Ethylene production processes in a carbon-neutral strategy
[Display omitted] •Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed a...
Saved in:
| Published in: | Energy conversion and management Vol. 311; p. 118462 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2024
|
| Subjects: | |
| ISSN: | 0196-8904 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed and assessed.•DBD plasma-assisted ethylene production has the potential to significantly reduce CO2 emissions compared to existing ethylene production processes.
Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO2 emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO2 emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO2-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO2 emissions. Notably, the type of CO2 was discerned by labeling the CO2 emitted from the process, whereas the CO2 capture cost and carbon price were factored in for direct and indirect CO2 emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO2 emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO2 emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production. |
|---|---|
| AbstractList | [Display omitted]
•Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed and assessed.•DBD plasma-assisted ethylene production has the potential to significantly reduce CO2 emissions compared to existing ethylene production processes.
Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO2 emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO2 emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO2-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO2 emissions. Notably, the type of CO2 was discerned by labeling the CO2 emitted from the process, whereas the CO2 capture cost and carbon price were factored in for direct and indirect CO2 emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO2 emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO2 emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production. Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO₂ emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO₂ emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO₂-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO₂ emissions. Notably, the type of CO₂ was discerned by labeling the CO₂ emitted from the process, whereas the CO₂ capture cost and carbon price were factored in for direct and indirect CO₂ emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO₂ emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO₂ emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production. |
| ArticleNumber | 118462 |
| Author | Lee, Jinwon Ha, Kyoung-Su Jung, Wonho |
| Author_xml | – sequence: 1 givenname: Wonho surname: Jung fullname: Jung, Wonho organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea – sequence: 2 givenname: Jinwon surname: Lee fullname: Lee, Jinwon email: jinwonlee@sogang.ac.kr organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea – sequence: 3 givenname: Kyoung-Su orcidid: 0000-0003-3926-6626 surname: Ha fullname: Ha, Kyoung-Su email: philoseus@sogang.ac.kr organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea |
| BookMark | eNqFkD1PwzAQhj0UibbwF1BGloSLnVwSxACqyodUiQVmy3Eu4Cp1iu0g9d-TKrCwdLm74X1Od8-CzWxvibGrFJIUUrzZJmR1b3fKJhx4lqRpmSGfsTmkFcZlBdk5W3i_BQCRA87Z7Tp8HjqyFO1d3ww6mN4eR03ek4-MjVSklat7G1saglNd5Mca6ONwwc5a1Xm6_O1L9v64fls9x5vXp5fVwybWIstDXKSoiqYtqObYZLwGzKBQgAKbFhrAoqwFoshzVRUi46VosUUoEBVvq5pnYsmup73jWV8D-SB3xmvqOmWpH7wUHGDEqiofozhFteu9d9TKvTM75Q4yBXkUJLfyT5A8CpKToBG8-wdqE9RRxvis6U7j9xNOo4dvQ056bcYkNcaRDrLpzakVP9RbiXI |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_152906 crossref_primary_10_1016_j_csite_2025_106764 crossref_primary_10_1021_acs_energyfuels_5c00947 crossref_primary_10_1016_j_cej_2025_164334 crossref_primary_10_1016_j_jece_2024_114692 crossref_primary_10_1016_j_fuel_2025_135758 crossref_primary_10_1039_D5GC02106E crossref_primary_10_1038_s41467_024_53481_1 crossref_primary_10_1021_acssuschemeng_4c10485 crossref_primary_10_1016_j_renene_2024_122175 crossref_primary_10_1016_j_cej_2024_156039 crossref_primary_10_1016_j_psep_2025_106851 crossref_primary_10_1021_acssuschemeng_4c09854 crossref_primary_10_1016_j_energy_2025_137561 |
| Cites_doi | 10.1126/science.1176731 10.1016/j.egypro.2014.11.642 10.1016/j.cej.2013.11.051 10.1016/j.cej.2023.141624 10.1016/j.enconman.2019.111789 10.1016/j.enconman.2017.10.061 10.1016/j.enpol.2015.06.011 10.1016/j.rser.2012.11.082 10.1016/j.cej.2020.125714 10.1039/C3CS60373C 10.1016/j.ijggc.2015.05.028 10.1016/j.egypro.2017.03.1533 10.1016/j.jechem.2020.04.021 10.1039/C7EE02342A 10.1016/j.egypro.2019.01.886 10.1021/ie5012245 10.1021/acs.energyfuels.3c01777 10.1016/j.enconman.2023.117761 10.1016/j.egypro.2013.05.172 10.1016/j.cej.2022.137992 10.1016/j.energy.2005.04.001 10.1016/j.enconman.2024.118295 10.1038/s41467-021-22294-x 10.1515/revce-2017-0026 10.1021/acs.iecr.7b03731 10.1002/adma.201902181 10.1016/j.xcrp.2021.100405 10.1021/acsenergylett.0c02633 10.1016/j.enconman.2023.117771 10.1016/j.jngse.2017.05.016 10.1016/j.apenergy.2013.08.013 10.1021/i260060a004 10.1016/j.pnucene.2014.01.010 10.1039/C8EE00097B 10.1016/j.rser.2013.08.065 10.1016/j.cej.2023.142155 10.1016/j.egypro.2009.01.014 10.1126/science.aas9793 10.1016/j.joule.2022.12.008 10.1039/C5EE02365C 10.1021/acscatal.5b00007 10.1016/j.energy.2021.121864 10.1016/j.joule.2019.06.023 10.1021/acs.iecr.7b00354 10.1016/j.jclepro.2018.07.209 10.1039/C0EE00064G |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2024.118462 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enconman_2024_118462 S0196890424004035 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-716a7df7eb26d42b06407a0636df0d0678b366355a9734283f6f60766a2f9b243 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241196900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Fri Oct 03 00:08:52 EDT 2025 Sat Nov 29 08:16:06 EST 2025 Tue Nov 18 21:59:32 EST 2025 Sat Mar 01 15:46:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Technoeconomic analysis Lifecycle assessment Renewable and alternative power generation Ethylene production technologies Plasma-assisted process CO2-labeled process evaluation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-716a7df7eb26d42b06407a0636df0d0678b366355a9734283f6f60766a2f9b243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3926-6626 |
| PQID | 3200283995 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3200283995 crossref_primary_10_1016_j_enconman_2024_118462 crossref_citationtrail_10_1016_j_enconman_2024_118462 elsevier_sciencedirect_doi_10_1016_j_enconman_2024_118462 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhao, Jiang, Wang (b0155) 2021; 56 Towler, Sinnott (b0205) 2021 Sisler, Khan, Ip, Schreiber, Jaffer, Bobicki (b0080) 2021; 6 Seider, Seader, Lewin (b0210) 2009 von der Assen, Voll, Peters, Bardow (b0170) 2014; 43 Davis, Tao, Tan, Biddy, Beckham, Scarlata (b0200) 2013 Xiang, Yang, Liu, Mai, Qian (b0260) 2014; 240 Kamijo, Sorimachi, Shimada, Miyamoto, Endo, Nagayasu (b0105) 2013; 37 Froment, Van de Steene, Van Damme, Narayanan, Goossens (b0265) 1976; 15 Spallina, Velarde, Jimenez, Godini, Gallucci, Annaland (b0055) 2017; 154 A. Zoelle, D. Keairns, L.L. Pinkerton, M.J. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, Cost and performance baseline for fossil energy plants volume 1a: bituminous coal (PC) and natural gas to electricity revision 3, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV Michailos, Sanderson, Villa Zaragoza, McCord, Armstrong, Styring, Mason, Stokes, Williams, Zimmermann (b0190) 2018 Weimar, Zbib, Todd, Buongiorno, Shirvan (b0145) 2021 He, You (b0035) 2016; 9 Maporti, Galli, Mocellin, Pauletto (b0075) 2023; 298 Cruellas, Bakker, van Sint Annaland, Medrano, Gallucci (b0085) 2019; 198 Iea (b0115) 2017 He, You (b0005) 2014; 53 Xiang, Qian, Man, Yang (b0160) 2014; 113 Ozonoh, Aniokete, Oboirien, Daramola (b0270) 2018; 201 Hernández-Moro, Martinez-Duart (b0135) 2013; 20 Stéphenne (b0100) 2014; 63 Jung, Lee (b0120) 2022; 238 Wang, Luo, Zhong, Borgna (b0090) 2011; 4 van Soest, den Elzen, van Vuuren (b0040) 2021; 12 Mallapragada, Dvorkin, Modestino, Esposito, Smith, Hodge (b0290) 2023; 7 Goellner, Kuehn, Shah, White, Woods (b0195) 2014 Xi, Qianguo, Hasan, Ming, Qiang, Jia (b0245) 2019; 158 Yang, Fan, Wei, Tian, Liu (b0215) 2019; 31 Jung, Lee, Hwang, Kim, Lee (b0230) 2020; 399 Jung, Lee, Ha (b0065) 2023; 462 Jansen, Gazzani, Manzolini, van Dijk, Carbo (b0255) 2015; 40 Yang, Tian, You (b0165) 2018; 57 Wang, Chen, Jha, Rogers (b0020) 2014; 30 Rochelle (b0110) 2009; 325 Locatelli, Bingham, Mancini (b0140) 2014; 73 Taylor, Ralon, Anuta, Al-Zoghoul (b0130) 2020 Wu, Hu, Ding (b0030) 2021 Jung, Lee, Lee (b0225) 2023; 460 Tian, Wei, Ye, Liu (b0060) 2015; 5 Rubin, Azevedo, Jaramillo, Yeh (b0125) 2015; 86 Spurgeon, Kumar (b0180) 2018; 11 Collodi, Azzaro, Ferrari, Santos (b0250) 2017; 114 H.E. Murdock, D. Gibb, T. André, J.L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar, Renewables 2021-global status report, (2021). 2015. Ren, Patel, Blok (b0050) 2006; 31 Turton, Bailie, Whiting, Shaeiwitz (b0185) 2008 Chauhan, Sartape, Minocha, Goyal, Singh (b0070) 2023; 37 Davis, Lewis, Shaner, Aggarwal, Arent, Azevedo (b0045) 2018; 360 Bui, Adjiman, Bardow, Anthony, Boston, Brown (b0095) 2018; 11 Song, Meng, Wang, Liu, Ye (b0025) 2019; 3 Barker, Turner, Napier-Moore, Clark, Davison (b0240) 2009; 1 Martin Barrow, Benedict Buckley, Tom Caldicott, Tom Cumberlege, John Hsu, Scott Kaufman, Kevin Ramm, David Rich, W. Temple-Smith, Technical Guidance for Calculating Scope 3 Emissions Greenhouse Gas Protocol, 2013. Jung, Lee, Kim, Nam, Ryu, Lim (b0235) 2022; 450 Lopez, Galimova, Fasihi, Bogdanov, Leppäkoski, Uusitalo (b0280) 2024; 306 Yang, Xu, Liu, Guo, Ye, Wang (b0220) 2019; 36 Yang, You (b0010) 2017; 56 Al-Douri, Sengupta, El-Halwagi (b0015) 2017; 45 Jung, Kim, Lim, Ryu, Kim, Lee (b0150) 2024; 299 Towler (10.1016/j.enconman.2024.118462_b0205) 2021 Chauhan (10.1016/j.enconman.2024.118462_b0070) 2023; 37 Zhao (10.1016/j.enconman.2024.118462_b0155) 2021; 56 Xiang (10.1016/j.enconman.2024.118462_b0160) 2014; 113 Rochelle (10.1016/j.enconman.2024.118462_b0110) 2009; 325 Seider (10.1016/j.enconman.2024.118462_b0210) 2009 Wang (10.1016/j.enconman.2024.118462_b0020) 2014; 30 Cruellas (10.1016/j.enconman.2024.118462_b0085) 2019; 198 Wu (10.1016/j.enconman.2024.118462_b0030) 2021 Davis (10.1016/j.enconman.2024.118462_b0045) 2018; 360 Yang (10.1016/j.enconman.2024.118462_b0215) 2019; 31 Xi (10.1016/j.enconman.2024.118462_b0245) 2019; 158 10.1016/j.enconman.2024.118462_b0285 Jung (10.1016/j.enconman.2024.118462_b0120) 2022; 238 Maporti (10.1016/j.enconman.2024.118462_b0075) 2023; 298 Bui (10.1016/j.enconman.2024.118462_b0095) 2018; 11 van Soest (10.1016/j.enconman.2024.118462_b0040) 2021; 12 Mallapragada (10.1016/j.enconman.2024.118462_b0290) 2023; 7 He (10.1016/j.enconman.2024.118462_b0035) 2016; 9 Jung (10.1016/j.enconman.2024.118462_b0150) 2024; 299 Song (10.1016/j.enconman.2024.118462_b0025) 2019; 3 Jung (10.1016/j.enconman.2024.118462_b0225) 2023; 460 10.1016/j.enconman.2024.118462_b0175 Jung (10.1016/j.enconman.2024.118462_b0065) 2023; 462 Barker (10.1016/j.enconman.2024.118462_b0240) 2009; 1 Jung (10.1016/j.enconman.2024.118462_b0235) 2022; 450 Goellner (10.1016/j.enconman.2024.118462_b0195) 2014 Spallina (10.1016/j.enconman.2024.118462_b0055) 2017; 154 Hernández-Moro (10.1016/j.enconman.2024.118462_b0135) 2013; 20 Ozonoh (10.1016/j.enconman.2024.118462_b0270) 2018; 201 Yang (10.1016/j.enconman.2024.118462_b0165) 2018; 57 Locatelli (10.1016/j.enconman.2024.118462_b0140) 2014; 73 Al-Douri (10.1016/j.enconman.2024.118462_b0015) 2017; 45 Spurgeon (10.1016/j.enconman.2024.118462_b0180) 2018; 11 Michailos (10.1016/j.enconman.2024.118462_b0190) 2018 Jung (10.1016/j.enconman.2024.118462_b0230) 2020; 399 Kamijo (10.1016/j.enconman.2024.118462_b0105) 2013; 37 Taylor (10.1016/j.enconman.2024.118462_b0130) 2020 Turton (10.1016/j.enconman.2024.118462_b0185) 2008 Froment (10.1016/j.enconman.2024.118462_b0265) 1976; 15 Tian (10.1016/j.enconman.2024.118462_b0060) 2015; 5 Yang (10.1016/j.enconman.2024.118462_b0220) 2019; 36 Xiang (10.1016/j.enconman.2024.118462_b0260) 2014; 240 Ren (10.1016/j.enconman.2024.118462_b0050) 2006; 31 Rubin (10.1016/j.enconman.2024.118462_b0125) 2015; 86 He (10.1016/j.enconman.2024.118462_b0005) 2014; 53 Sisler (10.1016/j.enconman.2024.118462_b0080) 2021; 6 Jansen (10.1016/j.enconman.2024.118462_b0255) 2015; 40 Collodi (10.1016/j.enconman.2024.118462_b0250) 2017; 114 Davis (10.1016/j.enconman.2024.118462_b0200) 2013 Lopez (10.1016/j.enconman.2024.118462_b0280) 2024; 306 10.1016/j.enconman.2024.118462_b0275 Weimar (10.1016/j.enconman.2024.118462_b0145) 2021 Yang (10.1016/j.enconman.2024.118462_b0010) 2017; 56 Stéphenne (10.1016/j.enconman.2024.118462_b0100) 2014; 63 Wang (10.1016/j.enconman.2024.118462_b0090) 2011; 4 Iea (10.1016/j.enconman.2024.118462_b0115) 2017 von der Assen (10.1016/j.enconman.2024.118462_b0170) 2014; 43 |
| References_xml | – volume: 5 start-page: 1922 year: 2015 end-page: 1938 ident: b0060 article-title: Methanol to olefins (MTO): from fundamentals to commercialization publication-title: ACS Catal – volume: 1 start-page: 87 year: 2009 end-page: 94 ident: b0240 article-title: CO publication-title: Energy Procedia – volume: 15 start-page: 495 year: 1976 end-page: 504 ident: b0265 article-title: Thermal cracking of ethane and ethane-propane mixtures publication-title: Industrial Eng Chem Process Design and Devel – year: 2017 ident: b0115 article-title: Energy technology perspectives 2017 – volume: 43 start-page: 7982 year: 2014 end-page: 7994 ident: b0170 article-title: Life cycle assessment of CO publication-title: Chem Soc Rev – year: 2013 ident: b0200 article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons, National Renewable Energy Lab publication-title: (NREL), Golden, CO (United States) – volume: 73 start-page: 75 year: 2014 end-page: 85 ident: b0140 article-title: Small modular reactors: a comprehensive overview of their economics and strategic aspects publication-title: Prog Nucl Energy – volume: 11 start-page: 1536 year: 2018 end-page: 1551 ident: b0180 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO publication-title: Energ Environ Sci – year: 2021 ident: b0205 article-title: Chemical engineering design: principles, practice and economics of plant and process design – volume: 201 start-page: 192 year: 2018 end-page: 206 ident: b0270 article-title: Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa publication-title: J clean prod – volume: 154 start-page: 244 year: 2017 end-page: 261 ident: b0055 article-title: Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies publication-title: Energ Conver Manage – volume: 299 year: 2024 ident: b0150 article-title: Methane dehydroaromatization process in a carbon-neutral strategy publication-title: Energ Conver Manage – volume: 36 start-page: 21 year: 2019 end-page: 66 ident: b0220 article-title: Progress in coal chemical technologies of China publication-title: Rev Chem Eng – volume: 63 start-page: 6106 year: 2014 end-page: 6110 ident: b0100 article-title: Start-up of world's first commercial post-combustion coal fired CCS project: contribution of shell cansolv to saskpower boundary dam ICCS project publication-title: Energy Procedia – volume: 399 year: 2020 ident: b0230 article-title: Thermodynamic modeling and energy analysis of a polyamine-based water-lean solvent for CO publication-title: Chem Eng J – volume: 158 start-page: 3715 year: 2019 end-page: 3722 ident: b0245 article-title: Assessing the economics of CO publication-title: Energy Procedia – volume: 40 start-page: 167 year: 2015 end-page: 187 ident: b0255 article-title: Pre-combustion CO publication-title: Int J Greenhouse Gas Control – volume: 114 start-page: 2690 year: 2017 end-page: 2712 ident: b0250 article-title: Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel publication-title: Energy Procedia – volume: 57 start-page: 5980 year: 2018 end-page: 5998 ident: b0165 article-title: Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment publication-title: Ind Eng Chem Res – volume: 56 start-page: 4038 year: 2017 end-page: 4051 ident: b0010 article-title: Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha publication-title: Ind Eng Chem Res – volume: 53 start-page: 11442 year: 2014 end-page: 11459 ident: b0005 article-title: Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis publication-title: Industrial Eng Chem Res – volume: 462 year: 2023 ident: b0065 article-title: A combined production technology for ethylene and hydrogen with an ethane cracking center and dielectric barrier discharge plasma reactor publication-title: Chem Eng J – year: 2020 ident: b0130 article-title: IRENA renewable power generation costs in 2019 – reference: A. Zoelle, D. Keairns, L.L. Pinkerton, M.J. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, Cost and performance baseline for fossil energy plants volume 1a: bituminous coal (PC) and natural gas to electricity revision 3, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV – volume: 4 start-page: 42 year: 2011 end-page: 55 ident: b0090 article-title: CO publication-title: Energ Environ Sci – volume: 198 year: 2019 ident: b0085 article-title: Techno-economic analysis of oxidative coupling of methane: current state of the art and future perspectives publication-title: Energ Conver Manage – volume: 31 start-page: 1902181 year: 2019 ident: b0215 article-title: Recent progress in methanol-to-olefins (MTO) catalysts publication-title: Adv Mater – volume: 450 year: 2022 ident: b0235 article-title: System-level analysis for continuous BTX production from shale gas over Mo/HZSM-5 catalyst: Promotion effects of CO publication-title: Chem Eng J – volume: 240 start-page: 45 year: 2014 end-page: 54 ident: b0260 article-title: Techno-economic performance of the coal-to-olefins process with CCS publication-title: Chem Eng J – volume: 31 start-page: 425 year: 2006 end-page: 451 ident: b0050 article-title: Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes publication-title: Energy – volume: 56 start-page: 193 year: 2021 end-page: 202 ident: b0155 article-title: An economic analysis of twenty light olefin production pathways publication-title: J Energy Chem – volume: 30 start-page: 1 year: 2014 end-page: 28 ident: b0020 article-title: Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States publication-title: Renew Sustain Energy Rev – volume: 9 start-page: 820 year: 2016 end-page: 840 ident: b0035 article-title: Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States publication-title: Energ Environ Sci – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: b0095 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energ Environ Sci – volume: 298 year: 2023 ident: b0075 article-title: Flexible ethylene production: electrified ethane cracking coupled with oxidative dehydrogenation publication-title: Energ Conver Manage – volume: 6 start-page: 997 year: 2021 end-page: 1002 ident: b0080 article-title: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO publication-title: ACS Energy Lett – volume: 12 start-page: 1 year: 2021 end-page: 9 ident: b0040 article-title: Net-zero emission targets for major emitting countries consistent with the Paris agreement publication-title: Nat Commun – volume: 325 start-page: 1652 year: 2009 end-page: 1654 ident: b0110 article-title: Amine scrubbing for CO publication-title: Science – volume: 20 start-page: 119 year: 2013 end-page: 132 ident: b0135 article-title: Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution publication-title: Renew Sustain Energy Rev – volume: 306 year: 2024 ident: b0280 article-title: Assessing European supply chain configurations for sustainable e-polyethylene production from sustainable CO publication-title: Energ Conver Manage – year: 2014 ident: b0195 article-title: Baseline analysis of crude methanol production from coal and natural gas publication-title: Natl Energy Tech Lab – volume: 45 start-page: 436 year: 2017 end-page: 455 ident: b0015 article-title: Shale gas monetization–a review of downstream processing to chemicals and fuels publication-title: J Nat Gas Sci Eng – volume: 7 start-page: 23 year: 2023 end-page: 41 ident: b0290 article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities publication-title: Joule – volume: 86 start-page: 198 year: 2015 end-page: 218 ident: b0125 article-title: A review of learning rates for electricity supply technologies publication-title: Energy Policy – volume: 238 year: 2022 ident: b0120 article-title: Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO publication-title: Energy – year: 2008 ident: b0185 article-title: Analysis, synthesis and design of chemical processes – year: 2018 ident: b0190 publication-title: Methanol worked examples for the TEA and LCA guidelines for CO – reference: H.E. Murdock, D. Gibb, T. André, J.L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar, Renewables 2021-global status report, (2021). – volume: 113 start-page: 639 year: 2014 end-page: 647 ident: b0160 article-title: Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process publication-title: Appl Energy – volume: 360 year: 2018 ident: b0045 article-title: Net-zero emissions energy systems publication-title: Science – volume: 37 start-page: 813 year: 2013 end-page: 816 ident: b0105 article-title: Result of the 60 tpd CO publication-title: Energy Procedia – reference: …, 2015. – volume: 460 year: 2023 ident: b0225 article-title: New facile process evaluation for membrane-based CO publication-title: Chem Eng J – year: 2009 ident: b0210 article-title: Product & process design principles: Synthesis, analysis and evaluation – volume: 3 start-page: 1606 year: 2019 end-page: 1636 ident: b0025 article-title: Solar-energy-mediated methane conversion publication-title: Joule – year: 2021 ident: b0030 article-title: Low-temperature ethylene production for indirect electrification in chemical production publication-title: Cell Rep Phys Sci – reference: Martin Barrow, Benedict Buckley, Tom Caldicott, Tom Cumberlege, John Hsu, Scott Kaufman, Kevin Ramm, David Rich, W. Temple-Smith, Technical Guidance for Calculating Scope 3 Emissions Greenhouse Gas Protocol, 2013. – volume: 37 start-page: 12589 year: 2023 end-page: 12622 ident: b0070 article-title: Advancements in environmentally sustainable technologies for ethylene production publication-title: Energy Fuel – year: 2021 ident: b0145 article-title: Techno-economic Assessment for Generation III+ Small Modular Reactor Deployments in the Pacific Northwest – volume: 325 start-page: 1652 year: 2009 ident: 10.1016/j.enconman.2024.118462_b0110 article-title: Amine scrubbing for CO2 capture publication-title: Science doi: 10.1126/science.1176731 – ident: 10.1016/j.enconman.2024.118462_b0285 – year: 2020 ident: 10.1016/j.enconman.2024.118462_b0130 – volume: 63 start-page: 6106 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0100 article-title: Start-up of world's first commercial post-combustion coal fired CCS project: contribution of shell cansolv to saskpower boundary dam ICCS project publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.642 – volume: 240 start-page: 45 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0260 article-title: Techno-economic performance of the coal-to-olefins process with CCS publication-title: Chem Eng J doi: 10.1016/j.cej.2013.11.051 – volume: 460 year: 2023 ident: 10.1016/j.enconman.2024.118462_b0225 article-title: New facile process evaluation for membrane-based CO2 capture: apparent selectivity model publication-title: Chem Eng J doi: 10.1016/j.cej.2023.141624 – volume: 198 year: 2019 ident: 10.1016/j.enconman.2024.118462_b0085 article-title: Techno-economic analysis of oxidative coupling of methane: current state of the art and future perspectives publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2019.111789 – volume: 154 start-page: 244 year: 2017 ident: 10.1016/j.enconman.2024.118462_b0055 article-title: Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2017.10.061 – volume: 86 start-page: 198 year: 2015 ident: 10.1016/j.enconman.2024.118462_b0125 article-title: A review of learning rates for electricity supply technologies publication-title: Energy Policy doi: 10.1016/j.enpol.2015.06.011 – year: 2018 ident: 10.1016/j.enconman.2024.118462_b0190 – year: 2013 ident: 10.1016/j.enconman.2024.118462_b0200 article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons, National Renewable Energy Lab publication-title: (NREL), Golden, CO (United States) – ident: 10.1016/j.enconman.2024.118462_b0275 – volume: 20 start-page: 119 year: 2013 ident: 10.1016/j.enconman.2024.118462_b0135 article-title: Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.11.082 – volume: 399 year: 2020 ident: 10.1016/j.enconman.2024.118462_b0230 article-title: Thermodynamic modeling and energy analysis of a polyamine-based water-lean solvent for CO2 capture publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125714 – year: 2009 ident: 10.1016/j.enconman.2024.118462_b0210 – volume: 43 start-page: 7982 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0170 article-title: Life cycle assessment of CO2 capture and utilization: a tutorial review publication-title: Chem Soc Rev doi: 10.1039/C3CS60373C – volume: 40 start-page: 167 year: 2015 ident: 10.1016/j.enconman.2024.118462_b0255 article-title: Pre-combustion CO2 capture publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.05.028 – year: 2021 ident: 10.1016/j.enconman.2024.118462_b0205 – volume: 114 start-page: 2690 year: 2017 ident: 10.1016/j.enconman.2024.118462_b0250 article-title: Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1533 – volume: 56 start-page: 193 year: 2021 ident: 10.1016/j.enconman.2024.118462_b0155 article-title: An economic analysis of twenty light olefin production pathways publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.04.021 – volume: 11 start-page: 1062 year: 2018 ident: 10.1016/j.enconman.2024.118462_b0095 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energ Environ Sci doi: 10.1039/C7EE02342A – volume: 158 start-page: 3715 year: 2019 ident: 10.1016/j.enconman.2024.118462_b0245 article-title: Assessing the economics of CO2 capture in China’s iron/steel sector: a case study publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.886 – volume: 53 start-page: 11442 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0005 article-title: Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis publication-title: Industrial Eng Chem Res doi: 10.1021/ie5012245 – volume: 37 start-page: 12589 year: 2023 ident: 10.1016/j.enconman.2024.118462_b0070 article-title: Advancements in environmentally sustainable technologies for ethylene production publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.3c01777 – volume: 298 year: 2023 ident: 10.1016/j.enconman.2024.118462_b0075 article-title: Flexible ethylene production: electrified ethane cracking coupled with oxidative dehydrogenation publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2023.117761 – volume: 37 start-page: 813 year: 2013 ident: 10.1016/j.enconman.2024.118462_b0105 article-title: Result of the 60 tpd CO2 capture pilot plant in European coal power plant with KS-1TM solvent publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.172 – volume: 450 year: 2022 ident: 10.1016/j.enconman.2024.118462_b0235 article-title: System-level analysis for continuous BTX production from shale gas over Mo/HZSM-5 catalyst: Promotion effects of CO2 co-feeding on process economics and environment publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137992 – volume: 31 start-page: 425 year: 2006 ident: 10.1016/j.enconman.2024.118462_b0050 article-title: Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes publication-title: Energy doi: 10.1016/j.energy.2005.04.001 – year: 2017 ident: 10.1016/j.enconman.2024.118462_b0115 – volume: 306 year: 2024 ident: 10.1016/j.enconman.2024.118462_b0280 article-title: Assessing European supply chain configurations for sustainable e-polyethylene production from sustainable CO2 and renewable electricity publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2024.118295 – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.enconman.2024.118462_b0040 article-title: Net-zero emission targets for major emitting countries consistent with the Paris agreement publication-title: Nat Commun doi: 10.1038/s41467-021-22294-x – year: 2021 ident: 10.1016/j.enconman.2024.118462_b0145 – volume: 36 start-page: 21 year: 2019 ident: 10.1016/j.enconman.2024.118462_b0220 article-title: Progress in coal chemical technologies of China publication-title: Rev Chem Eng doi: 10.1515/revce-2017-0026 – volume: 57 start-page: 5980 year: 2018 ident: 10.1016/j.enconman.2024.118462_b0165 article-title: Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b03731 – year: 2014 ident: 10.1016/j.enconman.2024.118462_b0195 article-title: Baseline analysis of crude methanol production from coal and natural gas publication-title: Natl Energy Tech Lab – volume: 31 start-page: 1902181 year: 2019 ident: 10.1016/j.enconman.2024.118462_b0215 article-title: Recent progress in methanol-to-olefins (MTO) catalysts publication-title: Adv Mater doi: 10.1002/adma.201902181 – year: 2021 ident: 10.1016/j.enconman.2024.118462_b0030 article-title: Low-temperature ethylene production for indirect electrification in chemical production publication-title: Cell Rep Phys Sci doi: 10.1016/j.xcrp.2021.100405 – volume: 6 start-page: 997 year: 2021 ident: 10.1016/j.enconman.2024.118462_b0080 article-title: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.0c02633 – volume: 299 year: 2024 ident: 10.1016/j.enconman.2024.118462_b0150 article-title: Methane dehydroaromatization process in a carbon-neutral strategy publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2023.117771 – volume: 45 start-page: 436 year: 2017 ident: 10.1016/j.enconman.2024.118462_b0015 article-title: Shale gas monetization–a review of downstream processing to chemicals and fuels publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2017.05.016 – volume: 113 start-page: 639 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0160 article-title: Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.013 – volume: 15 start-page: 495 year: 1976 ident: 10.1016/j.enconman.2024.118462_b0265 article-title: Thermal cracking of ethane and ethane-propane mixtures publication-title: Industrial Eng Chem Process Design and Devel doi: 10.1021/i260060a004 – volume: 73 start-page: 75 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0140 article-title: Small modular reactors: a comprehensive overview of their economics and strategic aspects publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2014.01.010 – volume: 11 start-page: 1536 year: 2018 ident: 10.1016/j.enconman.2024.118462_b0180 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products publication-title: Energ Environ Sci doi: 10.1039/C8EE00097B – year: 2008 ident: 10.1016/j.enconman.2024.118462_b0185 – ident: 10.1016/j.enconman.2024.118462_b0175 – volume: 30 start-page: 1 year: 2014 ident: 10.1016/j.enconman.2024.118462_b0020 article-title: Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.065 – volume: 462 year: 2023 ident: 10.1016/j.enconman.2024.118462_b0065 article-title: A combined production technology for ethylene and hydrogen with an ethane cracking center and dielectric barrier discharge plasma reactor publication-title: Chem Eng J doi: 10.1016/j.cej.2023.142155 – volume: 1 start-page: 87 year: 2009 ident: 10.1016/j.enconman.2024.118462_b0240 article-title: CO2 capture in the cement industry publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.014 – volume: 360 year: 2018 ident: 10.1016/j.enconman.2024.118462_b0045 article-title: Net-zero emissions energy systems publication-title: Science doi: 10.1126/science.aas9793 – volume: 7 start-page: 23 year: 2023 ident: 10.1016/j.enconman.2024.118462_b0290 article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities publication-title: Joule doi: 10.1016/j.joule.2022.12.008 – volume: 9 start-page: 820 year: 2016 ident: 10.1016/j.enconman.2024.118462_b0035 article-title: Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States publication-title: Energ Environ Sci doi: 10.1039/C5EE02365C – volume: 5 start-page: 1922 year: 2015 ident: 10.1016/j.enconman.2024.118462_b0060 article-title: Methanol to olefins (MTO): from fundamentals to commercialization publication-title: ACS Catal doi: 10.1021/acscatal.5b00007 – volume: 238 year: 2022 ident: 10.1016/j.enconman.2024.118462_b0120 article-title: Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent publication-title: Energy doi: 10.1016/j.energy.2021.121864 – volume: 3 start-page: 1606 year: 2019 ident: 10.1016/j.enconman.2024.118462_b0025 article-title: Solar-energy-mediated methane conversion publication-title: Joule doi: 10.1016/j.joule.2019.06.023 – volume: 56 start-page: 4038 year: 2017 ident: 10.1016/j.enconman.2024.118462_b0010 article-title: Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b00354 – volume: 201 start-page: 192 year: 2018 ident: 10.1016/j.enconman.2024.118462_b0270 article-title: Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa publication-title: J clean prod doi: 10.1016/j.jclepro.2018.07.209 – volume: 4 start-page: 42 year: 2011 ident: 10.1016/j.enconman.2024.118462_b0090 article-title: CO2 capture by solid adsorbents and their applications: current status and new trends publication-title: Energ Environ Sci doi: 10.1039/C0EE00064G |
| SSID | ssj0003506 |
| Score | 2.5170135 |
| Snippet | [Display omitted]
•Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were... Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO₂ emissions... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118462 |
| SubjectTerms | administrative management carbon dioxide carbon markets CO2-labeled process evaluation economic feasibility energy conversion ethane ethylene ethylene production Ethylene production technologies industry issues and policy Lifecycle assessment Plasma-assisted process power generation Renewable and alternative power generation renewable energy sources Technoeconomic analysis |
| Title | Ethylene production processes in a carbon-neutral strategy |
| URI | https://dx.doi.org/10.1016/j.enconman.2024.118462 https://www.proquest.com/docview/3200283995 |
| Volume | 311 |
| WOSCitedRecordID | wos001241196900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003506 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZgygEOiFW0LAoS4lK5dGLHC7cKpSpVNSAxFXOznMXqVOCks0D59zwvyUxLUcuBixVFcRK9z3r-_FaE3nDgqAaYMR6aQsABhZVYllTDoDUvDQWGbXyzCT4aiclEfo4Nxue-nQC3Vpyfy_a_Qg33AGyXOvsPcPcvhRtwDaDDCLDDeCPgcxA9bCUuAcoXc3X4tiEdwAdfuXRIPSsai229dHaO7XmoUHvBwZuHnEAflO4tat7L8P2PYJnDqCy-NvakuRzdM7U_V17-g5B89supF_xluW5uSGkfmtpbICXDQoaewZ0KJcPhdgvaF8hMiq9UzMFGcLrjqnNa-Nkd9-44Y7UVde730Se1f3x0pMb5ZPy2PcOuSZhzpseOKbfRRsozKQZoY-9jPjnst16S-Waq_T-upYRf_em_sZFL-7InG-MH6H48JSR7Ad2H6FZtH6F7a7UjH6P3Hc7JCuekxzmZ2kQnF3FOOpyfoOP9fPzhAMdGGLgkNFtgONNqXhleFymraFp476sGcskqs1s5vlEQzxy15MRV0DPMsF3OmE6NLFJKnqKBbWz9DCW0rISoCOGiolRnvBBU14bWmjBuWJZtoqwTiCpjlXjXrOSb6sIBT1UnSOUEqYIgN9G7fl4b6qRcO0N28laR7QUWp2DNXDv3dQeQAnXofFza1s1yrkjqu29JmW3d4Jnn6O5qjb9Ag8VsWb9Ed8ofi-l89iqurt83DYIf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene+production+processes+in+a+carbon-neutral+strategy&rft.jtitle=Energy+conversion+and+management&rft.au=Jung%2C+Wonho&rft.au=Lee%2C+Jinwon&rft.au=Ha%2C+Kyoung-Su&rft.date=2024-07-01&rft.issn=0196-8904&rft.volume=311+p.118462-&rft_id=info:doi/10.1016%2Fj.enconman.2024.118462&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |