYOmYIZXq7qkuk7XGuC4JopKrrghvFFFAugCXW73-uA-R4iD6GycrpQ9uDGKglQ1XZFkN6HnO-jajSHZTBQrakwIxhN19kONqgMjfLCdDBvx-7ME4C2gg4sxQCO0HeTkPP3EtoJgMcUiUixiG0uSXO1Ifrf-CV9sYTf6_7hvNBSarg |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2021_12_001 crossref_primary_10_1080_17460441_2021_1851187 crossref_primary_10_3390_cells8111332 crossref_primary_10_1093_bib_bbad399 crossref_primary_10_1016_j_ijpharm_2022_122005 crossref_primary_10_1080_10717544_2021_1960922 crossref_primary_10_1093_bib_bbac341 crossref_primary_10_1186_s12967_021_03084_x crossref_primary_10_1016_j_nantod_2022_101665 crossref_primary_10_1007_s11103_020_00988_y crossref_primary_10_2174_1574893617666220404145517 crossref_primary_10_1109_ACCESS_2020_2994206 crossref_primary_10_1016_j_jddst_2023_104475 crossref_primary_10_1007_s10528_024_10799_1 crossref_primary_10_1002_pmic_202100017 crossref_primary_10_1155_2022_7518779 crossref_primary_10_2174_0115748936272040231117114252 crossref_primary_10_1016_j_foodres_2025_117584 crossref_primary_10_1016_j_ymeth_2022_10_008 crossref_primary_10_1155_2021_5542224 crossref_primary_10_2174_1574893618666230516144641 crossref_primary_10_1002_aic_17781 crossref_primary_10_3389_fphar_2021_799712 crossref_primary_10_1016_j_knosys_2021_107490 crossref_primary_10_1016_j_bioadv_2024_214153 crossref_primary_10_1016_j_compbiomed_2025_109821 crossref_primary_10_1093_bfgp_elad014 crossref_primary_10_1093_bib_bbaa275 crossref_primary_10_1016_j_cmpb_2024_108176 crossref_primary_10_2174_1381612826666201112142826 crossref_primary_10_1109_ACCESS_2020_3023800 crossref_primary_10_1007_s10989_024_10654_2 crossref_primary_10_1016_j_compbiomed_2022_105577 crossref_primary_10_1371_journal_pcbi_1010402 crossref_primary_10_1007_s12539_021_00429_4 crossref_primary_10_1093_bib_bbaa304 crossref_primary_10_1016_j_meegid_2020_104474 crossref_primary_10_1016_j_ymeth_2022_11_001 crossref_primary_10_1007_s13205_023_03649_1 crossref_primary_10_1186_s12859_019_3006_z crossref_primary_10_3389_fgene_2021_808856 crossref_primary_10_1007_s10989_021_10280_2 crossref_primary_10_1016_j_chemolab_2022_104490 crossref_primary_10_1007_s12539_024_00673_4 crossref_primary_10_1016_j_compbiomed_2025_109771 crossref_primary_10_1016_j_ijbiomac_2023_125499 crossref_primary_10_3390_molecules28186680 crossref_primary_10_3389_fmicb_2020_580382 crossref_primary_10_3390_ijms20092344 crossref_primary_10_1016_j_bpc_2019_106227 crossref_primary_10_1109_TCBB_2023_3238370 crossref_primary_10_1007_s10822_020_00343_9 crossref_primary_10_1016_j_omtn_2020_09_010 crossref_primary_10_3389_fcell_2021_795883 crossref_primary_10_1093_bib_bbab310 crossref_primary_10_1042_BSR20221789 crossref_primary_10_3389_fgene_2021_680117 crossref_primary_10_2174_0929867328666210810145806 crossref_primary_10_1016_j_csbj_2021_12_014 crossref_primary_10_1038_s41598_022_11897_z crossref_primary_10_3389_fbioe_2021_647113 crossref_primary_10_3390_ijms20081964 crossref_primary_10_1186_s12859_022_04771_2 crossref_primary_10_3389_fcell_2022_845622 crossref_primary_10_1016_j_ijbiomac_2024_133085 crossref_primary_10_1016_j_jmb_2022_167604 crossref_primary_10_1016_j_ygeno_2020_07_035 crossref_primary_10_1093_bib_bbab468 crossref_primary_10_1111_bph_17388 crossref_primary_10_3390_pharmaceutics14010122 crossref_primary_10_1016_j_ijbiomac_2023_123622 crossref_primary_10_1080_1062936X_2019_1615546 crossref_primary_10_3389_fendo_2022_849549 crossref_primary_10_2174_1574893617666220106112044 crossref_primary_10_1007_s00438_020_01711_8 crossref_primary_10_1016_j_ymeth_2022_01_004 crossref_primary_10_1016_j_ymeth_2022_02_009 crossref_primary_10_3389_fgene_2021_663572 crossref_primary_10_3389_fgene_2021_810875 crossref_primary_10_1080_17425247_2020_1739646 crossref_primary_10_1016_j_compbiolchem_2021_107583 crossref_primary_10_3389_fcell_2021_664669 crossref_primary_10_1016_j_compbiomed_2025_110590 crossref_primary_10_3389_fgene_2022_887894 crossref_primary_10_3390_app11156894 crossref_primary_10_1002_psc_3628 crossref_primary_10_1186_s12859_023_05421_x crossref_primary_10_2174_0929867328666210920103140 crossref_primary_10_1038_s41557_021_00766_3 crossref_primary_10_1093_bib_bbac545 crossref_primary_10_1093_bib_bbaf417 crossref_primary_10_1002_med_21658 crossref_primary_10_3390_app11167731 crossref_primary_10_1007_s10822_020_00368_0 crossref_primary_10_3390_app112210906 |
| Cites_doi | 10.18632/oncotarget.23099 10.1016/j.neucom.2005.12.126 10.1038/nbt1206-1565 10.1371/journal.pcbi.1002101 10.1007/s10989-005-9393-1 10.1111/j.1476-5381.2009.00057.x 10.1093/bib/bbx165 10.1021/jm9700575 10.1093/bioinformatics/bty112 10.1016/j.compbiolchem.2010.07.002 10.1016/j.bbrc.2016.06.035 10.1093/nar/gkv458 10.1261/rna.069112.118RNA 10.1155/2013/686090 10.1016/j.drudis.2012.03.002 10.1093/bib/bby037 10.1109/TCBB.2018.2789880 10.1093/bioinformatics/bty312 10.1093/bioinformatics/btt518 10.1093/bioinformatics/btx222 10.18632/oncotarget.20365 10.1023/A:1010933404324 10.1093/bib/bby104 10.1007/BF00994018 10.1371/journal.pone.0056499 10.1093/bioinformatics/bty827 10.1186/s12864-017-4128-1 10.1093/nar/gkv1266 10.2174/157340910791202478 10.1016/j.neucom.2014.12.123 10.1007/s00726-015-1974-5 10.1016/bs.apcsb.2018.01.006 10.1093/bioinformatics/bty451 10.1517/17460441.2011.586689 10.1016/j.csbj.2018.10.007 10.1016/0092-8674(88)90263-2 10.1093/bib/bby091 10.1109/TCDS.2017.2785332 10.1007/s10994-006-6226-1 10.1371/journal.pcbi.1004786 10.1016/S1532-0464(03)00034-0 10.1371/journal.pone.0106542 10.1016/j.jpdc.2017.08.009 10.1186/s12918-016-0353-5 10.1109/TNB.2017.2762580 10.18632/oncotarget.14524 10.1016/j.neucom.2018.04.082 10.1021/acs.jproteome.8b00148 10.1021/acs.jproteome.7b00019 10.1109/TNB.2018.2873221 10.1002/prot.1035 10.2174/1389200219666181010114750 10.1093/database/bas015 10.1016/j.molmed.2015.06.005 10.1089/cmb.2018.0004 10.1021/acs.jproteome.8b00322 10.1016/S0004-3702(97)00043-X 10.1021/acscentsci.8b00098 10.1109/72.97934 10.1016/j.knosys.2018.10.007 10.2174/1574893612666170221152848 10.2174/1574893612666170125124538 10.1109/TPAMI.2005.159 10.7150/ijbs.24174 10.1016/j.addr.2007.09.003 10.1093/bfgp/ely030 10.1016/j.nbt.2008.12.009 10.1155/2011/414729 10.1186/1479-5876-11-74 10.3389/fmicb.2018.00476 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
| DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| DOI | 10.1093/bib/bby124 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| EndPage | 420 |
| ExternalDocumentID | 30649170 10_1093_bib_bby124 10.1093/bib/bby124 |
| Genre | Journal Article |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c345t-7534310ed559264fcfdf6e18044ef24d578963c9917de5091b3a5b5d15fb2f243 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537365000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Thu Sep 04 18:53:01 EDT 2025 Fri Oct 03 03:31:54 EDT 2025 Thu Apr 03 06:53:27 EDT 2025 Sat Nov 29 05:43:18 EST 2025 Tue Nov 18 22:36:08 EST 2025 Wed Aug 28 03:18:48 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | web servers feature representation cell-penetrating peptides machine learning algorithm |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-7534310ed559264fcfdf6e18044ef24d578963c9917de5091b3a5b5d15fb2f243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6406-1142 0000-0003-0697-9419 0000-0003-1444-190X |
| PMID | 30649170 |
| PQID | 2429011001 |
| PQPubID | 26846 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2179381491 proquest_journals_2429011001 pubmed_primary_30649170 crossref_citationtrail_10_1093_bib_bby124 crossref_primary_10_1093_bib_bby124 oup_primary_10_1093_bib_bby124 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-23 |
| PublicationDateYYYYMMDD | 2020-03-23 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2020 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Qiang (2020080709262591900_ref11) 2018 Zhu (2020080709262591900_ref67) 2018 Wei (2020080709262591900_ref56) 2019; 324 Wei (2020080709262591900_ref59) 2018; 117 Wolfe (2020080709262591900_ref8) 2018; 4 Manavalan (2020080709262591900_ref15) 2018; 17 Breiman (2020080709262591900_ref25) 2001; 45 Madani (2020080709262591900_ref3) 2011; 2011 Manavalan (2020080709262591900_ref45) 2018; 9 Wei (2020080709262591900_ref16) 2017; 16 Kilk (2020080709262591900_ref2) 2004 Hansen (2020080709262591900_ref1) 2008; 60 Manavalan (2020080709262591900_ref44) 2018; 9 He (2020080709262591900_ref62) 2010; 34 Milletti (2020080709262591900_ref4) 2012; 17 Chou (2020080709262591900_ref18) 2001; 43 Ansorge (2020080709262591900_ref17) 2009; 25 Geurts (2020080709262591900_ref30) 2006; 63 Holton (2020080709262591900_ref29) 2013; 29 Specht (2020080709262591900_ref27) 1991; 2 Lin (2020080709262591900_ref50) 2013; 8 Tang (2020080709262591900_ref61) 2018; 14 Wei (2020080709262591900_ref21) 2018 Manavalan (2020080709262591900_ref43) 2017; 33 Pandey (2020080709262591900_ref34) 2018; 17 Liu (2020080709262591900_ref40) 2018 Tang (2020080709262591900_ref24) 2016; 477 Heitz (2020080709262591900_ref9) 2009; 157 Dreiseitl (2020080709262591900_ref39) 2002; 35 Usmani (2020080709262591900_ref38) 2018; 112 Wei (2020080709262591900_ref12) 2017; 18 Zou (2020080709262591900_ref51) 2013; 2013 Zeng (2020080709262591900_ref71) 2018; 34 Liu (2020080709262591900_ref52) 2018 Song (2020080709262591900_ref64) 2017 Long (2020080709262591900_ref57) 2017; 12 Sanders (2020080709262591900_ref7) 2011; 7 Yu (2020080709262591900_ref58) 2018; 13 Feng (2020080709262591900_ref60) 2018 Cabarle (2020080709262591900_ref63) 2017; 16 Liu (2020080709262591900_ref49) 2015; 43 Gautam (2020080709262591900_ref23) 2013; 11 Zhang (2020080709262591900_ref55) 2018 Zou (2020080709262591900_ref54) 2018 Yang (2020080709262591900_ref66) 2018; 25 Noble (2020080709262591900_ref41) 2006; 24 Zou (2020080709262591900_ref70) 2016; 10 Kohavi (2020080709262591900_ref48) 1997; 97 Hällbrink (2020080709262591900_ref6) 2005; 11 Diener (2020080709262591900_ref19) 2016; 12 Basith (2020080709262591900_ref31) 2018; 16 Wei (2020080709262591900_ref68) 2018 Cortes (2020080709262591900_ref22) 1995; 20 Manavalan (2020080709262591900_ref32) 2017; 8 Raucher (2020080709262591900_ref5) 2015; 21 Agrawal (2020080709262591900_ref13) 2015; 44 Chen (2020080709262591900_ref26) 2015; 47 Karelson (2020080709262591900_ref20) 2011; 6 Liu (2020080709262591900_ref36) 2018 Liu (2020080709262591900_ref69) 2018 Sandberg (2020080709262591900_ref53) 1998; 41 Gautam (2020080709262591900_ref14) 2012; 2012 Frankel (2020080709262591900_ref10) 1988; 55 A Dobchev (2020080709262591900_ref28) 2010; 6 Manavalan (2020080709262591900_ref46) 2014; 9 Stegmayer (2020080709262591900_ref35) 2018 Liu (2020080709262591900_ref42) 2017; 8 Song (2020080709262591900_ref65) 2018; 17 Zou (2020080709262591900_ref37) 2016; 173 Huang (2020080709262591900_ref33) 2006; 70 Peng (2020080709262591900_ref47) 2005; 27 |
| References_xml | – volume: 9 start-page: 1944 year: 2018 ident: 2020080709262591900_ref45 article-title: DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest publication-title: Oncotarget doi: 10.18632/oncotarget.23099 – volume: 70 start-page: 489 year: 2006 ident: 2020080709262591900_ref33 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 24 start-page: 1565 year: 2006 ident: 2020080709262591900_ref41 article-title: What is a support vector machine? publication-title: Nat Biotechnol doi: 10.1038/nbt1206-1565 – volume: 7 start-page: e1002101 year: 2011 ident: 2020080709262591900_ref7 article-title: Prediction of cell penetrating peptides by support vector machines publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002101 – volume: 11 start-page: 249 year: 2005 ident: 2020080709262591900_ref6 article-title: Prediction of cell-penetrating peptides publication-title: Int J Pept Res Ther doi: 10.1007/s10989-005-9393-1 – volume: 157 start-page: 195 year: 2009 ident: 2020080709262591900_ref9 article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00057.x – year: 2018 ident: 2020080709262591900_ref52 article-title: BioSeq-Analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches publication-title: Brief Bioinform doi: 10.1093/bib/bbx165 – volume: 41 start-page: 2481 year: 1998 ident: 2020080709262591900_ref53 article-title: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids publication-title: J Med Chem doi: 10.1021/jm9700575 – volume: 34 start-page: 2425 year: 2018 ident: 2020080709262591900_ref71 article-title: Prediction of potential disease-associated microRNAs using structural perturbation method publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty112 – volume: 34 start-page: 215 year: 2010 ident: 2020080709262591900_ref62 article-title: Stable feature selection for biomarker discovery publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2010.07.002 – volume: 477 start-page: 150 year: 2016 ident: 2020080709262591900_ref24 article-title: Prediction of cell-penetrating peptides with feature selection techniques publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.06.035 – volume: 43 start-page: W65 year: 2015 ident: 2020080709262591900_ref49 article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv458 – year: 2018 ident: 2020080709262591900_ref54 article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA publication-title: RNA doi: 10.1261/rna.069112.118RNA – volume-title: Cell-penetrating peptides and bioactive cargoes: strategies and mechanisms. year: 2004 ident: 2020080709262591900_ref2 – volume: 2013 year: 2013 ident: 2020080709262591900_ref51 article-title: An approach for identifying cytokines based on a novel ensemble classifier publication-title: BioMed Res Int doi: 10.1155/2013/686090 – volume: 17 start-page: 850 year: 2012 ident: 2020080709262591900_ref4 article-title: Cell-penetrating peptides: classes, origin, and current landscape publication-title: Drug Disco Today doi: 10.1016/j.drudis.2012.03.002 – year: 2018 ident: 2020080709262591900_ref35 article-title: Predicting novel microRNA: a comprehensive comparison of machine learning approaches publication-title: Brief Bioinform doi: 10.1093/bib/bby037 – year: 2018 ident: 2020080709262591900_ref40 article-title: ProtDet-CCH: protein remote homology detection by combining long short-term memory and ranking methods publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2018.2789880 – year: 2018 ident: 2020080709262591900_ref69 article-title: iRO-3wPseKNC: Identify DNA replication origins by three-window-based PseKNC publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty312 – volume: 29 start-page: 3094 year: 2013 ident: 2020080709262591900_ref29 article-title: CPPpred: prediction of cell penetrating peptides publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt518 – volume: 33 start-page: 2496 year: 2017 ident: 2020080709262591900_ref43 article-title: SVMQA: support–vector-machine-based protein single-model quality assessment publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx222 – volume: 8 start-page: 77121 year: 2017 ident: 2020080709262591900_ref32 article-title: MLACP: machine-learning-based prediction of anticancer peptides publication-title: Oncotarget doi: 10.18632/oncotarget.20365 – volume: 45 start-page: 5 year: 2001 ident: 2020080709262591900_ref25 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – year: 2018 ident: 2020080709262591900_ref36 article-title: HITS-PR-HHblits: protein remote homology detection by combining PageRank and hyperlink-induced topic search publication-title: Brief Bioinform doi: 10.1093/bib/bby104 – volume: 20 start-page: 273 year: 1995 ident: 2020080709262591900_ref22 article-title: Support vector machine publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 8 start-page: e56499 year: 2013 ident: 2020080709262591900_ref50 article-title: Hierarchical classification of protein folds using a novel ensemble classifier publication-title: PloS One doi: 10.1371/journal.pone.0056499 – year: 2018 ident: 2020080709262591900_ref60 article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 – volume: 18 start-page: 1 year: 2017 ident: 2020080709262591900_ref12 article-title: SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides publication-title: BMC Genomics doi: 10.1186/s12864-017-4128-1 – volume: 44 start-page: D1098 year: 2015 ident: 2020080709262591900_ref13 article-title: CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1266 – volume: 6 start-page: 79 year: 2010 ident: 2020080709262591900_ref28 article-title: Prediction of cell-penetrating peptides using artificial neural networks publication-title: Curr Comput Aided Drug Des doi: 10.2174/157340910791202478 – volume: 173 start-page: 346 year: 2016 ident: 2020080709262591900_ref37 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.123 – volume: 47 start-page: 1485 year: 2015 ident: 2020080709262591900_ref26 article-title: Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models publication-title: Amino Acids doi: 10.1007/s00726-015-1974-5 – volume: 112 start-page: 221 year: 2018 ident: 2020080709262591900_ref38 article-title: In silico tools and databases for designing peptide-based vaccine and drugs publication-title: Adv Protein Chem Struct Biol doi: 10.1016/bs.apcsb.2018.01.006 – year: 2018 ident: 2020080709262591900_ref68 article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty451 – volume: 6 start-page: 783 year: 2011 ident: 2020080709262591900_ref20 article-title: Using artificial neural networks to predict cell-penetrating compounds publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2011.586689 – volume: 16 start-page: 412 year: 2018 ident: 2020080709262591900_ref31 article-title: iGHBP: computational identification of growth hormone binding proteins from sequences using extremely randomised tree publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2018.10.007 – volume: 55 start-page: 1189 year: 1988 ident: 2020080709262591900_ref10 article-title: Cellular uptake of the tat protein from human immunodeficiency virus publication-title: Cell doi: 10.1016/0092-8674(88)90263-2 – year: 2018 ident: 2020080709262591900_ref11 article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning. A predictor for CPP identification publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bby091 – year: 2017 ident: 2020080709262591900_ref64 article-title: Spiking neural P systems with colored spikes publication-title: IEEE Trans Cogn Dev Syst doi: 10.1109/TCDS.2017.2785332 – volume: 63 start-page: 3 year: 2006 ident: 2020080709262591900_ref30 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – volume: 12 start-page: e1004786 year: 2016 ident: 2020080709262591900_ref19 article-title: Effective design of multifunctional peptides by combining compatible functions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004786 – volume: 35 start-page: 352 year: 2002 ident: 2020080709262591900_ref39 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J Biomed Inform doi: 10.1016/S1532-0464(03)00034-0 – volume: 9 start-page: e106542 year: 2014 ident: 2020080709262591900_ref46 article-title: Random forest-based protein model quality assessment (RFMQA) using structural features and potential energy terms publication-title: PloS One doi: 10.1371/journal.pone.0106542 – volume: 117 start-page: 212 year: 2018 ident: 2020080709262591900_ref59 article-title: Prediction of human protein subcellular localization using deep learning publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2017.08.009 – volume: 10 start-page: 114 year: 2016 ident: 2020080709262591900_ref70 article-title: Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy publication-title: BMC Syst Biol doi: 10.1186/s12918-016-0353-5 – volume: 16 start-page: 792 year: 2017 ident: 2020080709262591900_ref63 article-title: Spiking neural p systems with scheduled synapses publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2017.2762580 – volume: 8 start-page: 13338 year: 2017 ident: 2020080709262591900_ref42 article-title: Pse-Analysis: a python package for DNA, RNA and protein peptide sequence analysis based on pseudo components and kernel methods publication-title: Oncotarget doi: 10.18632/oncotarget.14524 – volume: 324 start-page: 3 year: 2019 ident: 2020080709262591900_ref56 article-title: Integration of deep feature representations and handcrafted features to improve the prediction of N 6 -methyladenosine sites publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.082 – volume: 17 start-page: 2715 year: 2018 ident: 2020080709262591900_ref15 article-title: Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00148 – volume: 16 start-page: 2044 year: 2017 ident: 2020080709262591900_ref16 article-title: CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency publication-title: J Proteome Res doi: 10.1021/acs.jproteome.7b00019 – volume: 17 start-page: 474 year: 2018 ident: 2020080709262591900_ref65 article-title: A parallel workflow pattern modelling using spiking neural P systems with colored spikes publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2018.2873221 – volume: 43 start-page: 246 year: 2001 ident: 2020080709262591900_ref18 article-title: Prediction of protein cellular attributes using pseudo-amino acid composition publication-title: Proteins doi: 10.1002/prot.1035 – year: 2018 ident: 2020080709262591900_ref21 article-title: The development of machine learning methods in cell-penetrating peptides identification: a brief review publication-title: Curr Drug Metab doi: 10.2174/1389200219666181010114750 – volume: 2012 year: 2012 ident: 2020080709262591900_ref14 article-title: CPPsite: a curated database of cell penetrating peptides publication-title: Database doi: 10.1093/database/bas015 – volume: 21 start-page: 560 year: 2015 ident: 2020080709262591900_ref5 article-title: Cell-penetrating peptides: strategies for anticancer treatment publication-title: Trends Mol Med doi: 10.1016/j.molmed.2015.06.005 – volume: 25 start-page: 1266 year: 2018 ident: 2020080709262591900_ref66 article-title: iRNA-2OM: a sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens publication-title: J Comput Biol doi: 10.1089/cmb.2018.0004 – volume: 17 start-page: 3214 year: 2018 ident: 2020080709262591900_ref34 article-title: KELM-CPPpred: kernel extreme learning machine based prediction model for cell-penetrating peptides publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00322 – volume: 97 start-page: 273 year: 1997 ident: 2020080709262591900_ref48 article-title: Wrappers for feature subset selection publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – volume: 4 start-page: 512 year: 2018 ident: 2020080709262591900_ref8 article-title: Machine learning to predict cell-penetrating peptides for antisense delivery publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00098 – volume: 2 start-page: 568 year: 1991 ident: 2020080709262591900_ref27 article-title: A general regression neural network publication-title: IEEE Trans Neural Netw doi: 10.1109/72.97934 – year: 2018 ident: 2020080709262591900_ref67 article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2018.10.007 – volume: 12 start-page: 233 year: 2017 ident: 2020080709262591900_ref57 article-title: Deep convolutional neural networks for predicting hydroxyproline in proteins publication-title: Curr Bioinform doi: 10.2174/1574893612666170221152848 – volume: 13 start-page: 253 year: 2018 ident: 2020080709262591900_ref58 article-title: Drug and nondrug classification based on deep learning with various feature selection strategies publication-title: Curr Bioinform doi: 10.2174/1574893612666170125124538 – volume: 27 start-page: 1226 year: 2005 ident: 2020080709262591900_ref47 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 14 start-page: 957 year: 2018 ident: 2020080709262591900_ref61 article-title: HBPred: a tool to identify growth hormone-binding proteins publication-title: Int J Biol Sci doi: 10.7150/ijbs.24174 – volume: 60 start-page: 572 year: 2008 ident: 2020080709262591900_ref1 article-title: Predicting cell-penetrating peptides publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2007.09.003 – year: 2018 ident: 2020080709262591900_ref55 article-title: Deep learning in omics: a survey and guideline publication-title: Brief Funct Genomics doi: 10.1093/bfgp/ely030 – volume: 25 start-page: 195 year: 2009 ident: 2020080709262591900_ref17 article-title: Next-generation DNA sequencing techniques publication-title: N Biotechnol doi: 10.1016/j.nbt.2008.12.009 – volume: 2011 year: 2011 ident: 2020080709262591900_ref3 article-title: Mechanisms of cellular uptake of cell-penetrating peptides publication-title: J Biophys doi: 10.1155/2011/414729 – volume: 11 start-page: 74 year: 2013 ident: 2020080709262591900_ref23 article-title: In silico approaches for designing highly effective cell penetrating peptides publication-title: J Transl Med doi: 10.1186/1479-5876-11-74 – volume: 9 start-page: 476 year: 2018 ident: 2020080709262591900_ref44 article-title: PVP-SVM: sequence-based prediction of phage virion proteins using a support vector machine publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00476 |
| SSID | ssj0020781 |
| Score | 2.5885565 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into... Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 408 |
| SubjectTerms | Comparative studies Empirical analysis Learning algorithms Machine learning Oligonucleotides Peptides Prediction models |
| Title | Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30649170 https://www.proquest.com/docview/2429011001 https://www.proquest.com/docview/2179381491 |
| Volume | 21 |
| WOSCitedRecordID | wos000537365000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60KHjx_ajWsqIXD0uT7KabHEVaPEj1UCG3kH1JoSahSYX-e2eTNFAU9ZBTJiTM7Mx8k9n9BqG7hCvBlKeJ5kYSFmpBEso9IoRLtWJ-yGR1UPiZTyZBFIWvzSaa4ocWfkgHYiYGQqwgEUGkdf3ArubpS9SWVZaupj5DxIkld1-TkG48upF2No6yfUOUVWYZH_zzmw7RfgMd8UNt6yO0pdNjtFsPk1ydoGj0kc8qwg8s2-GCOEkVXDXxCM4MhqhJbOZS2P6yJzmEuoo4N33Hud3gojTOF7Z5Yw2GyyybF6fobTyaPj6RZm4CkZT5JYEKBGCBoxVUC4B3jDTKDLUbOIxp4zEFTgpuJwEZcqUtYBA08YWvXN8IDwToGeqkWaovEPaFa1tx2hWOZG5iAoiGTAtpEjXkHlVddL9WaywbUnE722Ie181tGoOm4lpTXXTbyuY1lcaPUn2wzq8CvbXh4sbfihiARlix37lddNPeBk-xukxSnS1BxsaiACpCkDmvDd6-xtZhoA7n8q-3X6E9z1bcDiUe7aFOuVjqa7QjP8tZseijbR4F_Wp5fgF_2eGQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+comparison+and+analysis+of+web-based+cell-penetrating+peptide+prediction+tools&rft.jtitle=Briefings+in+bioinformatics&rft.au=Su%2C+Ran&rft.au=Hu%2C+Jie&rft.au=Zou%2C+Quan&rft.au=Manavalan%2C+Balachandran&rft.date=2020-03-23&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=2&rft.spage=408&rft.epage=420&rft_id=info:doi/10.1093%2Fbib%2Fbby124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bby124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |