Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools

Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Briefings in bioinformatics Ročník 21; číslo 2; s. 408 - 420
Hlavní autoři: Su, Ran, Hu, Jie, Zou, Quan, Manavalan, Balachandran, Wei, Leyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 23.03.2020
Oxford Publishing Limited (England)
Témata:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges.
AbstractList Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges.
Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges.Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges.
Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20–25 residues long than peptides in other length ranges.
Author Su, Ran
Manavalan, Balachandran
Wei, Leyi
Zou, Quan
Hu, Jie
Author_xml – sequence: 1
  givenname: Ran
  surname: Su
  fullname: Su, Ran
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Quan
  orcidid: 0000-0001-6406-1142
  surname: Zou
  fullname: Zou, Quan
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Balachandran
  orcidid: 0000-0003-0697-9419
  surname: Manavalan
  fullname: Manavalan, Balachandran
  email: bala@ajou.ac.kr
  organization: Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
– sequence: 5
  givenname: Leyi
  orcidid: 0000-0003-1444-190X
  surname: Wei
  fullname: Wei, Leyi
  email: weileyi@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30649170$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoOsuLp68QdIQQQR6iZN0m6PIn6B4EXBW8jHVLK0TUxaZP-9KauXRTwMM4fnHead9wjNetcDQqcEXxNc06WyaqnUhhRsDx0SVlU5w5zNprmscs5KOkdHMa4xLnC1IgdoTnHJalLhQ_R-13kbrJZtpl3nZbDR9ZnsTSrZbqKNmWuyL1C5khFMpqFtcw89DEEOtv_IPPjBGsh8AGP1YJN6cK6Nx2i_kW2Ek5--QG_3d6-3j_nzy8PT7c1zrinjQ15xyijBYDivi5I1ujFNCWSFGYOmYIZXq7qkuk7XGuC4JopKrrghvFFFAugCXW73-uA-R4iD6GycrpQ9uDGKglQ1XZFkN6HnO-jajSHZTBQrakwIxhN19kONqgMjfLCdDBvx-7ME4C2gg4sxQCO0HeTkPP3EtoJgMcUiUixiG0uSXO1Ifrf-CV9sYTf6_7hvNBSarg
CitedBy_id crossref_primary_10_1016_j_ymeth_2021_12_001
crossref_primary_10_1080_17460441_2021_1851187
crossref_primary_10_3390_cells8111332
crossref_primary_10_1093_bib_bbad399
crossref_primary_10_1016_j_ijpharm_2022_122005
crossref_primary_10_1080_10717544_2021_1960922
crossref_primary_10_1093_bib_bbac341
crossref_primary_10_1186_s12967_021_03084_x
crossref_primary_10_1016_j_nantod_2022_101665
crossref_primary_10_1007_s11103_020_00988_y
crossref_primary_10_2174_1574893617666220404145517
crossref_primary_10_1109_ACCESS_2020_2994206
crossref_primary_10_1016_j_jddst_2023_104475
crossref_primary_10_1007_s10528_024_10799_1
crossref_primary_10_1002_pmic_202100017
crossref_primary_10_1155_2022_7518779
crossref_primary_10_2174_0115748936272040231117114252
crossref_primary_10_1016_j_foodres_2025_117584
crossref_primary_10_1016_j_ymeth_2022_10_008
crossref_primary_10_1155_2021_5542224
crossref_primary_10_2174_1574893618666230516144641
crossref_primary_10_1002_aic_17781
crossref_primary_10_3389_fphar_2021_799712
crossref_primary_10_1016_j_knosys_2021_107490
crossref_primary_10_1016_j_bioadv_2024_214153
crossref_primary_10_1016_j_compbiomed_2025_109821
crossref_primary_10_1093_bfgp_elad014
crossref_primary_10_1093_bib_bbaa275
crossref_primary_10_1016_j_cmpb_2024_108176
crossref_primary_10_2174_1381612826666201112142826
crossref_primary_10_1109_ACCESS_2020_3023800
crossref_primary_10_1007_s10989_024_10654_2
crossref_primary_10_1016_j_compbiomed_2022_105577
crossref_primary_10_1371_journal_pcbi_1010402
crossref_primary_10_1007_s12539_021_00429_4
crossref_primary_10_1093_bib_bbaa304
crossref_primary_10_1016_j_meegid_2020_104474
crossref_primary_10_1016_j_ymeth_2022_11_001
crossref_primary_10_1007_s13205_023_03649_1
crossref_primary_10_1186_s12859_019_3006_z
crossref_primary_10_3389_fgene_2021_808856
crossref_primary_10_1007_s10989_021_10280_2
crossref_primary_10_1016_j_chemolab_2022_104490
crossref_primary_10_1007_s12539_024_00673_4
crossref_primary_10_1016_j_compbiomed_2025_109771
crossref_primary_10_1016_j_ijbiomac_2023_125499
crossref_primary_10_3390_molecules28186680
crossref_primary_10_3389_fmicb_2020_580382
crossref_primary_10_3390_ijms20092344
crossref_primary_10_1016_j_bpc_2019_106227
crossref_primary_10_1109_TCBB_2023_3238370
crossref_primary_10_1007_s10822_020_00343_9
crossref_primary_10_1016_j_omtn_2020_09_010
crossref_primary_10_3389_fcell_2021_795883
crossref_primary_10_1093_bib_bbab310
crossref_primary_10_1042_BSR20221789
crossref_primary_10_3389_fgene_2021_680117
crossref_primary_10_2174_0929867328666210810145806
crossref_primary_10_1016_j_csbj_2021_12_014
crossref_primary_10_1038_s41598_022_11897_z
crossref_primary_10_3389_fbioe_2021_647113
crossref_primary_10_3390_ijms20081964
crossref_primary_10_1186_s12859_022_04771_2
crossref_primary_10_3389_fcell_2022_845622
crossref_primary_10_1016_j_ijbiomac_2024_133085
crossref_primary_10_1016_j_jmb_2022_167604
crossref_primary_10_1016_j_ygeno_2020_07_035
crossref_primary_10_1093_bib_bbab468
crossref_primary_10_1111_bph_17388
crossref_primary_10_3390_pharmaceutics14010122
crossref_primary_10_1016_j_ijbiomac_2023_123622
crossref_primary_10_1080_1062936X_2019_1615546
crossref_primary_10_3389_fendo_2022_849549
crossref_primary_10_2174_1574893617666220106112044
crossref_primary_10_1007_s00438_020_01711_8
crossref_primary_10_1016_j_ymeth_2022_01_004
crossref_primary_10_1016_j_ymeth_2022_02_009
crossref_primary_10_3389_fgene_2021_663572
crossref_primary_10_3389_fgene_2021_810875
crossref_primary_10_1080_17425247_2020_1739646
crossref_primary_10_1016_j_compbiolchem_2021_107583
crossref_primary_10_3389_fcell_2021_664669
crossref_primary_10_1016_j_compbiomed_2025_110590
crossref_primary_10_3389_fgene_2022_887894
crossref_primary_10_3390_app11156894
crossref_primary_10_1002_psc_3628
crossref_primary_10_1186_s12859_023_05421_x
crossref_primary_10_2174_0929867328666210920103140
crossref_primary_10_1038_s41557_021_00766_3
crossref_primary_10_1093_bib_bbac545
crossref_primary_10_1093_bib_bbaf417
crossref_primary_10_1002_med_21658
crossref_primary_10_3390_app11167731
crossref_primary_10_1007_s10822_020_00368_0
crossref_primary_10_3390_app112210906
Cites_doi 10.18632/oncotarget.23099
10.1016/j.neucom.2005.12.126
10.1038/nbt1206-1565
10.1371/journal.pcbi.1002101
10.1007/s10989-005-9393-1
10.1111/j.1476-5381.2009.00057.x
10.1093/bib/bbx165
10.1021/jm9700575
10.1093/bioinformatics/bty112
10.1016/j.compbiolchem.2010.07.002
10.1016/j.bbrc.2016.06.035
10.1093/nar/gkv458
10.1261/rna.069112.118RNA
10.1155/2013/686090
10.1016/j.drudis.2012.03.002
10.1093/bib/bby037
10.1109/TCBB.2018.2789880
10.1093/bioinformatics/bty312
10.1093/bioinformatics/btt518
10.1093/bioinformatics/btx222
10.18632/oncotarget.20365
10.1023/A:1010933404324
10.1093/bib/bby104
10.1007/BF00994018
10.1371/journal.pone.0056499
10.1093/bioinformatics/bty827
10.1186/s12864-017-4128-1
10.1093/nar/gkv1266
10.2174/157340910791202478
10.1016/j.neucom.2014.12.123
10.1007/s00726-015-1974-5
10.1016/bs.apcsb.2018.01.006
10.1093/bioinformatics/bty451
10.1517/17460441.2011.586689
10.1016/j.csbj.2018.10.007
10.1016/0092-8674(88)90263-2
10.1093/bib/bby091
10.1109/TCDS.2017.2785332
10.1007/s10994-006-6226-1
10.1371/journal.pcbi.1004786
10.1016/S1532-0464(03)00034-0
10.1371/journal.pone.0106542
10.1016/j.jpdc.2017.08.009
10.1186/s12918-016-0353-5
10.1109/TNB.2017.2762580
10.18632/oncotarget.14524
10.1016/j.neucom.2018.04.082
10.1021/acs.jproteome.8b00148
10.1021/acs.jproteome.7b00019
10.1109/TNB.2018.2873221
10.1002/prot.1035
10.2174/1389200219666181010114750
10.1093/database/bas015
10.1016/j.molmed.2015.06.005
10.1089/cmb.2018.0004
10.1021/acs.jproteome.8b00322
10.1016/S0004-3702(97)00043-X
10.1021/acscentsci.8b00098
10.1109/72.97934
10.1016/j.knosys.2018.10.007
10.2174/1574893612666170221152848
10.2174/1574893612666170125124538
10.1109/TPAMI.2005.159
10.7150/ijbs.24174
10.1016/j.addr.2007.09.003
10.1093/bfgp/ely030
10.1016/j.nbt.2008.12.009
10.1155/2011/414729
10.1186/1479-5876-11-74
10.3389/fmicb.2018.00476
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bby124
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 420
ExternalDocumentID 30649170
10_1093_bib_bby124
10.1093/bib/bby124
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c345t-7534310ed559264fcfdf6e18044ef24d578963c9917de5091b3a5b5d15fb2f243
IEDL.DBID TOX
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537365000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Thu Sep 04 18:53:01 EDT 2025
Fri Oct 03 03:31:54 EDT 2025
Thu Apr 03 06:53:27 EDT 2025
Sat Nov 29 05:43:18 EST 2025
Tue Nov 18 22:36:08 EST 2025
Wed Aug 28 03:18:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords web servers
feature representation
cell-penetrating peptides
machine learning algorithm
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-7534310ed559264fcfdf6e18044ef24d578963c9917de5091b3a5b5d15fb2f243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6406-1142
0000-0003-0697-9419
0000-0003-1444-190X
PMID 30649170
PQID 2429011001
PQPubID 26846
PageCount 13
ParticipantIDs proquest_miscellaneous_2179381491
proquest_journals_2429011001
pubmed_primary_30649170
crossref_citationtrail_10_1093_bib_bby124
crossref_primary_10_1093_bib_bby124
oup_primary_10_1093_bib_bby124
PublicationCentury 2000
PublicationDate 2020-03-23
PublicationDateYYYYMMDD 2020-03-23
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Qiang (2020080709262591900_ref11) 2018
Zhu (2020080709262591900_ref67) 2018
Wei (2020080709262591900_ref56) 2019; 324
Wei (2020080709262591900_ref59) 2018; 117
Wolfe (2020080709262591900_ref8) 2018; 4
Manavalan (2020080709262591900_ref15) 2018; 17
Breiman (2020080709262591900_ref25) 2001; 45
Madani (2020080709262591900_ref3) 2011; 2011
Manavalan (2020080709262591900_ref45) 2018; 9
Wei (2020080709262591900_ref16) 2017; 16
Kilk (2020080709262591900_ref2) 2004
Hansen (2020080709262591900_ref1) 2008; 60
Manavalan (2020080709262591900_ref44) 2018; 9
He (2020080709262591900_ref62) 2010; 34
Milletti (2020080709262591900_ref4) 2012; 17
Chou (2020080709262591900_ref18) 2001; 43
Ansorge (2020080709262591900_ref17) 2009; 25
Geurts (2020080709262591900_ref30) 2006; 63
Holton (2020080709262591900_ref29) 2013; 29
Specht (2020080709262591900_ref27) 1991; 2
Lin (2020080709262591900_ref50) 2013; 8
Tang (2020080709262591900_ref61) 2018; 14
Wei (2020080709262591900_ref21) 2018
Manavalan (2020080709262591900_ref43) 2017; 33
Pandey (2020080709262591900_ref34) 2018; 17
Liu (2020080709262591900_ref40) 2018
Tang (2020080709262591900_ref24) 2016; 477
Heitz (2020080709262591900_ref9) 2009; 157
Dreiseitl (2020080709262591900_ref39) 2002; 35
Usmani (2020080709262591900_ref38) 2018; 112
Wei (2020080709262591900_ref12) 2017; 18
Zou (2020080709262591900_ref51) 2013; 2013
Zeng (2020080709262591900_ref71) 2018; 34
Liu (2020080709262591900_ref52) 2018
Song (2020080709262591900_ref64) 2017
Long (2020080709262591900_ref57) 2017; 12
Sanders (2020080709262591900_ref7) 2011; 7
Yu (2020080709262591900_ref58) 2018; 13
Feng (2020080709262591900_ref60) 2018
Cabarle (2020080709262591900_ref63) 2017; 16
Liu (2020080709262591900_ref49) 2015; 43
Gautam (2020080709262591900_ref23) 2013; 11
Zhang (2020080709262591900_ref55) 2018
Zou (2020080709262591900_ref54) 2018
Yang (2020080709262591900_ref66) 2018; 25
Noble (2020080709262591900_ref41) 2006; 24
Zou (2020080709262591900_ref70) 2016; 10
Kohavi (2020080709262591900_ref48) 1997; 97
Hällbrink (2020080709262591900_ref6) 2005; 11
Diener (2020080709262591900_ref19) 2016; 12
Basith (2020080709262591900_ref31) 2018; 16
Wei (2020080709262591900_ref68) 2018
Cortes (2020080709262591900_ref22) 1995; 20
Manavalan (2020080709262591900_ref32) 2017; 8
Raucher (2020080709262591900_ref5) 2015; 21
Agrawal (2020080709262591900_ref13) 2015; 44
Chen (2020080709262591900_ref26) 2015; 47
Karelson (2020080709262591900_ref20) 2011; 6
Liu (2020080709262591900_ref36) 2018
Liu (2020080709262591900_ref69) 2018
Sandberg (2020080709262591900_ref53) 1998; 41
Gautam (2020080709262591900_ref14) 2012; 2012
Frankel (2020080709262591900_ref10) 1988; 55
A Dobchev (2020080709262591900_ref28) 2010; 6
Manavalan (2020080709262591900_ref46) 2014; 9
Stegmayer (2020080709262591900_ref35) 2018
Liu (2020080709262591900_ref42) 2017; 8
Song (2020080709262591900_ref65) 2018; 17
Zou (2020080709262591900_ref37) 2016; 173
Huang (2020080709262591900_ref33) 2006; 70
Peng (2020080709262591900_ref47) 2005; 27
References_xml – volume: 9
  start-page: 1944
  year: 2018
  ident: 2020080709262591900_ref45
  article-title: DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23099
– volume: 70
  start-page: 489
  year: 2006
  ident: 2020080709262591900_ref33
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 24
  start-page: 1565
  year: 2006
  ident: 2020080709262591900_ref41
  article-title: What is a support vector machine?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1206-1565
– volume: 7
  start-page: e1002101
  year: 2011
  ident: 2020080709262591900_ref7
  article-title: Prediction of cell penetrating peptides by support vector machines
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002101
– volume: 11
  start-page: 249
  year: 2005
  ident: 2020080709262591900_ref6
  article-title: Prediction of cell-penetrating peptides
  publication-title: Int J Pept Res Ther
  doi: 10.1007/s10989-005-9393-1
– volume: 157
  start-page: 195
  year: 2009
  ident: 2020080709262591900_ref9
  article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2009.00057.x
– year: 2018
  ident: 2020080709262591900_ref52
  article-title: BioSeq-Analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx165
– volume: 41
  start-page: 2481
  year: 1998
  ident: 2020080709262591900_ref53
  article-title: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids
  publication-title: J Med Chem
  doi: 10.1021/jm9700575
– volume: 34
  start-page: 2425
  year: 2018
  ident: 2020080709262591900_ref71
  article-title: Prediction of potential disease-associated microRNAs using structural perturbation method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty112
– volume: 34
  start-page: 215
  year: 2010
  ident: 2020080709262591900_ref62
  article-title: Stable feature selection for biomarker discovery
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2010.07.002
– volume: 477
  start-page: 150
  year: 2016
  ident: 2020080709262591900_ref24
  article-title: Prediction of cell-penetrating peptides with feature selection techniques
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2016.06.035
– volume: 43
  start-page: W65
  year: 2015
  ident: 2020080709262591900_ref49
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv458
– year: 2018
  ident: 2020080709262591900_ref54
  article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA
  publication-title: RNA
  doi: 10.1261/rna.069112.118RNA
– volume-title: Cell-penetrating peptides and bioactive cargoes: strategies and mechanisms.
  year: 2004
  ident: 2020080709262591900_ref2
– volume: 2013
  year: 2013
  ident: 2020080709262591900_ref51
  article-title: An approach for identifying cytokines based on a novel ensemble classifier
  publication-title: BioMed Res Int
  doi: 10.1155/2013/686090
– volume: 17
  start-page: 850
  year: 2012
  ident: 2020080709262591900_ref4
  article-title: Cell-penetrating peptides: classes, origin, and current landscape
  publication-title: Drug Disco Today
  doi: 10.1016/j.drudis.2012.03.002
– year: 2018
  ident: 2020080709262591900_ref35
  article-title: Predicting novel microRNA: a comprehensive comparison of machine learning approaches
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby037
– year: 2018
  ident: 2020080709262591900_ref40
  article-title: ProtDet-CCH: protein remote homology detection by combining long short-term memory and ranking methods
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2789880
– year: 2018
  ident: 2020080709262591900_ref69
  article-title: iRO-3wPseKNC: Identify DNA replication origins by three-window-based PseKNC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty312
– volume: 29
  start-page: 3094
  year: 2013
  ident: 2020080709262591900_ref29
  article-title: CPPpred: prediction of cell penetrating peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt518
– volume: 33
  start-page: 2496
  year: 2017
  ident: 2020080709262591900_ref43
  article-title: SVMQA: support–vector-machine-based protein single-model quality assessment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx222
– volume: 8
  start-page: 77121
  year: 2017
  ident: 2020080709262591900_ref32
  article-title: MLACP: machine-learning-based prediction of anticancer peptides
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20365
– volume: 45
  start-page: 5
  year: 2001
  ident: 2020080709262591900_ref25
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2018
  ident: 2020080709262591900_ref36
  article-title: HITS-PR-HHblits: protein remote homology detection by combining PageRank and hyperlink-induced topic search
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby104
– volume: 20
  start-page: 273
  year: 1995
  ident: 2020080709262591900_ref22
  article-title: Support vector machine
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 8
  start-page: e56499
  year: 2013
  ident: 2020080709262591900_ref50
  article-title: Hierarchical classification of protein folds using a novel ensemble classifier
  publication-title: PloS One
  doi: 10.1371/journal.pone.0056499
– year: 2018
  ident: 2020080709262591900_ref60
  article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
– volume: 18
  start-page: 1
  year: 2017
  ident: 2020080709262591900_ref12
  article-title: SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4128-1
– volume: 44
  start-page: D1098
  year: 2015
  ident: 2020080709262591900_ref13
  article-title: CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1266
– volume: 6
  start-page: 79
  year: 2010
  ident: 2020080709262591900_ref28
  article-title: Prediction of cell-penetrating peptides using artificial neural networks
  publication-title: Curr Comput Aided Drug Des
  doi: 10.2174/157340910791202478
– volume: 173
  start-page: 346
  year: 2016
  ident: 2020080709262591900_ref37
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
– volume: 47
  start-page: 1485
  year: 2015
  ident: 2020080709262591900_ref26
  article-title: Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models
  publication-title: Amino Acids
  doi: 10.1007/s00726-015-1974-5
– volume: 112
  start-page: 221
  year: 2018
  ident: 2020080709262591900_ref38
  article-title: In silico tools and databases for designing peptide-based vaccine and drugs
  publication-title: Adv Protein Chem Struct Biol
  doi: 10.1016/bs.apcsb.2018.01.006
– year: 2018
  ident: 2020080709262591900_ref68
  article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
– volume: 6
  start-page: 783
  year: 2011
  ident: 2020080709262591900_ref20
  article-title: Using artificial neural networks to predict cell-penetrating compounds
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2011.586689
– volume: 16
  start-page: 412
  year: 2018
  ident: 2020080709262591900_ref31
  article-title: iGHBP: computational identification of growth hormone binding proteins from sequences using extremely randomised tree
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2018.10.007
– volume: 55
  start-page: 1189
  year: 1988
  ident: 2020080709262591900_ref10
  article-title: Cellular uptake of the tat protein from human immunodeficiency virus
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90263-2
– year: 2018
  ident: 2020080709262591900_ref11
  article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning. A predictor for CPP identification
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bby091
– year: 2017
  ident: 2020080709262591900_ref64
  article-title: Spiking neural P systems with colored spikes
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2017.2785332
– volume: 63
  start-page: 3
  year: 2006
  ident: 2020080709262591900_ref30
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– volume: 12
  start-page: e1004786
  year: 2016
  ident: 2020080709262591900_ref19
  article-title: Effective design of multifunctional peptides by combining compatible functions
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004786
– volume: 35
  start-page: 352
  year: 2002
  ident: 2020080709262591900_ref39
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J Biomed Inform
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 9
  start-page: e106542
  year: 2014
  ident: 2020080709262591900_ref46
  article-title: Random forest-based protein model quality assessment (RFMQA) using structural features and potential energy terms
  publication-title: PloS One
  doi: 10.1371/journal.pone.0106542
– volume: 117
  start-page: 212
  year: 2018
  ident: 2020080709262591900_ref59
  article-title: Prediction of human protein subcellular localization using deep learning
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2017.08.009
– volume: 10
  start-page: 114
  year: 2016
  ident: 2020080709262591900_ref70
  article-title: Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0353-5
– volume: 16
  start-page: 792
  year: 2017
  ident: 2020080709262591900_ref63
  article-title: Spiking neural p systems with scheduled synapses
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2017.2762580
– volume: 8
  start-page: 13338
  year: 2017
  ident: 2020080709262591900_ref42
  article-title: Pse-Analysis: a python package for DNA, RNA and protein peptide sequence analysis based on pseudo components and kernel methods
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14524
– volume: 324
  start-page: 3
  year: 2019
  ident: 2020080709262591900_ref56
  article-title: Integration of deep feature representations and handcrafted features to improve the prediction of N 6 -methyladenosine sites
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.082
– volume: 17
  start-page: 2715
  year: 2018
  ident: 2020080709262591900_ref15
  article-title: Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00148
– volume: 16
  start-page: 2044
  year: 2017
  ident: 2020080709262591900_ref16
  article-title: CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.7b00019
– volume: 17
  start-page: 474
  year: 2018
  ident: 2020080709262591900_ref65
  article-title: A parallel workflow pattern modelling using spiking neural P systems with colored spikes
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2018.2873221
– volume: 43
  start-page: 246
  year: 2001
  ident: 2020080709262591900_ref18
  article-title: Prediction of protein cellular attributes using pseudo-amino acid composition
  publication-title: Proteins
  doi: 10.1002/prot.1035
– year: 2018
  ident: 2020080709262591900_ref21
  article-title: The development of machine learning methods in cell-penetrating peptides identification: a brief review
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200219666181010114750
– volume: 2012
  year: 2012
  ident: 2020080709262591900_ref14
  article-title: CPPsite: a curated database of cell penetrating peptides
  publication-title: Database
  doi: 10.1093/database/bas015
– volume: 21
  start-page: 560
  year: 2015
  ident: 2020080709262591900_ref5
  article-title: Cell-penetrating peptides: strategies for anticancer treatment
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2015.06.005
– volume: 25
  start-page: 1266
  year: 2018
  ident: 2020080709262591900_ref66
  article-title: iRNA-2OM: a sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2018.0004
– volume: 17
  start-page: 3214
  year: 2018
  ident: 2020080709262591900_ref34
  article-title: KELM-CPPpred: kernel extreme learning machine based prediction model for cell-penetrating peptides
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00322
– volume: 97
  start-page: 273
  year: 1997
  ident: 2020080709262591900_ref48
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 4
  start-page: 512
  year: 2018
  ident: 2020080709262591900_ref8
  article-title: Machine learning to predict cell-penetrating peptides for antisense delivery
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.8b00098
– volume: 2
  start-page: 568
  year: 1991
  ident: 2020080709262591900_ref27
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– year: 2018
  ident: 2020080709262591900_ref67
  article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2018.10.007
– volume: 12
  start-page: 233
  year: 2017
  ident: 2020080709262591900_ref57
  article-title: Deep convolutional neural networks for predicting hydroxyproline in proteins
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170221152848
– volume: 13
  start-page: 253
  year: 2018
  ident: 2020080709262591900_ref58
  article-title: Drug and nondrug classification based on deep learning with various feature selection strategies
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170125124538
– volume: 27
  start-page: 1226
  year: 2005
  ident: 2020080709262591900_ref47
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 14
  start-page: 957
  year: 2018
  ident: 2020080709262591900_ref61
  article-title: HBPred: a tool to identify growth hormone-binding proteins
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24174
– volume: 60
  start-page: 572
  year: 2008
  ident: 2020080709262591900_ref1
  article-title: Predicting cell-penetrating peptides
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2007.09.003
– year: 2018
  ident: 2020080709262591900_ref55
  article-title: Deep learning in omics: a survey and guideline
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/ely030
– volume: 25
  start-page: 195
  year: 2009
  ident: 2020080709262591900_ref17
  article-title: Next-generation DNA sequencing techniques
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2008.12.009
– volume: 2011
  year: 2011
  ident: 2020080709262591900_ref3
  article-title: Mechanisms of cellular uptake of cell-penetrating peptides
  publication-title: J Biophys
  doi: 10.1155/2011/414729
– volume: 11
  start-page: 74
  year: 2013
  ident: 2020080709262591900_ref23
  article-title: In silico approaches for designing highly effective cell penetrating peptides
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-11-74
– volume: 9
  start-page: 476
  year: 2018
  ident: 2020080709262591900_ref44
  article-title: PVP-SVM: sequence-based prediction of phage virion proteins using a support vector machine
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00476
SSID ssj0020781
Score 2.5885565
SecondaryResourceType review_article
Snippet Abstract Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into...
Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 408
SubjectTerms Comparative studies
Empirical analysis
Learning algorithms
Machine learning
Oligonucleotides
Peptides
Prediction models
Title Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
URI https://www.ncbi.nlm.nih.gov/pubmed/30649170
https://www.proquest.com/docview/2429011001
https://www.proquest.com/docview/2179381491
Volume 21
WOSCitedRecordID wos000537365000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60KHjx_ajWsqIXD0uT7KbZHEVaPEj1UCG3kH1ECjUJTSr03zubTQNFUQ85ZZYNMzsz32R3v0HoTgFolYIOidBMEWYauSfCUSSkodJi6EpX1BeFn4PJhEdR-Nocoil_2MIP6UDMxECIFSQiiLSuz81qnr5EbVll6GrsHaKAGHL3NQnpxtCNtLNxle0boqwzy_jgn990iPYb6IgfrK2P0JbOjtGubSa5OkHR6KOY1YQfWLbNBXGSKXgs8QjOUwxRk5jMpbD5ZU8KCHU1cW72jgtzwEVpXCzM5o0xGK7yfF6eorfxaPr4RJq-CURS5lcEKhCABY5WUC0A3kllqtKhdrnDmE49psBJwe0kIMNAaQMYBE184SvXT4UHAvQMdbI80xcIM09wwVNHBSlljpSCA0Th4NNCAvSiSRfdr9Uay4ZU3PS2mMd2c5vGoKnYaqqLblvZwlJp_CjVB-v8KtBbGy5u_K2MAWiENfud20U37WvwFKPLJNP5EmRMLOJQEYLMuTV4O42pw0AdzuVfs1-hPc9U3A4lHu2hTrVY6mu0Iz-rWbnoo-0g4v16eX4BRxHgSw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+comparison+and+analysis+of+web-based+cell-penetrating+peptide+prediction+tools&rft.jtitle=Briefings+in+bioinformatics&rft.au=Su%2C+Ran&rft.au=Hu%2C+Jie&rft.au=Zou%2C+Quan&rft.au=Manavalan%2C+Balachandran&rft.date=2020-03-23&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=2&rft.spage=408&rft.epage=420&rft_id=info:doi/10.1093%2Fbib%2Fbby124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bby124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon