Bayesian optimization for hyper-parameter tuning of an improved twin delayed deep deterministic policy gradients based energy management strategy for plug-in hybrid electric vehicles

Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL) algorithm shows great promise for the efficient energy management of PHEVs, as it provides the potential to achieve theoretical optimal performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 381; S. 125171
Hauptverfasser: Wang, Jinhai, Du, Changqing, Yan, Fuwu, Hua, Min, Gongye, Xiangyu, Yuan, Quan, Xu, Hongming, Zhou, Quan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.03.2025
Schlagworte:
ISSN:0306-2619
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL) algorithm shows great promise for the efficient energy management of PHEVs, as it provides the potential to achieve theoretical optimal performance. However, the brittle convergence properties, high sample complexity, and sensitivity to hyper-parameters of DRL algorithms have been major challenges in this field, limiting the applicability of DRL to real-world tasks. A novel EMS for PHEV based on Bayesian Optimization (BO) and improved Twin Delay Deep Deterministic Policy Gradient (TD3) algorithm is proposed in this paper, in which BO is introduced to optimize the TD3 hyper-parameters and a non-parametric reward function (NRF) is designed to improve the TD3 algorithm (BO-NRTD3). The present work addresses two challenges to contribute to the proposed EMS: (1) By hyper-parameter tuning, the TD3 strategy’s brittle convergence and robustness characteristics have been significantly improved; and (2) By designing the non-parametric reward function (NRF), the TD3 strategy can tackle system uncertainties. These findings are validated by comparing with various cutting-edge DRL and DP strategies using Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) tests. The results show that the energy economy of the BO-NRTD3 strategy is up to 98.15% of DP and 4.23% more robust than the parametric reward function TD3 (PR-TD3) strategy. •Improved TD3 strategy’s convergence and robustness via Bayesian Optimization.•Objective function ensures fast convergence of the reward function and its magnitude.•Non-parametric reward function enhances TD3’s adaptability to system uncertainties.•BO-NRTD3 strategy validated through Software-in-the-Loop and Hardware-in-the-Loop.
AbstractList Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL) algorithm shows great promise for the efficient energy management of PHEVs, as it provides the potential to achieve theoretical optimal performance. However, the brittle convergence properties, high sample complexity, and sensitivity to hyper-parameters of DRL algorithms have been major challenges in this field, limiting the applicability of DRL to real-world tasks. A novel EMS for PHEV based on Bayesian Optimization (BO) and improved Twin Delay Deep Deterministic Policy Gradient (TD3) algorithm is proposed in this paper, in which BO is introduced to optimize the TD3 hyper-parameters and a non-parametric reward function (NRF) is designed to improve the TD3 algorithm (BO-NRTD3). The present work addresses two challenges to contribute to the proposed EMS: (1) By hyper-parameter tuning, the TD3 strategy’s brittle convergence and robustness characteristics have been significantly improved; and (2) By designing the non-parametric reward function (NRF), the TD3 strategy can tackle system uncertainties. These findings are validated by comparing with various cutting-edge DRL and DP strategies using Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) tests. The results show that the energy economy of the BO-NRTD3 strategy is up to 98.15% of DP and 4.23% more robust than the parametric reward function TD3 (PR-TD3) strategy.
Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL) algorithm shows great promise for the efficient energy management of PHEVs, as it provides the potential to achieve theoretical optimal performance. However, the brittle convergence properties, high sample complexity, and sensitivity to hyper-parameters of DRL algorithms have been major challenges in this field, limiting the applicability of DRL to real-world tasks. A novel EMS for PHEV based on Bayesian Optimization (BO) and improved Twin Delay Deep Deterministic Policy Gradient (TD3) algorithm is proposed in this paper, in which BO is introduced to optimize the TD3 hyper-parameters and a non-parametric reward function (NRF) is designed to improve the TD3 algorithm (BO-NRTD3). The present work addresses two challenges to contribute to the proposed EMS: (1) By hyper-parameter tuning, the TD3 strategy’s brittle convergence and robustness characteristics have been significantly improved; and (2) By designing the non-parametric reward function (NRF), the TD3 strategy can tackle system uncertainties. These findings are validated by comparing with various cutting-edge DRL and DP strategies using Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) tests. The results show that the energy economy of the BO-NRTD3 strategy is up to 98.15% of DP and 4.23% more robust than the parametric reward function TD3 (PR-TD3) strategy. •Improved TD3 strategy’s convergence and robustness via Bayesian Optimization.•Objective function ensures fast convergence of the reward function and its magnitude.•Non-parametric reward function enhances TD3’s adaptability to system uncertainties.•BO-NRTD3 strategy validated through Software-in-the-Loop and Hardware-in-the-Loop.
ArticleNumber 125171
Author Zhou, Quan
Du, Changqing
Wang, Jinhai
Yuan, Quan
Yan, Fuwu
Hua, Min
Gongye, Xiangyu
Xu, Hongming
Author_xml – sequence: 1
  givenname: Jinhai
  orcidid: 0000-0002-0117-9597
  surname: Wang
  fullname: Wang, Jinhai
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 2
  givenname: Changqing
  orcidid: 0000-0003-1292-8773
  surname: Du
  fullname: Du, Changqing
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 3
  givenname: Fuwu
  orcidid: 0000-0002-4402-8676
  surname: Yan
  fullname: Yan, Fuwu
  email: yanfuwu@vip.sina.com
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 4
  givenname: Min
  surname: Hua
  fullname: Hua, Min
  organization: School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK
– sequence: 5
  givenname: Xiangyu
  surname: Gongye
  fullname: Gongye, Xiangyu
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 6
  givenname: Quan
  surname: Yuan
  fullname: Yuan, Quan
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 7
  givenname: Hongming
  surname: Xu
  fullname: Xu, Hongming
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 8
  givenname: Quan
  orcidid: 0000-0003-4216-3468
  surname: Zhou
  fullname: Zhou, Quan
  organization: School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK
BookMark eNqFkTuP1DAUhV0sEvvgLyCXNBn8SJyJRAGseEkr0UBtOfZN5o4SO9ieQdkfxu_DQ6Ch2cZXsr9zbJ9zQ6588EDIS852nHH1-rgzC3iI47oTTNQ7Lhre8ityzSRTlVC8e05uUjoyxgQX7Jr8em9WSGg8DUvGGR9NxuDpECI9rAvEajHRzJAh0nzy6EcaBlponJcYzuBo_omeOpiKjSsTlrIUekaPKaOlS5jQrnSMxiH4nGhvUiG3R9LZeDPCXA5oytFkKHuXu5fpNFbF-LD2EQs9gc2xuJ3hgHaCdEeeDWZK8OLvvCXfP374dv-5evj66cv9u4fKyrrJlZJNK8QehOq5aZyorRIwtM5x29V1bYG1trGuUYN0tWxMD2ZQru86CS3fy17eklebb_ntjxOkrGdMFqbJeAinpCVXzV41ndwXVG2ojSGlCINeIs4mrpozfSlHH_W_cvSlHL2VU4Rv_hNazH9qKIng9LT87SaHksMZIepkS9IWHMaSmnYBn7L4DavDumU
CitedBy_id crossref_primary_10_1016_j_energy_2025_137836
crossref_primary_10_1016_j_net_2025_103741
crossref_primary_10_3390_electronics14112251
crossref_primary_10_1016_j_apenergy_2025_125898
crossref_primary_10_1016_j_ijhydene_2025_151462
Cites_doi 10.1016/j.energy.2019.07.126
10.1016/j.enconman.2024.118853
10.1016/j.energy.2023.126858
10.1016/j.egyr.2022.04.050
10.1016/j.neucom.2020.07.061
10.3390/en16010074
10.1145/3451254
10.1016/j.energy.2022.126497
10.1109/TTE.2021.3056432
10.1016/j.energy.2022.125084
10.1016/j.enconman.2023.117480
10.1016/j.apenergy.2018.12.032
10.1016/j.energy.2021.120118
10.1038/s41598-024-54515-w
10.1016/j.jpowsour.2013.09.085
10.1016/j.ese.2021.100125
10.1504/IJVAS.2020.104818
10.1016/j.engappai.2023.106239
10.1016/j.enconman.2022.115450
10.1016/j.apenergy.2023.121227
10.1002/ente.202200355
10.1016/j.energy.2023.127207
10.1038/s43246-020-00095-x
10.1109/TTE.2020.3014688
10.1109/TTE.2022.3141191
10.1016/j.energy.2022.124806
10.1016/j.apenergy.2023.121526
10.1016/j.ijhydene.2021.12.121
10.3390/smartcities4010022
10.1049/iet-its.2019.0606
10.1109/TVT.2021.3107734
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.125171
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2024_125171
S0306261924025558
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-6357228e26b1a5d24c62ef7dd1c9444ce07c5cd56f3d435abeaf6db993e7183b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398530400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Fri Oct 03 00:15:09 EDT 2025
Sat Nov 29 08:18:43 EST 2025
Tue Nov 18 21:33:18 EST 2025
Sun Apr 06 06:53:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Twin Delayed Deep Deterministic Policy Gradients
Energy management strategy
Non-parametric reward function
Bayesian optimization
Plug-in hybrid electric vehicles
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-6357228e26b1a5d24c62ef7dd1c9444ce07c5cd56f3d435abeaf6db993e7183b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4402-8676
0000-0003-1292-8773
0000-0002-0117-9597
0000-0003-4216-3468
PQID 3165865938
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3165865938
crossref_primary_10_1016_j_apenergy_2024_125171
crossref_citationtrail_10_1016_j_apenergy_2024_125171
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_125171
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Mi, Xiong, Xu, You (b15) 2014; 248
Hu, Han, Tang, Lin (b6) 2021; 7
Wang, Jin, Schmitt, Olhofer (b43) 2022
Bibra, Connelly, Dhir, Drtil, Henriot, Hwang (b5) 2022
Hua, Chen, Zong, He (b7) 2020; 15
Sun, Zou, Zhang, Guo, Zhang, Du (b44) 2022
Sundstrom, Guzzella (b13) 2009
Paganelli, Delprat, Guerra, Rimaux, Santin (b18) 2002; Vol. 4
Fujimoto, Hoof, Meger (b29) 2018
Yuan, Zou, Jung, Kim (b11) 2022; 47
Mei, Karimi, Xie, Chen, Huang, Yang (b27) 2023; 123
Chen, Hu, Guo (b14) 2023; 273
Gulde, Tuscher, Csiszar, Riedel, Verl (b36) 2020
Zhou, Xue, Xue, Liao, Liu, Zhao (b45) 2021; 224
Yang, Yin (b40) 2021; 4
Yang, Shami (b38) 2020; 415
Cawley, Talbot (b48) 2007; 8
Duan, Hu, Deng, Fang, Xiong, Lu (b4) 2021; 8
Zhang, Zhang, Hong, Zhang, Yang, Jia (b25) 2023; 269
Rioual, Moullec, Laurent, Khan, Diguet (b42) 2021
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa (b26) 2015
Yang, Liu, Wen (b41) 2024; 14
Li, Gao, Wu, Xia, Wang, Hu (b47) 2023; 293
Mabrey (b3) 2019
Hu, Xie, Song, Zhang, Yan (b24) 2023; 342
Xie, Hu, Xin, Brighton (b17) 2019; 236
Trinh, Truong, Do, Nguyen, Ahn (b21) 2022; 8
Makarova A, Shen H, Perrone V, Klein A, Faddoul JB, Krause A, et al. Overfitting in Bayesian optimization: an empirical study and early-stopping solution. In: 2nd workshop on neural architecture search (NAS 2021 collocated with the 9th ICLR 2021). 2021.
Wang, Zeng, Song, Yang (b12) 2019; 185
Ehsani, Gao, Longo, Ebrahimi (b8) 2018
Hua, Shuai, Zhou, Wang, He, Xu (b23) 2023
Liessner, Schmitt, Dietermann, Bäker (b37) 2019
Zhang, Huang, Chen, Li, Liu (b19) 2022; 8
Wang, Ye, Zhang, Xu (b22) 2023; 266
Yang, Zha, Wang, Liu, Xiang (b32) 2020; 14
Yan, Wang, Du, Hua (b10) 2022; 16
Tang, Chen, Liu, Qin, Cao (b46) 2021; 70
Wu, Huang, Li, Li, Peng, Guerrero (b20) 2024; 317
Khalatbarisoltani, Zhou, Tang, Kandidayeni, Boulon, Hu (b9) 2023
Ramasamy, Chandramohan, Ghanta (b34) 2022; 10
Xu, Dai, Gaines, Hu, Tukker, Steubing (b1) 2020; 1
Wang, Du, Yan, Zhou, Xu (b28) 2023
Liessner, Lorenz, Schmitt, Dietermann, Baker (b39) 2019
Hua, Zhang, Zhang, Li, Yu, Xu (b30) 2023; 348
Wu, Ruan, Cui, Zhang, Li, Zhang (b31) 2023; 262
Sanguesa, Torres-Sanz, Garrido, Martinez, Marquez-Barja (b2) 2021; 4
Zhou, He, Zhao, Li, Li, Williams (b16) 2020; 7
Zhang, Liu, Lei, Fan, Li, Wang (b35) 2022; 257
Deng, Hai, Peng, Löwenstein, Hameyer (b33) 2021
Liessner (10.1016/j.apenergy.2024.125171_b37) 2019
Yan (10.1016/j.apenergy.2024.125171_b10) 2022; 16
Wang (10.1016/j.apenergy.2024.125171_b22) 2023; 266
Xu (10.1016/j.apenergy.2024.125171_b1) 2020; 1
Deng (10.1016/j.apenergy.2024.125171_b33) 2021
Hu (10.1016/j.apenergy.2024.125171_b24) 2023; 342
Yuan (10.1016/j.apenergy.2024.125171_b11) 2022; 47
Zhou (10.1016/j.apenergy.2024.125171_b45) 2021; 224
Sanguesa (10.1016/j.apenergy.2024.125171_b2) 2021; 4
Wu (10.1016/j.apenergy.2024.125171_b20) 2024; 317
Wang (10.1016/j.apenergy.2024.125171_b12) 2019; 185
Yang (10.1016/j.apenergy.2024.125171_b32) 2020; 14
Zhang (10.1016/j.apenergy.2024.125171_b35) 2022; 257
Wang (10.1016/j.apenergy.2024.125171_b43) 2022
Tang (10.1016/j.apenergy.2024.125171_b46) 2021; 70
Wu (10.1016/j.apenergy.2024.125171_b31) 2023; 262
Rioual (10.1016/j.apenergy.2024.125171_b42) 2021
Cawley (10.1016/j.apenergy.2024.125171_b48) 2007; 8
Xie (10.1016/j.apenergy.2024.125171_b17) 2019; 236
Sundstrom (10.1016/j.apenergy.2024.125171_b13) 2009
Zhang (10.1016/j.apenergy.2024.125171_b25) 2023; 269
Chen (10.1016/j.apenergy.2024.125171_b15) 2014; 248
Zhou (10.1016/j.apenergy.2024.125171_b16) 2020; 7
Li (10.1016/j.apenergy.2024.125171_b47) 2023; 293
Hua (10.1016/j.apenergy.2024.125171_b30) 2023; 348
Yang (10.1016/j.apenergy.2024.125171_b40) 2021; 4
Bibra (10.1016/j.apenergy.2024.125171_b5) 2022
Trinh (10.1016/j.apenergy.2024.125171_b21) 2022; 8
Liessner (10.1016/j.apenergy.2024.125171_b39) 2019
Zhang (10.1016/j.apenergy.2024.125171_b19) 2022; 8
Hua (10.1016/j.apenergy.2024.125171_b23) 2023
Yang (10.1016/j.apenergy.2024.125171_b38) 2020; 415
10.1016/j.apenergy.2024.125171_b49
Ehsani (10.1016/j.apenergy.2024.125171_b8) 2018
Khalatbarisoltani (10.1016/j.apenergy.2024.125171_b9) 2023
Lillicrap (10.1016/j.apenergy.2024.125171_b26) 2015
Chen (10.1016/j.apenergy.2024.125171_b14) 2023; 273
Paganelli (10.1016/j.apenergy.2024.125171_b18) 2002; Vol. 4
Mei (10.1016/j.apenergy.2024.125171_b27) 2023; 123
Fujimoto (10.1016/j.apenergy.2024.125171_b29) 2018
Hu (10.1016/j.apenergy.2024.125171_b6) 2021; 7
Sun (10.1016/j.apenergy.2024.125171_b44) 2022
Wang (10.1016/j.apenergy.2024.125171_b28) 2023
Mabrey (10.1016/j.apenergy.2024.125171_b3) 2019
Yang (10.1016/j.apenergy.2024.125171_b41) 2024; 14
Hua (10.1016/j.apenergy.2024.125171_b7) 2020; 15
Ramasamy (10.1016/j.apenergy.2024.125171_b34) 2022; 10
Gulde (10.1016/j.apenergy.2024.125171_b36) 2020
Duan (10.1016/j.apenergy.2024.125171_b4) 2021; 8
References_xml – year: 2023
  ident: b23
  article-title: Recent progress in energy management of connected hybrid electric vehicles using reinforcement learning
– volume: 293
  year: 2023
  ident: b47
  article-title: Incentive learning-based energy management for hybrid energy storage system in electric vehicles
  publication-title: Energy Convers Manage
– year: 2022
  ident: b5
  article-title: Global EV outlook 2022: Securing supplies for an electric future
– start-page: 1625
  year: 2009
  end-page: 1630
  ident: b13
  article-title: A generic dynamic programming matlab function
  publication-title: 2009 IEEE control applications,(CCA) & intelligent control
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: b29
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: International conference on machine learning
– year: 2019
  ident: b3
  article-title: Reducing the carbon footprint? How hybrid cars help
– year: 2021
  ident: b42
  article-title: Design and comparison of reward functions in reinforcement learning for energy management of sensor nodes
– volume: 8
  year: 2021
  ident: b4
  article-title: Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China
  publication-title: Environ Sci Ecotechnol
– year: 2023
  ident: b9
  article-title: Energy management strategies for fuel cell vehicles: a comprehensive review of the latest progress in modeling, strategies, and future prospects
  publication-title: IEEE Trans Intell Transp Syst
– volume: Vol. 4
  start-page: 2076
  year: 2002
  end-page: 2081
  ident: b18
  article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains
  publication-title: Vehicular technology conference. IEEE 55th vehicular technology conference. VTC spring 2002 (Cat. No. 02CH37367)
– volume: 7
  start-page: 1990
  year: 2021
  end-page: 2009
  ident: b6
  article-title: Powertrain design and control in electrified vehicles: A critical review
  publication-title: IEEE Trans Transp Electrif
– volume: 185
  start-page: 1086
  year: 2019
  end-page: 1099
  ident: b12
  article-title: Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus
  publication-title: Energy
– start-page: 1
  year: 2021
  end-page: 6
  ident: b33
  article-title: Deep reinforcement learning based energy management strategy for fuel cell and battery powered rail vehicles
  publication-title: 2021 IEEE vehicle power and propulsion conference
– volume: 8
  start-page: 2516
  year: 2022
  end-page: 2530
  ident: b19
  article-title: An optimal control strategy for plug-in hybrid electric vehicles based on enhanced model predictive control with efficient numerical method
  publication-title: IEEE Trans Transp Electrif
– volume: 70
  start-page: 9922
  year: 2021
  end-page: 9934
  ident: b46
  article-title: Distributed deep reinforcement learning-based energy and emission management strategy for hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– volume: 14
  start-page: 3948
  year: 2024
  ident: b41
  article-title: The impact of Bayesian optimization on feature selection
  publication-title: Sci Rep
– year: 2018
  ident: b8
  article-title: Modern electric, hybrid electric, and fuel cell vehicles
– year: 2022
  ident: b43
  article-title: Recent advances in Bayesian optimization
– volume: 7
  start-page: 616
  year: 2020
  end-page: 625
  ident: b16
  article-title: Modified particle swarm optimization with chaotic attraction strategy for modular design of hybrid powertrains
  publication-title: IEEE Trans Transp Electrif
– year: 2015
  ident: b26
  article-title: Continuous control with deep reinforcement learning
– volume: 15
  start-page: 50
  year: 2020
  end-page: 76
  ident: b7
  article-title: Research on synchronous control strategy of steer-by-wire system with dual steering actuator motors
  publication-title: Int J Veh Auton Syst
– start-page: 134
  year: 2019
  end-page: 144
  ident: b37
  article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management
  publication-title: ICAART (2)
– start-page: 32
  year: 2020
  end-page: 35
  ident: b36
  article-title: Deep reinforcement learning using cyclical learning rates
  publication-title: 2020 third international conference on artificial intelligence for industries (AI4I)
– volume: 248
  start-page: 416
  year: 2014
  end-page: 426
  ident: b15
  article-title: Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming
  publication-title: J Power Sources
– volume: 8
  start-page: 6035
  year: 2022
  end-page: 6057
  ident: b21
  article-title: Optimization-based energy management strategies for hybrid construction machinery: A review
  publication-title: Energy Rep
– volume: 123
  year: 2023
  ident: b27
  article-title: A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles
  publication-title: Eng Appl Artif Intell
– start-page: 1
  year: 2019
  end-page: 6
  ident: b39
  article-title: Simultaneous electric powertrain hardware and energy management optimization of a hybrid electric vehicle using deep reinforcement learning and Bayesian optimization
  publication-title: 2019 IEEE vehicle power and propulsion conference
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b38
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 1
  start-page: 99
  year: 2020
  ident: b1
  article-title: Future material demand for automotive lithium-based batteries
  publication-title: Commun Mater
– year: 2022
  ident: b44
  article-title: High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning
  publication-title: Energy
– volume: 236
  start-page: 893
  year: 2019
  end-page: 905
  ident: b17
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
– reference: Makarova A, Shen H, Perrone V, Klein A, Faddoul JB, Krause A, et al. Overfitting in Bayesian optimization: an empirical study and early-stopping solution. In: 2nd workshop on neural architecture search (NAS 2021 collocated with the 9th ICLR 2021). 2021.
– volume: 16
  start-page: 74
  year: 2022
  ident: b10
  article-title: Multi-objective energy management strategy for hybrid electric vehicles based on TD3 with non-parametric reward function
  publication-title: Energies
– volume: 348
  year: 2023
  ident: b30
  article-title: Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning
  publication-title: Appl Energy
– volume: 4
  start-page: 1
  year: 2021
  end-page: 19
  ident: b40
  article-title: Efficient hyperparameter optimization for physics-based character animation
  publication-title: Proc ACM Comput Graph Interact Tech
– volume: 10
  year: 2022
  ident: b34
  article-title: Energy management in plugin hybrid electric vehicles with hybrid energy storage system using hybrid approach
  publication-title: Energy Technol
– volume: 273
  year: 2023
  ident: b14
  article-title: Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles
  publication-title: Energy
– volume: 224
  year: 2021
  ident: b45
  article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning
  publication-title: Energy
– volume: 269
  year: 2023
  ident: b25
  article-title: Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle
  publication-title: Energy
– volume: 8
  year: 2007
  ident: b48
  article-title: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
  publication-title: J Mach Learn Res
– volume: 257
  year: 2022
  ident: b35
  article-title: Learning-based supervisory control of dual mode engine-based hybrid electric vehicle with reliance on multivariate trip information
  publication-title: Energy Convers Manage
– volume: 4
  start-page: 372
  year: 2021
  end-page: 404
  ident: b2
  article-title: A review on electric vehicles: Technologies and challenges
  publication-title: Smart Cities
– volume: 266
  year: 2023
  ident: b22
  article-title: A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle
  publication-title: Energy
– volume: 342
  year: 2023
  ident: b24
  article-title: An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles
  publication-title: Appl Energy
– year: 2023
  ident: b28
  article-title: Hierarchical rewarding deep deterministic policy gradient strategy for energy management of hybrid electric vehicles
  publication-title: IEEE Trans Transp Electrif
– volume: 14
  start-page: 702
  year: 2020
  end-page: 711
  ident: b32
  article-title: Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: review and recent advances under intelligent transportation system
  publication-title: IET Intell Transp Syst
– volume: 47
  start-page: 7932
  year: 2022
  end-page: 7948
  ident: b11
  article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm
  publication-title: Int J Hydrog Energy
– volume: 317
  year: 2024
  ident: b20
  article-title: Integrated battery thermal and energy management for electric vehicles with hybrid energy storage system: A hierarchical approach
  publication-title: Energy Convers Manage
– volume: 262
  year: 2023
  ident: b31
  article-title: The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode
  publication-title: Energy
– start-page: 1625
  year: 2009
  ident: 10.1016/j.apenergy.2024.125171_b13
  article-title: A generic dynamic programming matlab function
– year: 2015
  ident: 10.1016/j.apenergy.2024.125171_b26
– year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b28
  article-title: Hierarchical rewarding deep deterministic policy gradient strategy for energy management of hybrid electric vehicles
  publication-title: IEEE Trans Transp Electrif
– volume: 185
  start-page: 1086
  year: 2019
  ident: 10.1016/j.apenergy.2024.125171_b12
  article-title: Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.126
– volume: 317
  year: 2024
  ident: 10.1016/j.apenergy.2024.125171_b20
  article-title: Integrated battery thermal and energy management for electric vehicles with hybrid energy storage system: A hierarchical approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2024.118853
– volume: 269
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b25
  article-title: Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126858
– start-page: 134
  year: 2019
  ident: 10.1016/j.apenergy.2024.125171_b37
  article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management
– volume: 8
  start-page: 6035
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b21
  article-title: Optimization-based energy management strategies for hybrid construction machinery: A review
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.04.050
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b38
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 16
  start-page: 74
  issue: 1
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b10
  article-title: Multi-objective energy management strategy for hybrid electric vehicles based on TD3 with non-parametric reward function
  publication-title: Energies
  doi: 10.3390/en16010074
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b40
  article-title: Efficient hyperparameter optimization for physics-based character animation
  publication-title: Proc ACM Comput Graph Interact Tech
  doi: 10.1145/3451254
– volume: 266
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b22
  article-title: A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126497
– year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b42
– volume: 7
  start-page: 1990
  issue: 3
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b6
  article-title: Powertrain design and control in electrified vehicles: A critical review
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2021.3056432
– volume: 262
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b31
  article-title: The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125084
– volume: Vol. 4
  start-page: 2076
  year: 2002
  ident: 10.1016/j.apenergy.2024.125171_b18
  article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains
– volume: 293
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b47
  article-title: Incentive learning-based energy management for hybrid energy storage system in electric vehicles
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.117480
– volume: 236
  start-page: 893
  year: 2019
  ident: 10.1016/j.apenergy.2024.125171_b17
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.032
– volume: 224
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b45
  article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120118
– volume: 14
  start-page: 3948
  issue: 1
  year: 2024
  ident: 10.1016/j.apenergy.2024.125171_b41
  article-title: The impact of Bayesian optimization on feature selection
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-54515-w
– volume: 248
  start-page: 416
  year: 2014
  ident: 10.1016/j.apenergy.2024.125171_b15
  article-title: Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.085
– year: 2019
  ident: 10.1016/j.apenergy.2024.125171_b3
– volume: 8
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b4
  article-title: Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China
  publication-title: Environ Sci Ecotechnol
  doi: 10.1016/j.ese.2021.100125
– volume: 15
  start-page: 50
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b7
  article-title: Research on synchronous control strategy of steer-by-wire system with dual steering actuator motors
  publication-title: Int J Veh Auton Syst
  doi: 10.1504/IJVAS.2020.104818
– year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b9
  article-title: Energy management strategies for fuel cell vehicles: a comprehensive review of the latest progress in modeling, strategies, and future prospects
  publication-title: IEEE Trans Intell Transp Syst
– ident: 10.1016/j.apenergy.2024.125171_b49
– year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b5
– year: 2018
  ident: 10.1016/j.apenergy.2024.125171_b8
– volume: 123
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b27
  article-title: A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106239
– volume: 257
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b35
  article-title: Learning-based supervisory control of dual mode engine-based hybrid electric vehicle with reliance on multivariate trip information
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2022.115450
– volume: 342
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b24
  article-title: An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121227
– volume: 10
  issue: 10
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b34
  article-title: Energy management in plugin hybrid electric vehicles with hybrid energy storage system using hybrid approach
  publication-title: Energy Technol
  doi: 10.1002/ente.202200355
– year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b43
– start-page: 32
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b36
  article-title: Deep reinforcement learning using cyclical learning rates
– volume: 8
  issue: 4
  year: 2007
  ident: 10.1016/j.apenergy.2024.125171_b48
  article-title: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2024.125171_b39
  article-title: Simultaneous electric powertrain hardware and energy management optimization of a hybrid electric vehicle using deep reinforcement learning and Bayesian optimization
– volume: 273
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b14
  article-title: Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127207
– volume: 1
  start-page: 99
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b1
  article-title: Future material demand for automotive lithium-based batteries
  publication-title: Commun Mater
  doi: 10.1038/s43246-020-00095-x
– volume: 7
  start-page: 616
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b16
  article-title: Modified particle swarm optimization with chaotic attraction strategy for modular design of hybrid powertrains
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2020.3014688
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b33
  article-title: Deep reinforcement learning based energy management strategy for fuel cell and battery powered rail vehicles
– volume: 8
  start-page: 2516
  issue: 2
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b19
  article-title: An optimal control strategy for plug-in hybrid electric vehicles based on enhanced model predictive control with efficient numerical method
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2022.3141191
– year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b23
– year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b44
  article-title: High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124806
– start-page: 1587
  year: 2018
  ident: 10.1016/j.apenergy.2024.125171_b29
  article-title: Addressing function approximation error in actor-critic methods
– volume: 348
  year: 2023
  ident: 10.1016/j.apenergy.2024.125171_b30
  article-title: Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121526
– volume: 47
  start-page: 7932
  issue: 12
  year: 2022
  ident: 10.1016/j.apenergy.2024.125171_b11
  article-title: Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.12.121
– volume: 4
  start-page: 372
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b2
  article-title: A review on electric vehicles: Technologies and challenges
  publication-title: Smart Cities
  doi: 10.3390/smartcities4010022
– volume: 14
  start-page: 702
  issue: 7
  year: 2020
  ident: 10.1016/j.apenergy.2024.125171_b32
  article-title: Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: review and recent advances under intelligent transportation system
  publication-title: IET Intell Transp Syst
  doi: 10.1049/iet-its.2019.0606
– volume: 70
  start-page: 9922
  issue: 10
  year: 2021
  ident: 10.1016/j.apenergy.2024.125171_b46
  article-title: Distributed deep reinforcement learning-based energy and emission management strategy for hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3107734
SSID ssj0002120
Score 2.5093098
Snippet Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125171
SubjectTerms algorithms
Bayesian optimization
Bayesian theory
brittleness
energy
Energy management strategy
hybridization
issues and policy
Non-parametric reward function
Plug-in hybrid electric vehicles
road transportation
Twin Delayed Deep Deterministic Policy Gradients
Title Bayesian optimization for hyper-parameter tuning of an improved twin delayed deep deterministic policy gradients based energy management strategy for plug-in hybrid electric vehicles
URI https://dx.doi.org/10.1016/j.apenergy.2024.125171
https://www.proquest.com/docview/3165865938
Volume 381
WOSCitedRecordID wos001398530400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEBSqlpcWiZvlUK-feywoFSBUcSgoN2uzXiepEsckdtr8MX4Cv4vZl-2GR-mBixNZ3rGt-bLz7eabGYRex5TynHHqZkRkbhCEvptEPHRjQSAgMcF81bTv66f47CwZjejnXu-HzYXZzOOiSK6uaPlfXQ3nwNkydfYW7m6Mwgn4Dk6HI7gdjv_k-LdsK1Rm5BJmg4VJs1RqwimsOVeuLPa9kCIYp6oLo3mGq2dqdwHoZ3WpBLJzMJPBpyjhoCUzqqazauvAt85kpcRi1dqRgTBzhE4iXDRyGmetC99qRWg5rycuGJ5uZYqYo7vvgLWNmCphXpckW2asTbZb_kY8PCumbNYScCMaKCbfbBSWk5je1z2tL-sWuEznCRTdnQ4StlIvm-F1HLlyxdedvX3d8cXMv5Ku6ZYuv4QGvUtxMWClfvoB3CIYtAOu1-LeiZGNctGK4i5SayeVdlJt5w7aI3FIkz7aO_kwHH1sOAExBULtG3Ry1X__RH-iSTuEQbGg84fogVm-4BMNu0eoJ4p9dL9T1HIfHQzb3Em41ASP9WP03SITd5GJAR14B5lYIxMvcwxXW2RiiUxskIklMvE1ZGKNTNwgEytkYv3auEUmtshU9zbIxBqZ2CITW2Q-QV9Oh-fv3rumbYjL_SCsXFlhkZBEkGjssTAjAY-IyOMs8zgNgoCL45iHPAuj3M9gscDGguVRNgaiLoCo-WP_APWLZSEOEc4p4R5E4CCiNGA5pcIjhHlZSP0xE7E4QqH1UspNTX3Z2mWe_h0nR-hNM67UVWVuHEEtCFLDjTXnTQHfN459ZVGTQvCQ_wiyQizrdep7sACJ4G2Sp7d-omfoXvsjfY761aoWL9Bdvqlm69VL8wP4CeqN9ys
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+for+hyper-parameter+tuning+of+an+improved+twin+delayed+deep+deterministic+policy+gradients+based+energy+management+strategy+for+plug-in+hybrid+electric+vehicles&rft.jtitle=Applied+energy&rft.au=Wang%2C+Jinhai&rft.au=Du%2C+Changqing&rft.au=Yan%2C+Fuwu&rft.au=Hua%2C+Min&rft.date=2025-03-01&rft.issn=0306-2619&rft.volume=381&rft.spage=125171&rft_id=info:doi/10.1016%2Fj.apenergy.2024.125171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_125171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon