Ethylene production processes in a carbon-neutral strategy

[Display omitted] •Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management Jg. 311; S. 118462
Hauptverfasser: Jung, Wonho, Lee, Jinwon, Ha, Kyoung-Su
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2024
Schlagworte:
ISSN:0196-8904
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed and assessed.•DBD plasma-assisted ethylene production has the potential to significantly reduce CO2 emissions compared to existing ethylene production processes. Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO2 emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO2 emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO2-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO2 emissions. Notably, the type of CO2 was discerned by labeling the CO2 emitted from the process, whereas the CO2 capture cost and carbon price were factored in for direct and indirect CO2 emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO2 emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO2 emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production.
AbstractList [Display omitted] •Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were applied to total CO2 emissions for CO2-based TEA of ethylene production.•Process electrification index for ethylene production was proposed and assessed.•DBD plasma-assisted ethylene production has the potential to significantly reduce CO2 emissions compared to existing ethylene production processes. Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO2 emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO2 emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO2-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO2 emissions. Notably, the type of CO2 was discerned by labeling the CO2 emitted from the process, whereas the CO2 capture cost and carbon price were factored in for direct and indirect CO2 emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO2 emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO2 emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production.
Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO₂ emissions from its production does not seem suitable any longer especially for “carbon–neutral” policy. In this regard, this study scrutinized the total CO₂ emissions of existing ethylene production technologies (naphtha and ethane cracking centers) and emerging technologies such as methanol-to-olefin and dielectric-barrier-discharge plasma. A CO₂-based TEA scenario for ethylene production was formulated based on the rigorous flow diagram of these four production technologies to analyze the economic feasibility predicated on CO₂ emissions. Notably, the type of CO₂ was discerned by labeling the CO₂ emitted from the process, whereas the CO₂ capture cost and carbon price were factored in for direct and indirect CO₂ emissions, respectively. Furthermore, the introduction of renewable and alternative power generation technologies to the designed ethylene production technologies was discussed. To perform a fair evaluation under the constrained system, a comparison of the current commercial value of different ethylene production technologies with the future value, inclusive of CO₂ emissions, was undertaken. Ultimately, when integrated with renewable energy, electricity-based ethylene production processes were found to be the most advantageous, with the highest potential to reduce CO₂ emissions (∼90 %) compared to the conventional ethylene production technologies. This study provides a basis for active process electrification in the ethylene production industry and confirms the potential of the dielectric barrier discharge plasma reaction for ethylene production.
ArticleNumber 118462
Author Lee, Jinwon
Ha, Kyoung-Su
Jung, Wonho
Author_xml – sequence: 1
  givenname: Wonho
  surname: Jung
  fullname: Jung, Wonho
  organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
– sequence: 2
  givenname: Jinwon
  surname: Lee
  fullname: Lee, Jinwon
  email: jinwonlee@sogang.ac.kr
  organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
– sequence: 3
  givenname: Kyoung-Su
  orcidid: 0000-0003-3926-6626
  surname: Ha
  fullname: Ha, Kyoung-Su
  email: philoseus@sogang.ac.kr
  organization: C1 Gas Refinery R&D Center, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
BookMark eNqFkD1PwzAQhj0UibbwF1BGloSLnVwSxACqyodUiQVmy3Eu4Cp1iu0g9d-TKrCwdLm74X1Od8-CzWxvibGrFJIUUrzZJmR1b3fKJhx4lqRpmSGfsTmkFcZlBdk5W3i_BQCRA87Z7Tp8HjqyFO1d3ww6mN4eR03ek4-MjVSklat7G1saglNd5Mca6ONwwc5a1Xm6_O1L9v64fls9x5vXp5fVwybWIstDXKSoiqYtqObYZLwGzKBQgAKbFhrAoqwFoshzVRUi46VosUUoEBVvq5pnYsmup73jWV8D-SB3xmvqOmWpH7wUHGDEqiofozhFteu9d9TKvTM75Q4yBXkUJLfyT5A8CpKToBG8-wdqE9RRxvis6U7j9xNOo4dvQ056bcYkNcaRDrLpzakVP9RbiXI
CitedBy_id crossref_primary_10_1016_j_cej_2024_152906
crossref_primary_10_1016_j_csite_2025_106764
crossref_primary_10_1021_acs_energyfuels_5c00947
crossref_primary_10_1016_j_cej_2025_164334
crossref_primary_10_1016_j_jece_2024_114692
crossref_primary_10_1016_j_fuel_2025_135758
crossref_primary_10_1039_D5GC02106E
crossref_primary_10_1038_s41467_024_53481_1
crossref_primary_10_1021_acssuschemeng_4c10485
crossref_primary_10_1016_j_renene_2024_122175
crossref_primary_10_1016_j_cej_2024_156039
crossref_primary_10_1016_j_psep_2025_106851
crossref_primary_10_1021_acssuschemeng_4c09854
crossref_primary_10_1016_j_energy_2025_137561
Cites_doi 10.1126/science.1176731
10.1016/j.egypro.2014.11.642
10.1016/j.cej.2013.11.051
10.1016/j.cej.2023.141624
10.1016/j.enconman.2019.111789
10.1016/j.enconman.2017.10.061
10.1016/j.enpol.2015.06.011
10.1016/j.rser.2012.11.082
10.1016/j.cej.2020.125714
10.1039/C3CS60373C
10.1016/j.ijggc.2015.05.028
10.1016/j.egypro.2017.03.1533
10.1016/j.jechem.2020.04.021
10.1039/C7EE02342A
10.1016/j.egypro.2019.01.886
10.1021/ie5012245
10.1021/acs.energyfuels.3c01777
10.1016/j.enconman.2023.117761
10.1016/j.egypro.2013.05.172
10.1016/j.cej.2022.137992
10.1016/j.energy.2005.04.001
10.1016/j.enconman.2024.118295
10.1038/s41467-021-22294-x
10.1515/revce-2017-0026
10.1021/acs.iecr.7b03731
10.1002/adma.201902181
10.1016/j.xcrp.2021.100405
10.1021/acsenergylett.0c02633
10.1016/j.enconman.2023.117771
10.1016/j.jngse.2017.05.016
10.1016/j.apenergy.2013.08.013
10.1021/i260060a004
10.1016/j.pnucene.2014.01.010
10.1039/C8EE00097B
10.1016/j.rser.2013.08.065
10.1016/j.cej.2023.142155
10.1016/j.egypro.2009.01.014
10.1126/science.aas9793
10.1016/j.joule.2022.12.008
10.1039/C5EE02365C
10.1021/acscatal.5b00007
10.1016/j.energy.2021.121864
10.1016/j.joule.2019.06.023
10.1021/acs.iecr.7b00354
10.1016/j.jclepro.2018.07.209
10.1039/C0EE00064G
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2024.118462
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2024_118462
S0196890424004035
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-716a7df7eb26d42b06407a0636df0d0678b366355a9734283f6f60766a2f9b243
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241196900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Fri Oct 03 00:08:52 EDT 2025
Sat Nov 29 08:16:06 EST 2025
Tue Nov 18 21:59:32 EST 2025
Sat Mar 01 15:46:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Technoeconomic analysis
Lifecycle assessment
Renewable and alternative power generation
Ethylene production technologies
Plasma-assisted process
CO2-labeled process evaluation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-716a7df7eb26d42b06407a0636df0d0678b366355a9734283f6f60766a2f9b243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3926-6626
PQID 3200283995
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200283995
crossref_primary_10_1016_j_enconman_2024_118462
crossref_citationtrail_10_1016_j_enconman_2024_118462
elsevier_sciencedirect_doi_10_1016_j_enconman_2024_118462
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Jiang, Wang (b0155) 2021; 56
Towler, Sinnott (b0205) 2021
Sisler, Khan, Ip, Schreiber, Jaffer, Bobicki (b0080) 2021; 6
Seider, Seader, Lewin (b0210) 2009
von der Assen, Voll, Peters, Bardow (b0170) 2014; 43
Davis, Tao, Tan, Biddy, Beckham, Scarlata (b0200) 2013
Xiang, Yang, Liu, Mai, Qian (b0260) 2014; 240
Kamijo, Sorimachi, Shimada, Miyamoto, Endo, Nagayasu (b0105) 2013; 37
Froment, Van de Steene, Van Damme, Narayanan, Goossens (b0265) 1976; 15
Spallina, Velarde, Jimenez, Godini, Gallucci, Annaland (b0055) 2017; 154
A. Zoelle, D. Keairns, L.L. Pinkerton, M.J. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, Cost and performance baseline for fossil energy plants volume 1a: bituminous coal (PC) and natural gas to electricity revision 3, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV
Michailos, Sanderson, Villa Zaragoza, McCord, Armstrong, Styring, Mason, Stokes, Williams, Zimmermann (b0190) 2018
Weimar, Zbib, Todd, Buongiorno, Shirvan (b0145) 2021
He, You (b0035) 2016; 9
Maporti, Galli, Mocellin, Pauletto (b0075) 2023; 298
Cruellas, Bakker, van Sint Annaland, Medrano, Gallucci (b0085) 2019; 198
Iea (b0115) 2017
He, You (b0005) 2014; 53
Xiang, Qian, Man, Yang (b0160) 2014; 113
Ozonoh, Aniokete, Oboirien, Daramola (b0270) 2018; 201
Hernández-Moro, Martinez-Duart (b0135) 2013; 20
Stéphenne (b0100) 2014; 63
Jung, Lee (b0120) 2022; 238
Wang, Luo, Zhong, Borgna (b0090) 2011; 4
van Soest, den Elzen, van Vuuren (b0040) 2021; 12
Mallapragada, Dvorkin, Modestino, Esposito, Smith, Hodge (b0290) 2023; 7
Goellner, Kuehn, Shah, White, Woods (b0195) 2014
Xi, Qianguo, Hasan, Ming, Qiang, Jia (b0245) 2019; 158
Yang, Fan, Wei, Tian, Liu (b0215) 2019; 31
Jung, Lee, Hwang, Kim, Lee (b0230) 2020; 399
Jung, Lee, Ha (b0065) 2023; 462
Jansen, Gazzani, Manzolini, van Dijk, Carbo (b0255) 2015; 40
Yang, Tian, You (b0165) 2018; 57
Wang, Chen, Jha, Rogers (b0020) 2014; 30
Rochelle (b0110) 2009; 325
Locatelli, Bingham, Mancini (b0140) 2014; 73
Taylor, Ralon, Anuta, Al-Zoghoul (b0130) 2020
Wu, Hu, Ding (b0030) 2021
Jung, Lee, Lee (b0225) 2023; 460
Tian, Wei, Ye, Liu (b0060) 2015; 5
Rubin, Azevedo, Jaramillo, Yeh (b0125) 2015; 86
Spurgeon, Kumar (b0180) 2018; 11
Collodi, Azzaro, Ferrari, Santos (b0250) 2017; 114
H.E. Murdock, D. Gibb, T. André, J.L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar, Renewables 2021-global status report, (2021).
2015.
Ren, Patel, Blok (b0050) 2006; 31
Turton, Bailie, Whiting, Shaeiwitz (b0185) 2008
Chauhan, Sartape, Minocha, Goyal, Singh (b0070) 2023; 37
Davis, Lewis, Shaner, Aggarwal, Arent, Azevedo (b0045) 2018; 360
Bui, Adjiman, Bardow, Anthony, Boston, Brown (b0095) 2018; 11
Song, Meng, Wang, Liu, Ye (b0025) 2019; 3
Barker, Turner, Napier-Moore, Clark, Davison (b0240) 2009; 1
Martin Barrow, Benedict Buckley, Tom Caldicott, Tom Cumberlege, John Hsu, Scott Kaufman, Kevin Ramm, David Rich, W. Temple-Smith, Technical Guidance for Calculating Scope 3 Emissions Greenhouse Gas Protocol, 2013.
Jung, Lee, Kim, Nam, Ryu, Lim (b0235) 2022; 450
Lopez, Galimova, Fasihi, Bogdanov, Leppäkoski, Uusitalo (b0280) 2024; 306
Yang, Xu, Liu, Guo, Ye, Wang (b0220) 2019; 36
Yang, You (b0010) 2017; 56
Al-Douri, Sengupta, El-Halwagi (b0015) 2017; 45
Jung, Kim, Lim, Ryu, Kim, Lee (b0150) 2024; 299
Towler (10.1016/j.enconman.2024.118462_b0205) 2021
Chauhan (10.1016/j.enconman.2024.118462_b0070) 2023; 37
Zhao (10.1016/j.enconman.2024.118462_b0155) 2021; 56
Xiang (10.1016/j.enconman.2024.118462_b0160) 2014; 113
Rochelle (10.1016/j.enconman.2024.118462_b0110) 2009; 325
Seider (10.1016/j.enconman.2024.118462_b0210) 2009
Wang (10.1016/j.enconman.2024.118462_b0020) 2014; 30
Cruellas (10.1016/j.enconman.2024.118462_b0085) 2019; 198
Wu (10.1016/j.enconman.2024.118462_b0030) 2021
Davis (10.1016/j.enconman.2024.118462_b0045) 2018; 360
Yang (10.1016/j.enconman.2024.118462_b0215) 2019; 31
Xi (10.1016/j.enconman.2024.118462_b0245) 2019; 158
10.1016/j.enconman.2024.118462_b0285
Jung (10.1016/j.enconman.2024.118462_b0120) 2022; 238
Maporti (10.1016/j.enconman.2024.118462_b0075) 2023; 298
Bui (10.1016/j.enconman.2024.118462_b0095) 2018; 11
van Soest (10.1016/j.enconman.2024.118462_b0040) 2021; 12
Mallapragada (10.1016/j.enconman.2024.118462_b0290) 2023; 7
He (10.1016/j.enconman.2024.118462_b0035) 2016; 9
Jung (10.1016/j.enconman.2024.118462_b0150) 2024; 299
Song (10.1016/j.enconman.2024.118462_b0025) 2019; 3
Jung (10.1016/j.enconman.2024.118462_b0225) 2023; 460
10.1016/j.enconman.2024.118462_b0175
Jung (10.1016/j.enconman.2024.118462_b0065) 2023; 462
Barker (10.1016/j.enconman.2024.118462_b0240) 2009; 1
Jung (10.1016/j.enconman.2024.118462_b0235) 2022; 450
Goellner (10.1016/j.enconman.2024.118462_b0195) 2014
Spallina (10.1016/j.enconman.2024.118462_b0055) 2017; 154
Hernández-Moro (10.1016/j.enconman.2024.118462_b0135) 2013; 20
Ozonoh (10.1016/j.enconman.2024.118462_b0270) 2018; 201
Yang (10.1016/j.enconman.2024.118462_b0165) 2018; 57
Locatelli (10.1016/j.enconman.2024.118462_b0140) 2014; 73
Al-Douri (10.1016/j.enconman.2024.118462_b0015) 2017; 45
Spurgeon (10.1016/j.enconman.2024.118462_b0180) 2018; 11
Michailos (10.1016/j.enconman.2024.118462_b0190) 2018
Jung (10.1016/j.enconman.2024.118462_b0230) 2020; 399
Kamijo (10.1016/j.enconman.2024.118462_b0105) 2013; 37
Taylor (10.1016/j.enconman.2024.118462_b0130) 2020
Turton (10.1016/j.enconman.2024.118462_b0185) 2008
Froment (10.1016/j.enconman.2024.118462_b0265) 1976; 15
Tian (10.1016/j.enconman.2024.118462_b0060) 2015; 5
Yang (10.1016/j.enconman.2024.118462_b0220) 2019; 36
Xiang (10.1016/j.enconman.2024.118462_b0260) 2014; 240
Ren (10.1016/j.enconman.2024.118462_b0050) 2006; 31
Rubin (10.1016/j.enconman.2024.118462_b0125) 2015; 86
He (10.1016/j.enconman.2024.118462_b0005) 2014; 53
Sisler (10.1016/j.enconman.2024.118462_b0080) 2021; 6
Jansen (10.1016/j.enconman.2024.118462_b0255) 2015; 40
Collodi (10.1016/j.enconman.2024.118462_b0250) 2017; 114
Davis (10.1016/j.enconman.2024.118462_b0200) 2013
Lopez (10.1016/j.enconman.2024.118462_b0280) 2024; 306
10.1016/j.enconman.2024.118462_b0275
Weimar (10.1016/j.enconman.2024.118462_b0145) 2021
Yang (10.1016/j.enconman.2024.118462_b0010) 2017; 56
Stéphenne (10.1016/j.enconman.2024.118462_b0100) 2014; 63
Wang (10.1016/j.enconman.2024.118462_b0090) 2011; 4
Iea (10.1016/j.enconman.2024.118462_b0115) 2017
von der Assen (10.1016/j.enconman.2024.118462_b0170) 2014; 43
References_xml – volume: 5
  start-page: 1922
  year: 2015
  end-page: 1938
  ident: b0060
  article-title: Methanol to olefins (MTO): from fundamentals to commercialization
  publication-title: ACS Catal
– volume: 1
  start-page: 87
  year: 2009
  end-page: 94
  ident: b0240
  article-title: CO
  publication-title: Energy Procedia
– volume: 15
  start-page: 495
  year: 1976
  end-page: 504
  ident: b0265
  article-title: Thermal cracking of ethane and ethane-propane mixtures
  publication-title: Industrial Eng Chem Process Design and Devel
– year: 2017
  ident: b0115
  article-title: Energy technology perspectives 2017
– volume: 43
  start-page: 7982
  year: 2014
  end-page: 7994
  ident: b0170
  article-title: Life cycle assessment of CO
  publication-title: Chem Soc Rev
– year: 2013
  ident: b0200
  article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons, National Renewable Energy Lab
  publication-title: (NREL), Golden, CO (United States)
– volume: 73
  start-page: 75
  year: 2014
  end-page: 85
  ident: b0140
  article-title: Small modular reactors: a comprehensive overview of their economics and strategic aspects
  publication-title: Prog Nucl Energy
– volume: 11
  start-page: 1536
  year: 2018
  end-page: 1551
  ident: b0180
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO
  publication-title: Energ Environ Sci
– year: 2021
  ident: b0205
  article-title: Chemical engineering design: principles, practice and economics of plant and process design
– volume: 201
  start-page: 192
  year: 2018
  end-page: 206
  ident: b0270
  article-title: Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa
  publication-title: J clean prod
– volume: 154
  start-page: 244
  year: 2017
  end-page: 261
  ident: b0055
  article-title: Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies
  publication-title: Energ Conver Manage
– volume: 299
  year: 2024
  ident: b0150
  article-title: Methane dehydroaromatization process in a carbon-neutral strategy
  publication-title: Energ Conver Manage
– volume: 36
  start-page: 21
  year: 2019
  end-page: 66
  ident: b0220
  article-title: Progress in coal chemical technologies of China
  publication-title: Rev Chem Eng
– volume: 63
  start-page: 6106
  year: 2014
  end-page: 6110
  ident: b0100
  article-title: Start-up of world's first commercial post-combustion coal fired CCS project: contribution of shell cansolv to saskpower boundary dam ICCS project
  publication-title: Energy Procedia
– volume: 399
  year: 2020
  ident: b0230
  article-title: Thermodynamic modeling and energy analysis of a polyamine-based water-lean solvent for CO
  publication-title: Chem Eng J
– volume: 158
  start-page: 3715
  year: 2019
  end-page: 3722
  ident: b0245
  article-title: Assessing the economics of CO
  publication-title: Energy Procedia
– volume: 40
  start-page: 167
  year: 2015
  end-page: 187
  ident: b0255
  article-title: Pre-combustion CO
  publication-title: Int J Greenhouse Gas Control
– volume: 114
  start-page: 2690
  year: 2017
  end-page: 2712
  ident: b0250
  article-title: Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel
  publication-title: Energy Procedia
– volume: 57
  start-page: 5980
  year: 2018
  end-page: 5998
  ident: b0165
  article-title: Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment
  publication-title: Ind Eng Chem Res
– volume: 56
  start-page: 4038
  year: 2017
  end-page: 4051
  ident: b0010
  article-title: Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha
  publication-title: Ind Eng Chem Res
– volume: 53
  start-page: 11442
  year: 2014
  end-page: 11459
  ident: b0005
  article-title: Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis
  publication-title: Industrial Eng Chem Res
– volume: 462
  year: 2023
  ident: b0065
  article-title: A combined production technology for ethylene and hydrogen with an ethane cracking center and dielectric barrier discharge plasma reactor
  publication-title: Chem Eng J
– year: 2020
  ident: b0130
  article-title: IRENA renewable power generation costs in 2019
– reference: A. Zoelle, D. Keairns, L.L. Pinkerton, M.J. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, Cost and performance baseline for fossil energy plants volume 1a: bituminous coal (PC) and natural gas to electricity revision 3, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV
– volume: 4
  start-page: 42
  year: 2011
  end-page: 55
  ident: b0090
  article-title: CO
  publication-title: Energ Environ Sci
– volume: 198
  year: 2019
  ident: b0085
  article-title: Techno-economic analysis of oxidative coupling of methane: current state of the art and future perspectives
  publication-title: Energ Conver Manage
– volume: 31
  start-page: 1902181
  year: 2019
  ident: b0215
  article-title: Recent progress in methanol-to-olefins (MTO) catalysts
  publication-title: Adv Mater
– volume: 450
  year: 2022
  ident: b0235
  article-title: System-level analysis for continuous BTX production from shale gas over Mo/HZSM-5 catalyst: Promotion effects of CO
  publication-title: Chem Eng J
– volume: 240
  start-page: 45
  year: 2014
  end-page: 54
  ident: b0260
  article-title: Techno-economic performance of the coal-to-olefins process with CCS
  publication-title: Chem Eng J
– volume: 31
  start-page: 425
  year: 2006
  end-page: 451
  ident: b0050
  article-title: Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes
  publication-title: Energy
– volume: 56
  start-page: 193
  year: 2021
  end-page: 202
  ident: b0155
  article-title: An economic analysis of twenty light olefin production pathways
  publication-title: J Energy Chem
– volume: 30
  start-page: 1
  year: 2014
  end-page: 28
  ident: b0020
  article-title: Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States
  publication-title: Renew Sustain Energy Rev
– volume: 9
  start-page: 820
  year: 2016
  end-page: 840
  ident: b0035
  article-title: Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States
  publication-title: Energ Environ Sci
– volume: 11
  start-page: 1062
  year: 2018
  end-page: 1176
  ident: b0095
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energ Environ Sci
– volume: 298
  year: 2023
  ident: b0075
  article-title: Flexible ethylene production: electrified ethane cracking coupled with oxidative dehydrogenation
  publication-title: Energ Conver Manage
– volume: 6
  start-page: 997
  year: 2021
  end-page: 1002
  ident: b0080
  article-title: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO
  publication-title: ACS Energy Lett
– volume: 12
  start-page: 1
  year: 2021
  end-page: 9
  ident: b0040
  article-title: Net-zero emission targets for major emitting countries consistent with the Paris agreement
  publication-title: Nat Commun
– volume: 325
  start-page: 1652
  year: 2009
  end-page: 1654
  ident: b0110
  article-title: Amine scrubbing for CO
  publication-title: Science
– volume: 20
  start-page: 119
  year: 2013
  end-page: 132
  ident: b0135
  article-title: Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution
  publication-title: Renew Sustain Energy Rev
– volume: 306
  year: 2024
  ident: b0280
  article-title: Assessing European supply chain configurations for sustainable e-polyethylene production from sustainable CO
  publication-title: Energ Conver Manage
– year: 2014
  ident: b0195
  article-title: Baseline analysis of crude methanol production from coal and natural gas
  publication-title: Natl Energy Tech Lab
– volume: 45
  start-page: 436
  year: 2017
  end-page: 455
  ident: b0015
  article-title: Shale gas monetization–a review of downstream processing to chemicals and fuels
  publication-title: J Nat Gas Sci Eng
– volume: 7
  start-page: 23
  year: 2023
  end-page: 41
  ident: b0290
  article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities
  publication-title: Joule
– volume: 86
  start-page: 198
  year: 2015
  end-page: 218
  ident: b0125
  article-title: A review of learning rates for electricity supply technologies
  publication-title: Energy Policy
– volume: 238
  year: 2022
  ident: b0120
  article-title: Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO
  publication-title: Energy
– year: 2008
  ident: b0185
  article-title: Analysis, synthesis and design of chemical processes
– year: 2018
  ident: b0190
  publication-title: Methanol worked examples for the TEA and LCA guidelines for CO
– reference: H.E. Murdock, D. Gibb, T. André, J.L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar, Renewables 2021-global status report, (2021).
– volume: 113
  start-page: 639
  year: 2014
  end-page: 647
  ident: b0160
  article-title: Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process
  publication-title: Appl Energy
– volume: 360
  year: 2018
  ident: b0045
  article-title: Net-zero emissions energy systems
  publication-title: Science
– volume: 37
  start-page: 813
  year: 2013
  end-page: 816
  ident: b0105
  article-title: Result of the 60 tpd CO
  publication-title: Energy Procedia
– reference: …, 2015.
– volume: 460
  year: 2023
  ident: b0225
  article-title: New facile process evaluation for membrane-based CO
  publication-title: Chem Eng J
– year: 2009
  ident: b0210
  article-title: Product & process design principles: Synthesis, analysis and evaluation
– volume: 3
  start-page: 1606
  year: 2019
  end-page: 1636
  ident: b0025
  article-title: Solar-energy-mediated methane conversion
  publication-title: Joule
– year: 2021
  ident: b0030
  article-title: Low-temperature ethylene production for indirect electrification in chemical production
  publication-title: Cell Rep Phys Sci
– reference: Martin Barrow, Benedict Buckley, Tom Caldicott, Tom Cumberlege, John Hsu, Scott Kaufman, Kevin Ramm, David Rich, W. Temple-Smith, Technical Guidance for Calculating Scope 3 Emissions Greenhouse Gas Protocol, 2013.
– volume: 37
  start-page: 12589
  year: 2023
  end-page: 12622
  ident: b0070
  article-title: Advancements in environmentally sustainable technologies for ethylene production
  publication-title: Energy Fuel
– year: 2021
  ident: b0145
  article-title: Techno-economic Assessment for Generation III+ Small Modular Reactor Deployments in the Pacific Northwest
– volume: 325
  start-page: 1652
  year: 2009
  ident: 10.1016/j.enconman.2024.118462_b0110
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
  doi: 10.1126/science.1176731
– ident: 10.1016/j.enconman.2024.118462_b0285
– year: 2020
  ident: 10.1016/j.enconman.2024.118462_b0130
– volume: 63
  start-page: 6106
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0100
  article-title: Start-up of world's first commercial post-combustion coal fired CCS project: contribution of shell cansolv to saskpower boundary dam ICCS project
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.642
– volume: 240
  start-page: 45
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0260
  article-title: Techno-economic performance of the coal-to-olefins process with CCS
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.11.051
– volume: 460
  year: 2023
  ident: 10.1016/j.enconman.2024.118462_b0225
  article-title: New facile process evaluation for membrane-based CO2 capture: apparent selectivity model
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.141624
– volume: 198
  year: 2019
  ident: 10.1016/j.enconman.2024.118462_b0085
  article-title: Techno-economic analysis of oxidative coupling of methane: current state of the art and future perspectives
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2019.111789
– volume: 154
  start-page: 244
  year: 2017
  ident: 10.1016/j.enconman.2024.118462_b0055
  article-title: Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2017.10.061
– volume: 86
  start-page: 198
  year: 2015
  ident: 10.1016/j.enconman.2024.118462_b0125
  article-title: A review of learning rates for electricity supply technologies
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.06.011
– year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0190
– year: 2013
  ident: 10.1016/j.enconman.2024.118462_b0200
  article-title: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons, National Renewable Energy Lab
  publication-title: (NREL), Golden, CO (United States)
– ident: 10.1016/j.enconman.2024.118462_b0275
– volume: 20
  start-page: 119
  year: 2013
  ident: 10.1016/j.enconman.2024.118462_b0135
  article-title: Analytical model for solar PV and CSP electricity costs: present LCOE values and their future evolution
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.11.082
– volume: 399
  year: 2020
  ident: 10.1016/j.enconman.2024.118462_b0230
  article-title: Thermodynamic modeling and energy analysis of a polyamine-based water-lean solvent for CO2 capture
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.125714
– year: 2009
  ident: 10.1016/j.enconman.2024.118462_b0210
– volume: 43
  start-page: 7982
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0170
  article-title: Life cycle assessment of CO2 capture and utilization: a tutorial review
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60373C
– volume: 40
  start-page: 167
  year: 2015
  ident: 10.1016/j.enconman.2024.118462_b0255
  article-title: Pre-combustion CO2 capture
  publication-title: Int J Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2015.05.028
– year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0205
– volume: 114
  start-page: 2690
  year: 2017
  ident: 10.1016/j.enconman.2024.118462_b0250
  article-title: Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1533
– volume: 56
  start-page: 193
  year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0155
  article-title: An economic analysis of twenty light olefin production pathways
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.04.021
– volume: 11
  start-page: 1062
  year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0095
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energ Environ Sci
  doi: 10.1039/C7EE02342A
– volume: 158
  start-page: 3715
  year: 2019
  ident: 10.1016/j.enconman.2024.118462_b0245
  article-title: Assessing the economics of CO2 capture in China’s iron/steel sector: a case study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.886
– volume: 53
  start-page: 11442
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0005
  article-title: Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis
  publication-title: Industrial Eng Chem Res
  doi: 10.1021/ie5012245
– volume: 37
  start-page: 12589
  year: 2023
  ident: 10.1016/j.enconman.2024.118462_b0070
  article-title: Advancements in environmentally sustainable technologies for ethylene production
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.3c01777
– volume: 298
  year: 2023
  ident: 10.1016/j.enconman.2024.118462_b0075
  article-title: Flexible ethylene production: electrified ethane cracking coupled with oxidative dehydrogenation
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2023.117761
– volume: 37
  start-page: 813
  year: 2013
  ident: 10.1016/j.enconman.2024.118462_b0105
  article-title: Result of the 60 tpd CO2 capture pilot plant in European coal power plant with KS-1TM solvent
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.172
– volume: 450
  year: 2022
  ident: 10.1016/j.enconman.2024.118462_b0235
  article-title: System-level analysis for continuous BTX production from shale gas over Mo/HZSM-5 catalyst: Promotion effects of CO2 co-feeding on process economics and environment
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137992
– volume: 31
  start-page: 425
  year: 2006
  ident: 10.1016/j.enconman.2024.118462_b0050
  article-title: Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes
  publication-title: Energy
  doi: 10.1016/j.energy.2005.04.001
– year: 2017
  ident: 10.1016/j.enconman.2024.118462_b0115
– volume: 306
  year: 2024
  ident: 10.1016/j.enconman.2024.118462_b0280
  article-title: Assessing European supply chain configurations for sustainable e-polyethylene production from sustainable CO2 and renewable electricity
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2024.118295
– volume: 12
  start-page: 1
  year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0040
  article-title: Net-zero emission targets for major emitting countries consistent with the Paris agreement
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22294-x
– year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0145
– volume: 36
  start-page: 21
  year: 2019
  ident: 10.1016/j.enconman.2024.118462_b0220
  article-title: Progress in coal chemical technologies of China
  publication-title: Rev Chem Eng
  doi: 10.1515/revce-2017-0026
– volume: 57
  start-page: 5980
  year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0165
  article-title: Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b03731
– year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0195
  article-title: Baseline analysis of crude methanol production from coal and natural gas
  publication-title: Natl Energy Tech Lab
– volume: 31
  start-page: 1902181
  year: 2019
  ident: 10.1016/j.enconman.2024.118462_b0215
  article-title: Recent progress in methanol-to-olefins (MTO) catalysts
  publication-title: Adv Mater
  doi: 10.1002/adma.201902181
– year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0030
  article-title: Low-temperature ethylene production for indirect electrification in chemical production
  publication-title: Cell Rep Phys Sci
  doi: 10.1016/j.xcrp.2021.100405
– volume: 6
  start-page: 997
  year: 2021
  ident: 10.1016/j.enconman.2024.118462_b0080
  article-title: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02633
– volume: 299
  year: 2024
  ident: 10.1016/j.enconman.2024.118462_b0150
  article-title: Methane dehydroaromatization process in a carbon-neutral strategy
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2023.117771
– volume: 45
  start-page: 436
  year: 2017
  ident: 10.1016/j.enconman.2024.118462_b0015
  article-title: Shale gas monetization–a review of downstream processing to chemicals and fuels
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2017.05.016
– volume: 113
  start-page: 639
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0160
  article-title: Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.013
– volume: 15
  start-page: 495
  year: 1976
  ident: 10.1016/j.enconman.2024.118462_b0265
  article-title: Thermal cracking of ethane and ethane-propane mixtures
  publication-title: Industrial Eng Chem Process Design and Devel
  doi: 10.1021/i260060a004
– volume: 73
  start-page: 75
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0140
  article-title: Small modular reactors: a comprehensive overview of their economics and strategic aspects
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2014.01.010
– volume: 11
  start-page: 1536
  year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0180
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products
  publication-title: Energ Environ Sci
  doi: 10.1039/C8EE00097B
– year: 2008
  ident: 10.1016/j.enconman.2024.118462_b0185
– ident: 10.1016/j.enconman.2024.118462_b0175
– volume: 30
  start-page: 1
  year: 2014
  ident: 10.1016/j.enconman.2024.118462_b0020
  article-title: Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.065
– volume: 462
  year: 2023
  ident: 10.1016/j.enconman.2024.118462_b0065
  article-title: A combined production technology for ethylene and hydrogen with an ethane cracking center and dielectric barrier discharge plasma reactor
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.142155
– volume: 1
  start-page: 87
  year: 2009
  ident: 10.1016/j.enconman.2024.118462_b0240
  article-title: CO2 capture in the cement industry
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.01.014
– volume: 360
  year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0045
  article-title: Net-zero emissions energy systems
  publication-title: Science
  doi: 10.1126/science.aas9793
– volume: 7
  start-page: 23
  year: 2023
  ident: 10.1016/j.enconman.2024.118462_b0290
  article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities
  publication-title: Joule
  doi: 10.1016/j.joule.2022.12.008
– volume: 9
  start-page: 820
  year: 2016
  ident: 10.1016/j.enconman.2024.118462_b0035
  article-title: Deciphering the true life cycle environmental impacts and costs of the mega-scale shale gas-to-olefins projects in the United States
  publication-title: Energ Environ Sci
  doi: 10.1039/C5EE02365C
– volume: 5
  start-page: 1922
  year: 2015
  ident: 10.1016/j.enconman.2024.118462_b0060
  article-title: Methanol to olefins (MTO): from fundamentals to commercialization
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00007
– volume: 238
  year: 2022
  ident: 10.1016/j.enconman.2024.118462_b0120
  article-title: Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121864
– volume: 3
  start-page: 1606
  year: 2019
  ident: 10.1016/j.enconman.2024.118462_b0025
  article-title: Solar-energy-mediated methane conversion
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.023
– volume: 56
  start-page: 4038
  year: 2017
  ident: 10.1016/j.enconman.2024.118462_b0010
  article-title: Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b00354
– volume: 201
  start-page: 192
  year: 2018
  ident: 10.1016/j.enconman.2024.118462_b0270
  article-title: Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa
  publication-title: J clean prod
  doi: 10.1016/j.jclepro.2018.07.209
– volume: 4
  start-page: 42
  year: 2011
  ident: 10.1016/j.enconman.2024.118462_b0090
  article-title: CO2 capture by solid adsorbents and their applications: current status and new trends
  publication-title: Energ Environ Sci
  doi: 10.1039/C0EE00064G
SSID ssj0003506
Score 2.5170135
Snippet [Display omitted] •Global CO2 emission and economic evaluation for four different ethylene productions were conducted.•CO2 capture cost and carbon prices were...
Ethylene, a crucial chemical in the industry, has a 6.2 % annual growth rate, leading to a significant rise in demand. However, the substantial CO₂ emissions...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118462
SubjectTerms administrative management
carbon dioxide
carbon markets
CO2-labeled process evaluation
economic feasibility
energy conversion
ethane
ethylene
ethylene production
Ethylene production technologies
industry
issues and policy
Lifecycle assessment
Plasma-assisted process
power generation
Renewable and alternative power generation
renewable energy sources
Technoeconomic analysis
Title Ethylene production processes in a carbon-neutral strategy
URI https://dx.doi.org/10.1016/j.enconman.2024.118462
https://www.proquest.com/docview/3200283995
Volume 311
WOSCitedRecordID wos001241196900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003506
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdoKShI3JDLbhzbcW8VWlQqVCG1iL1FdhKLrYqz2gdt_31n7DjZtqCCEJcoSmQnms8ZT2a-mSHkrdGi5KbktNRc0EyMSqq41LSuR2VmK1hD1nct-SwPD_PJRH1pGycufDsB6Vx-fq5m_xVquAZgY-rsX8DdTQoX4BxAhyPADsc_An4MooetBBOgfDFXxHcW0gE8-QrTIfXcNI66eoV-jneLUKH2SoB3HHICPSnde9R8lOHHDbLMQassvjXue3Od3TN1Z32Ufz8kn12geqFHq3V3Q5p11NTWBxbzYHrSkXdLKkFzFRoJR73Kgha9oaODu-BkBwt1OnjvHXwMqG6whNJ-V-q4gkc4Oc6NbNdsyPhdspFKrvIB2dj7NJ4cdBsv476Vavcyawnhv37a72yRa7uyNzWOH5GH7T9CshewfUzu1O4JebBWOfIp2Y0oJz3KSYdyMnWJTq6inESUn5GvH8fHH_Zp2waDlizjSwp_tFpWVtYmFVWWGh971WBaisoOK7Q2DPN2o1aSYf08K6wYSiF0apVJM_acDFzj6hckyTV-sszkWKfRjirFKi2sltKODNzLNwmPAinKtkY8tio5LSIZ8KSIgixQkEUQ5CZ5342bhSopt45QUd5Fa-sFG66AZXLr2DcRoAKUIUa4tKub1aJgqe-9pRTf-of5X5L7_crfJoPlfFW_IvfKn8vpYv66XXWXezCJug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethylene+production+processes+in+a+carbon-neutral+strategy&rft.jtitle=Energy+conversion+and+management&rft.au=Jung%2C+Wonho&rft.au=Lee%2C+Jinwon&rft.au=Ha%2C+Kyoung-Su&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=311&rft_id=info:doi/10.1016%2Fj.enconman.2024.118462&rft.externalDocID=S0196890424004035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon