Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms
•Economic, technical, environmental, and social objective functions are considered in the optimization.•The levelized cost of energy in selected solutions is reduced by 51 to 88% by selling excess electricity.•The exploitation of the selected systems significantly reduce CO2 emissions.•The Pareto fr...
Uloženo v:
| Vydáno v: | Energy conversion and management Ročník 294; s. 117515 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2023
|
| Témata: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Economic, technical, environmental, and social objective functions are considered in the optimization.•The levelized cost of energy in selected solutions is reduced by 51 to 88% by selling excess electricity.•The exploitation of the selected systems significantly reduce CO2 emissions.•The Pareto fronts are compared using two standards of diversification and spacing.
Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly. |
|---|---|
| AbstractList | Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO₂ emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF)>70% and LPSP<0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO₂ emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO₂ emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46-100% and 3-100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly. •Economic, technical, environmental, and social objective functions are considered in the optimization.•The levelized cost of energy in selected solutions is reduced by 51 to 88% by selling excess electricity.•The exploitation of the selected systems significantly reduce CO2 emissions.•The Pareto fronts are compared using two standards of diversification and spacing. Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic panel, wind turbine, ground source heat pump, diesel generator, battery bank, and fuel cell. This study presents an innovative approach in optimization considering all economic, technical, environmental, and social aspects. Objective functions include loss of power supply probability (LPSP), levelized cost of energy (LCOE), CO2 emission, and human development index (HDI) that are optimized simultaneously. Also, the simulation-based approach in NSGA-II and MOPSO algorithms is used to estimate the Pareto front. The Pareto front solutions are the optimum points that help decision-makers choose the best system configuration based on priorities. Due to the importance of renewable energy utilization and reliability, two conditions of renewable fraction (RF) > 70% and LPSP < 0.05 are considered to select the optimal systems. Among the selected systems, the solutions with the highest RF also generated more extra energy. Diesel generators are much less expensive than fuel cells; however, the environmental benefits of the fuel cell make this technology attractive. Therefore, systems that use only the diesel generator as a backup unit have lower LCOE and higher CO2 emissions. LCOE in selected solutions is reduced by 51 to 88% by selling extra power to the grid. The environmental assessment results show that CO2 emissions in selected systems compared to coal-based power plants and natural gas power plants are decreased by 46–100% and 3–100%, respectively. Also, Pareto fronts evaluation shows that the NSGA-II algorithm's solutions covered a more extensive range and scattered more uniformly. |
| ArticleNumber | 117515 |
| Author | Hossein Jahangir, Mohammad Cheraghi, Ramin |
| Author_xml | – sequence: 1 givenname: Ramin orcidid: 0000-0003-1892-6234 surname: Cheraghi fullname: Cheraghi, Ramin – sequence: 2 givenname: Mohammad surname: Hossein Jahangir fullname: Hossein Jahangir, Mohammad email: mh.jahangir@ut.ac.ir |
| BookMark | eNqFkT1vFDEQhi0UJC6Bv4Bc0uzF9n5LFEQRJCclHFKS2vLas5c5ee3F9gZt6vxw9jhoaNLMjEbvM8Uzp-TEeQeEfORszRmvzvdrcNq7Qbm1YCJfc16XvHxDVryp20wIUZ-QFeNtlTUtK96R0xj3jLG8ZNWKvNxONmHmuz3ohE9A_ZhwwGeV0Dvqe6ro49wFNDSAg1-qs0CXIexmGueYYKBxGkc7o9st0QARDbiEytJuQmsO6yke6ve7q4tss6HKGXq7_XG3pcrufMD0OMT35G2vbIQPf_sZefj29f7yOrvZXm0uL24ynRdlykrdNKI2hVBGtwaaRje8By26tjGiV0Ulir7jBQOhVK-7indK8w5UXhd1X-YiPyOfjnfH4H9OEJMcMGqwVjnwU5Q5LwteNVXBl-jnY1QHH2OAXmpMf6SkoNBKzuRBvtzLf_LlQb48yl_w6j98DDioML8OfjmCsHh4QggyalySYDAsH5LG42snfgP_SqhE |
| CitedBy_id | crossref_primary_10_1016_j_rser_2025_115931 crossref_primary_10_1016_j_est_2025_115430 crossref_primary_10_1016_j_est_2025_116128 crossref_primary_10_1016_j_enconman_2025_119748 crossref_primary_10_1016_j_enconman_2025_119868 crossref_primary_10_1016_j_applthermaleng_2025_126656 crossref_primary_10_3390_pr12091964 crossref_primary_10_1016_j_est_2024_112550 crossref_primary_10_1007_s11334_024_00588_9 crossref_primary_10_1016_j_csite_2024_105368 crossref_primary_10_1016_j_scs_2025_106638 crossref_primary_10_1016_j_geoen_2024_213550 crossref_primary_10_1109_TTE_2025_3532964 crossref_primary_10_3390_en17071760 crossref_primary_10_1016_j_eswa_2024_123448 crossref_primary_10_1007_s40866_025_00255_3 crossref_primary_10_1016_j_energy_2025_135914 crossref_primary_10_1016_j_solener_2025_113496 crossref_primary_10_1016_j_renene_2024_121858 crossref_primary_10_1016_j_apenergy_2024_124555 crossref_primary_10_1016_j_compeleceng_2024_109223 crossref_primary_10_1016_j_ijhydene_2024_03_165 crossref_primary_10_1016_j_ijhydene_2025_03_143 crossref_primary_10_1002_ese3_70241 crossref_primary_10_3389_fenrg_2024_1483170 crossref_primary_10_1038_s41598_024_81130_6 crossref_primary_10_1016_j_enconman_2024_119120 crossref_primary_10_1016_j_energy_2025_137468 crossref_primary_10_1016_j_est_2025_115695 crossref_primary_10_1016_j_renene_2025_124260 crossref_primary_10_1016_j_compag_2025_110542 crossref_primary_10_1016_j_asoc_2025_113402 crossref_primary_10_1016_j_scs_2023_105123 crossref_primary_10_1016_j_buildenv_2024_111185 crossref_primary_10_1016_j_renene_2024_121906 crossref_primary_10_1016_j_compstruc_2024_107303 crossref_primary_10_1016_j_mechmachtheory_2025_106034 crossref_primary_10_1016_j_rineng_2025_103988 crossref_primary_10_1016_j_optlastec_2025_112857 crossref_primary_10_3390_cleantechnol7010023 crossref_primary_10_1016_j_apenergy_2024_122632 crossref_primary_10_1016_j_est_2024_115053 crossref_primary_10_1016_j_ijhydene_2024_08_484 crossref_primary_10_1109_JIOT_2025_3544178 crossref_primary_10_1016_j_applthermaleng_2024_123271 crossref_primary_10_3390_pr13092875 crossref_primary_10_1016_j_ijhydene_2025_03_006 crossref_primary_10_1016_j_jobe_2024_110577 crossref_primary_10_1016_j_epsr_2024_110925 crossref_primary_10_1007_s40866_025_00287_9 crossref_primary_10_1109_TASE_2024_3412005 crossref_primary_10_1016_j_renene_2024_121651 crossref_primary_10_1186_s40807_025_00175_x crossref_primary_10_1016_j_est_2024_111143 crossref_primary_10_1002_ese3_2018 crossref_primary_10_2516_stet_2024052 crossref_primary_10_1016_j_egyr_2025_04_020 crossref_primary_10_1155_er_9531493 crossref_primary_10_1016_j_engstruct_2025_120617 crossref_primary_10_1080_15567036_2025_2504544 crossref_primary_10_1016_j_jobe_2024_108527 crossref_primary_10_1016_j_csite_2025_105851 crossref_primary_10_1016_j_renene_2025_124073 crossref_primary_10_1016_j_energy_2024_133877 crossref_primary_10_1016_j_apenergy_2023_122231 crossref_primary_10_1016_j_ijhydene_2025_01_476 crossref_primary_10_1007_s12273_025_1302_2 crossref_primary_10_1109_TSG_2024_3446859 crossref_primary_10_1142_S0129156425402888 crossref_primary_10_3390_math13172722 crossref_primary_10_1049_rpg2_13157 crossref_primary_10_1016_j_enconman_2024_118184 crossref_primary_10_1016_j_rser_2025_115997 crossref_primary_10_3390_su17156954 crossref_primary_10_1016_j_enconman_2024_119320 crossref_primary_10_1016_j_enconman_2024_119441 crossref_primary_10_3390_en18071580 crossref_primary_10_1016_j_buildenv_2025_113124 crossref_primary_10_3390_en17225609 crossref_primary_10_1016_j_rser_2025_115752 crossref_primary_10_1016_j_apenergy_2025_126484 crossref_primary_10_1016_j_apenergy_2024_123653 crossref_primary_10_1049_rpg2_70022 crossref_primary_10_1016_j_energy_2025_138089 crossref_primary_10_3390_app14177747 crossref_primary_10_1016_j_engappai_2025_111650 crossref_primary_10_1017_S026357472500027X crossref_primary_10_1038_s41598_024_81044_3 crossref_primary_10_1016_j_energy_2024_134164 crossref_primary_10_1016_j_eswa_2025_127768 crossref_primary_10_1016_j_enconman_2025_120103 crossref_primary_10_1016_j_energy_2025_135899 crossref_primary_10_1007_s11590_025_02214_4 crossref_primary_10_1016_j_apenergy_2025_126530 crossref_primary_10_1016_j_enconman_2024_118926 crossref_primary_10_1016_j_solcom_2025_100140 crossref_primary_10_1016_j_jii_2025_100826 crossref_primary_10_1016_j_jobe_2025_112594 crossref_primary_10_12677_dsc_2025_141004 crossref_primary_10_1088_1755_1315_1372_1_012024 crossref_primary_10_1038_s41598_024_69734_4 |
| Cites_doi | 10.1016/j.energy.2018.12.049 10.1016/j.renene.2012.12.034 10.1016/j.energy.2005.10.032 10.1016/j.geothermics.2018.10.004 10.1016/j.renene.2018.08.034 10.1063/1.4939056 10.1016/j.renene.2010.08.039 10.1016/j.rser.2018.04.105 10.1016/j.enconman.2016.09.046 10.1109/4235.797969 10.1016/j.energy.2020.117738 10.1016/j.renene.2018.10.053 10.1016/j.apenergy.2017.07.005 10.1016/j.renene.2015.05.022 10.1016/j.jclepro.2019.06.210 10.1016/j.rser.2015.12.290 10.1016/j.energy.2018.08.152 10.1016/j.energy.2017.11.053 10.1016/j.energy.2012.05.034 10.1016/j.rser.2020.110282 10.1016/j.enconman.2019.112027 10.1016/j.energy.2019.116421 10.1016/j.enbuild.2019.07.030 10.1016/j.solener.2019.09.003 10.1016/j.enconman.2020.112751 10.1016/j.rser.2011.11.030 10.1016/j.energy.2019.116846 10.1016/j.renene.2008.02.027 10.1016/j.enconman.2020.113192 10.1016/j.energy.2019.03.055 10.1016/j.energy.2017.12.057 10.1016/j.energy.2014.05.095 10.1016/j.renene.2017.11.058 10.1016/j.enconman.2018.11.079 10.1002/er.3202 10.1016/j.enconman.2020.113017 10.1016/j.enconman.2020.113370 10.1016/j.enbuild.2016.05.052 10.1016/j.scs.2020.102178 10.1016/j.asoc.2016.02.014 10.1016/j.rser.2017.06.033 10.1016/j.cacint.2022.100085 10.1016/j.buildenv.2006.09.003 10.1016/j.renene.2014.05.006 10.1016/j.rser.2017.01.118 10.1016/j.renene.2019.09.099 10.1016/j.ijepes.2015.07.007 10.1016/j.energy.2020.119605 10.1109/4235.996017 10.1016/j.rser.2018.05.032 10.1016/j.rser.2012.02.009 10.1016/j.energy.2018.08.089 10.1016/j.apenergy.2013.11.021 10.1016/j.desal.2018.08.008 10.1016/j.enconman.2020.112868 10.1016/j.enconman.2018.01.050 10.1016/j.energy.2020.119096 10.1016/j.renene.2009.03.020 10.1016/j.scs.2018.05.002 10.1016/j.rser.2015.10.058 10.1016/j.renene.2016.03.065 10.1016/j.enbuild.2015.06.079 10.1016/j.rser.2013.11.036 10.1016/j.renene.2020.08.051 10.1016/j.renene.2017.08.054 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2023.117515 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2023_117515 S0196890423008610 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-5c8827d42adc9de88c81fec2b98d2fa4624fb140e2aafcb61bac1bea3747f5323 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001070489400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Thu Oct 02 21:41:47 EDT 2025 Sat Nov 29 07:23:48 EST 2025 Tue Nov 18 21:04:25 EST 2025 Fri Feb 23 02:34:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Evolutionary algorithms Renewable energy Building energy consumption Genetic algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-5c8827d42adc9de88c81fec2b98d2fa4624fb140e2aafcb61bac1bea3747f5323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1892-6234 |
| PQID | 3154168641 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3154168641 crossref_citationtrail_10_1016_j_enconman_2023_117515 crossref_primary_10_1016_j_enconman_2023_117515 elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117515 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kamjoo, Maheri, Dizqah, Putrus (b0250) 2016; 74 Sanajaoba Singh, Fernandez (b0130) 2018; 143 Bajpai, Dash (b0030) 2012; 16 Kashefi Kaviani, Riahy, Kouhsari (b0140) 2009; 34 Zitzler, Thiele (b0205) 1999; 3 Chen, Zhou, Li, Yu, Gong, Yan (b0235) 2018; 160 An, Fang, Ming, Huang (b0270) 2015; 7 Movahediyan, Askarzadeh (b0290) 2018; 41 Jaszczur, Hassan, Palej, Abdulateef (b0050) 2020; 202 Norouzi, Yeganeh, Yusaf (b0005) 2021; 163 Zhou, Cao, Kosonen, Hamdy (b0075) 2020; 218 Karunathilake, Hewage, Brinkerhoff, Sadiq (b0120) 2019; 201 Uzunoglu, Sharafi, ElMekkawy, Bibeau (b0010) 2015; 83 Sharafi, ElMekkawy, Bibeau (b0070) 2015; 83 Zomorodian, Nasrollahi (b0345) 2013; 23 Delgarm, Sajadi, Delgarm, Kowsary (b0260) 2016; 127 Ehyaei, Ahmadi, El Haj, Salameh (b0280) 2019; 234 Huang, Xie, Zhang, Chan, Milewski, Xie (b0240) 2019; 181 Farzanehkhameneh, Soltani, Moradi Kashkooli, Ziabasharhagh (b0185) 2020; 133 Dufo-López, Cristóbal-Monreal, Yusta (b0085) 2016; 94 Sharafi, ElMekkawy (b0355) 2014; 38 Deb, Pratap, Agarwal, Meyarivan (b0215) 2002; 6 Tahsildoost, Zomorodian (b0320) 2020; 30 Hossein Jahangir, Bazdar, Kargarzadeh (b0100) 2022; 16 Abedi, Alimardani, Gharehpetian, Riahy, Hosseinian (b0155) 2012; 16 Bilir, Yildirim (b0335) 2018; 163 Zaibi, Cherif, Champenois, Sareni, Roboam, Belhadj (b0220) 2018; 446 Khorasaninejad, Hajabdollahi (b0285) 2014; 72 Sobhani, Shahmoradi, Sajadi (b0015) 2020; 224 Mokhtara, Negrou, Bouferrouk, Yao, Settou, Ramadan (b0110) 2020; 221 Milan, Bojesen, Nielsen (b0190) 2012; 48 Tezer, Yaman, Yaman (b0310) 2017; 73 Maisanam, Podder, Biswas, Sharma (b0350) 2019; 36 Xu, Liu, Lin, Dai, Li (b0225) 2018; 163 Tahsildoost, Zomorodian (b0330) 2015; 104 Ren, Wei, Zhai (b0080) 2021; 215 Mahian, Javidmehr, Kasaeian, Mohasseb, Panahi (b0105) 2020; 211 Singh, Singh, Kaushik (b0150) 2016; 128 Sawle, Gupta, Bohre (b0090) 2018; 119 Barakat, Ibrahim, Elbaset (b0295) 2020; 60 Lian, Zhang, Ma, Yang, Chaima (b0300) 2019; 199 Chauhan, Saini (b0095) 2016; 59 Fodhil, Hamidat, Nadjemi (b0125) 2019; 169 Borhanazad, Mekhilef, Gounder Ganapathy, Modiri-Delshad, Mirtaheri (b0135) 2014; 71 Rad, Ghasempour, Rahdan, Mousavi, Arastounia (b0170) 2020; 190 Bingham, Agelin-Chaab, Rosen (b0060) 2019; 132 Ganjehkaviri, Mohd Jaafar (b0275) 2020; 194 Mokhtara, Negrou, Settou, Settou, Samy (b0045) 2021; 219 Dufo-López, Bernal-Agustín (b0160) 2008; 33 Markarian, Fazelpour (b0340) 2019; 191 Nematollahi, Hoghooghi, Rasti, Sedaghat (b0020) 2016; 54 Liu, Wang, Peng, Chen, Cao, Yang (b0055) 2020; 213 Fux, Benz, Guzzella (b0040) 2013; 55 Hepbasli, Tolga (b0180) 2007; 42 Meteonorm, Global Meteorological Database Version 7.3 Software and Data for Engineers, Planers and Education n.d. https://meteonorm.com/ (accessed April 29, 2021). Sawle, Gupta, Bohre (b0265) 2018; 81 Mousavi, Sadeghi, Niaki, Tavana (b0255) 2016; 43 Guo, Liu, Sun, Jin (b0025) 2018; 91 Singh, Singh, Kaushik (b0115) 2016; 128 Noorollahi, Shabbir, Siddiqi, Ilyashenko, Ahmadi (b0035) 2019; 77 Dufo-López, Lujano-Rojas, Bernal-Agustín (b0165) 2014; 115 Machairas, Tsangrassoulis, Axarli (b0210) 2014; 31 Xu, Hu, Cao, Huang, Chen, Chen (b0200) 2020; 147 Bourouni, Ben M’Barek, Al (b0230) 2011; 36 Ghorbani, Kasaeian, Toopshekan, Bahrami, Maghami (b0065) 2018; 154 Prasad, Natarajan (b0315) 2006; 31 Patel, Singal (b0145) 2019; 175 Mahmoudimehr, Shabani (b0305) 2018; 115 Eriksson, Gray (b0175) 2019; 133 Yan, Zhang, Li, Wang (b0245) 2018; 210 Anoune, Bouya, Astito, Ben (b0195) 2018; 93 Sharafi (10.1016/j.enconman.2023.117515_b0070) 2015; 83 Ehyaei (10.1016/j.enconman.2023.117515_b0280) 2019; 234 Nematollahi (10.1016/j.enconman.2023.117515_b0020) 2016; 54 Prasad (10.1016/j.enconman.2023.117515_b0315) 2006; 31 Dufo-López (10.1016/j.enconman.2023.117515_b0085) 2016; 94 Dufo-López (10.1016/j.enconman.2023.117515_b0165) 2014; 115 Huang (10.1016/j.enconman.2023.117515_b0240) 2019; 181 Mokhtara (10.1016/j.enconman.2023.117515_b0110) 2020; 221 Xu (10.1016/j.enconman.2023.117515_b0225) 2018; 163 Zomorodian (10.1016/j.enconman.2023.117515_b0345) 2013; 23 Chen (10.1016/j.enconman.2023.117515_b0235) 2018; 160 Singh (10.1016/j.enconman.2023.117515_b0150) 2016; 128 Bajpai (10.1016/j.enconman.2023.117515_b0030) 2012; 16 Kamjoo (10.1016/j.enconman.2023.117515_b0250) 2016; 74 Sawle (10.1016/j.enconman.2023.117515_b0265) 2018; 81 Guo (10.1016/j.enconman.2023.117515_b0025) 2018; 91 Dufo-López (10.1016/j.enconman.2023.117515_b0160) 2008; 33 Tahsildoost (10.1016/j.enconman.2023.117515_b0320) 2020; 30 Yan (10.1016/j.enconman.2023.117515_b0245) 2018; 210 Fodhil (10.1016/j.enconman.2023.117515_b0125) 2019; 169 Markarian (10.1016/j.enconman.2023.117515_b0340) 2019; 191 Zitzler (10.1016/j.enconman.2023.117515_b0205) 1999; 3 Xu (10.1016/j.enconman.2023.117515_b0200) 2020; 147 Patel (10.1016/j.enconman.2023.117515_b0145) 2019; 175 Delgarm (10.1016/j.enconman.2023.117515_b0260) 2016; 127 Rad (10.1016/j.enconman.2023.117515_b0170) 2020; 190 10.1016/j.enconman.2023.117515_b0325 Mahmoudimehr (10.1016/j.enconman.2023.117515_b0305) 2018; 115 Bilir (10.1016/j.enconman.2023.117515_b0335) 2018; 163 Zhou (10.1016/j.enconman.2023.117515_b0075) 2020; 218 Barakat (10.1016/j.enconman.2023.117515_b0295) 2020; 60 Hossein Jahangir (10.1016/j.enconman.2023.117515_b0100) 2022; 16 Kashefi Kaviani (10.1016/j.enconman.2023.117515_b0140) 2009; 34 Sobhani (10.1016/j.enconman.2023.117515_b0015) 2020; 224 Maisanam (10.1016/j.enconman.2023.117515_b0350) 2019; 36 Jaszczur (10.1016/j.enconman.2023.117515_b0050) 2020; 202 Liu (10.1016/j.enconman.2023.117515_b0055) 2020; 213 Farzanehkhameneh (10.1016/j.enconman.2023.117515_b0185) 2020; 133 Sharafi (10.1016/j.enconman.2023.117515_b0355) 2014; 38 Ghorbani (10.1016/j.enconman.2023.117515_b0065) 2018; 154 Hepbasli (10.1016/j.enconman.2023.117515_b0180) 2007; 42 Zaibi (10.1016/j.enconman.2023.117515_b0220) 2018; 446 An (10.1016/j.enconman.2023.117515_b0270) 2015; 7 Ren (10.1016/j.enconman.2023.117515_b0080) 2021; 215 Deb (10.1016/j.enconman.2023.117515_b0215) 2002; 6 Sanajaoba Singh (10.1016/j.enconman.2023.117515_b0130) 2018; 143 Abedi (10.1016/j.enconman.2023.117515_b0155) 2012; 16 Tezer (10.1016/j.enconman.2023.117515_b0310) 2017; 73 Fux (10.1016/j.enconman.2023.117515_b0040) 2013; 55 Sawle (10.1016/j.enconman.2023.117515_b0090) 2018; 119 Eriksson (10.1016/j.enconman.2023.117515_b0175) 2019; 133 Norouzi (10.1016/j.enconman.2023.117515_b0005) 2021; 163 Anoune (10.1016/j.enconman.2023.117515_b0195) 2018; 93 Mahian (10.1016/j.enconman.2023.117515_b0105) 2020; 211 Noorollahi (10.1016/j.enconman.2023.117515_b0035) 2019; 77 Borhanazad (10.1016/j.enconman.2023.117515_b0135) 2014; 71 Khorasaninejad (10.1016/j.enconman.2023.117515_b0285) 2014; 72 Movahediyan (10.1016/j.enconman.2023.117515_b0290) 2018; 41 Karunathilake (10.1016/j.enconman.2023.117515_b0120) 2019; 201 Bingham (10.1016/j.enconman.2023.117515_b0060) 2019; 132 Singh (10.1016/j.enconman.2023.117515_b0115) 2016; 128 Chauhan (10.1016/j.enconman.2023.117515_b0095) 2016; 59 Machairas (10.1016/j.enconman.2023.117515_b0210) 2014; 31 Tahsildoost (10.1016/j.enconman.2023.117515_b0330) 2015; 104 Mousavi (10.1016/j.enconman.2023.117515_b0255) 2016; 43 Mokhtara (10.1016/j.enconman.2023.117515_b0045) 2021; 219 Uzunoglu (10.1016/j.enconman.2023.117515_b0010) 2015; 83 Bourouni (10.1016/j.enconman.2023.117515_b0230) 2011; 36 Ganjehkaviri (10.1016/j.enconman.2023.117515_b0275) 2020; 194 Milan (10.1016/j.enconman.2023.117515_b0190) 2012; 48 Lian (10.1016/j.enconman.2023.117515_b0300) 2019; 199 |
| References_xml | – volume: 60 year: 2020 ident: b0295 article-title: Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects publication-title: Sustain Cities Soc – volume: 132 start-page: 1088 year: 2019 end-page: 1103 ident: b0060 article-title: Whole building optimization of a residential home with PV and battery storage in The Bahamas publication-title: Renew Energy – volume: 115 start-page: 238 year: 2018 end-page: 251 ident: b0305 article-title: Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran publication-title: Renew Energy – volume: 59 start-page: 388 year: 2016 end-page: 405 ident: b0095 article-title: Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India publication-title: Renew Sustain Energy Rev – volume: 210 start-page: 1151 year: 2018 end-page: 1166 ident: b0245 article-title: An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage publication-title: Appl Energy – volume: 163 start-page: 555 year: 2018 end-page: 569 ident: b0335 article-title: Modeling and performance analysis of a hybrid system for a residential application publication-title: Energy – volume: 218 year: 2020 ident: b0075 article-title: Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm publication-title: Energy Convers Manag – volume: 215 year: 2021 ident: b0080 article-title: Multi-objective optimization and evaluation of hybrid CCHP systems for different building types publication-title: Energy – volume: 191 start-page: 481 year: 2019 end-page: 496 ident: b0340 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol Energy – volume: 74 start-page: 187 year: 2016 end-page: 194 ident: b0250 article-title: Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming publication-title: Int J Electr Power Energy Syst – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0205 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans Evol Comput – volume: 43 start-page: 57 year: 2016 end-page: 72 ident: b0255 article-title: A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA, and MOPSO publication-title: Appl Soft Comput – volume: 133 start-page: 971 year: 2019 end-page: 999 ident: b0175 article-title: Optimization of renewable hybrid energy systems – A multi-objective approach publication-title: Renew Energy – volume: 42 start-page: 3747 year: 2007 end-page: 3756 ident: b0180 article-title: A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings publication-title: Build Environ – volume: 154 start-page: 581 year: 2018 end-page: 591 ident: b0065 article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability publication-title: Energy – volume: 73 start-page: 840 year: 2017 end-page: 853 ident: b0310 article-title: Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems publication-title: Renew Sustain Energy Rev – reference: Meteonorm, Global Meteorological Database Version 7.3 Software and Data for Engineers, Planers and Education n.d. https://meteonorm.com/ (accessed April 29, 2021). – volume: 119 start-page: 459 year: 2018 end-page: 472 ident: b0090 article-title: Socio-techno-economic design of hybrid renewable energy system using optimization techniques publication-title: Renew Energy – volume: 147 start-page: 1418 year: 2020 end-page: 1431 ident: b0200 article-title: Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system publication-title: Renew Energy – volume: 7 year: 2015 ident: b0270 article-title: Theories and methodology of complementary hydro/photovoltaic operation: Applications to short-term scheduling publication-title: J Renew Sustain Energy – volume: 83 start-page: 1026 year: 2015 end-page: 1042 ident: b0070 article-title: Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio publication-title: Renew Energy – volume: 16 year: 2022 ident: b0100 article-title: Techno-economic and environmental assessment of low carbon hybrid renewable electric systems for urban energy planning: Tehran-Iran publication-title: City Environ Interact – volume: 221 year: 2020 ident: b0110 article-title: Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates publication-title: Energy Convers Manag – volume: 163 start-page: 585 year: 2018 end-page: 603 ident: b0225 article-title: A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China publication-title: Energy – volume: 30 year: 2020 ident: b0320 article-title: Energy, carbon, and cost analysis of rural housing retrofit in different climates publication-title: J Build Eng – volume: 72 start-page: 680 year: 2014 end-page: 690 ident: b0285 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy – volume: 211 year: 2020 ident: b0105 article-title: Optimal sizing and performance assessment of a hybrid combined heat and power system with energy storage for residential buildings publication-title: Energy Convers Manag – volume: 127 start-page: 552 year: 2016 end-page: 560 ident: b0260 article-title: A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in Iran publication-title: Energ Buildings – volume: 115 start-page: 242 year: 2014 end-page: 253 ident: b0165 article-title: Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems publication-title: Appl Energy – volume: 104 start-page: 65 year: 2015 end-page: 72 ident: b0330 article-title: Energy retrofit techniques: An experimental study of two typical school buildings in Tehran publication-title: Energ Buildings – volume: 16 start-page: 1577 year: 2012 end-page: 1587 ident: b0155 article-title: A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 1943 year: 2006 end-page: 1954 ident: b0315 article-title: Optimization of integrated photovoltaic–wind power generation systems with battery storage publication-title: Energy – volume: 163 start-page: 300 year: 2021 end-page: 319 ident: b0005 article-title: Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran) publication-title: Renew Energy – volume: 77 start-page: 257 year: 2019 end-page: 266 ident: b0035 article-title: Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy publication-title: Geothermics – volume: 41 start-page: 1 year: 2018 end-page: 12 ident: b0290 article-title: Multi-objective optimization framework of a photovoltaic-diesel generator hybrid energy system considering operating reserve publication-title: Sustain Cities Soc – volume: 23 start-page: 41 year: 2013 end-page: 50 ident: b0345 article-title: Architectural design optimization of school buildings for reduction of energy demand in hot and dry climates of Iran publication-title: Int J Arch Eng Urban Plan – volume: 54 start-page: 1172 year: 2016 end-page: 1181 ident: b0020 article-title: Energy demands and renewable energy resources in the Middle East publication-title: Renew Sustain Energy Rev – volume: 202 year: 2020 ident: b0050 article-title: Multi-Objective optimisation of a micro-grid hybrid power system for household application publication-title: Energy – volume: 190 year: 2020 ident: b0170 article-title: Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran publication-title: Energy – volume: 169 start-page: 613 year: 2019 end-page: 624 ident: b0125 article-title: Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria publication-title: Energy – volume: 213 year: 2020 ident: b0055 article-title: Techno-economic design optimization of hybrid renewable energy applications for high-rise residential buildings publication-title: Energy Convers Manag – volume: 94 start-page: 280 year: 2016 end-page: 293 ident: b0085 article-title: Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation publication-title: Renew Energy – volume: 36 year: 2019 ident: b0350 article-title: Site-specific tailoring of an optimal design of renewable energy system for remote water supply station in Silchar, India publication-title: Sustain Energy Technol Assessments – volume: 34 start-page: 2380 year: 2009 end-page: 2390 ident: b0140 article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages publication-title: Renew Energy – volume: 48 start-page: 118 year: 2012 end-page: 127 ident: b0190 article-title: A cost optimization model for 100% renewable residential energy supply systems publication-title: Energy – volume: 83 start-page: 1026 year: 2015 end-page: 1042 ident: b0010 article-title: Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio. Renew publication-title: Energy – volume: 128 start-page: 178 year: 2016 end-page: 190 ident: b0115 article-title: Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system publication-title: Energy Convers Manag – volume: 38 start-page: 1949 year: 2014 end-page: 1963 ident: b0355 article-title: A dynamic MOPSO algorithm for multiobjective optimal design of hybrid renewable energy systems publication-title: Int J Energy Res – volume: 219 year: 2021 ident: b0045 article-title: Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria publication-title: Energy – volume: 93 start-page: 652 year: 2018 end-page: 673 ident: b0195 article-title: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review publication-title: Renew Sustain Energy Rev – volume: 175 start-page: 481 year: 2019 end-page: 504 ident: b0145 article-title: Optimal component selection of integrated renewable energy system for power generation in stand-alone applications publication-title: Energy – volume: 194 year: 2020 ident: b0275 article-title: Multi-objective particle swarm optimization of flat plate solar collector using constructal theory publication-title: Energy – volume: 201 start-page: 70 year: 2019 end-page: 89 ident: b0120 article-title: Optimal renewable energy supply choices for net-zero ready buildings: A life cycle thinking approach under uncertainty publication-title: Energ Buildings – volume: 133 year: 2020 ident: b0185 article-title: Optimization and energy-economic assessment of a geothermal heat pump system publication-title: Renew Sustain Energy Rev – volume: 143 start-page: 719 year: 2018 end-page: 731 ident: b0130 article-title: Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system publication-title: Energy – volume: 446 start-page: 94 year: 2018 end-page: 103 ident: b0220 article-title: Sizing methodology based on design of experiments for freshwater and electricity production from multi-source renewable energy systems publication-title: Desalination – volume: 36 start-page: 936 year: 2011 end-page: 950 ident: b0230 article-title: Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms publication-title: Renew Energy – volume: 160 start-page: 384 year: 2018 end-page: 395 ident: b0235 article-title: Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system publication-title: Energy Convers Manag – volume: 16 start-page: 2926 year: 2012 end-page: 2939 ident: b0030 article-title: Hybrid renewable energy systems for power generation in stand-alone applications: A review publication-title: Renew Sustain Energy Rev – volume: 128 start-page: 178 year: 2016 end-page: 190 ident: b0150 article-title: Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system publication-title: Energy Convers Manag – volume: 199 year: 2019 ident: b0300 article-title: A review on recent sizing methodologies of hybrid renewable energy systems publication-title: Energy Convers Manag – volume: 181 start-page: 80 year: 2019 end-page: 92 ident: b0240 article-title: Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system publication-title: Energy Convers Manag – volume: 71 start-page: 295 year: 2014 end-page: 306 ident: b0135 article-title: Optimization of micro-grid system using MOPSO publication-title: Renew Energy – volume: 33 start-page: 2559 year: 2008 end-page: 2572 ident: b0160 article-title: Multi-objective design of PV–wind–diesel–hydrogen–battery systems publication-title: Renew Energy – volume: 55 start-page: 438 year: 2013 end-page: 447 ident: b0040 article-title: Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study publication-title: Renew Energy – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0215 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 234 start-page: 285 year: 2019 end-page: 296 ident: b0280 article-title: Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses publication-title: J Clean Prod – volume: 91 start-page: 1121 year: 2018 end-page: 1147 ident: b0025 article-title: A review on the utilization of hybrid renewable energy publication-title: Renew Sustain Energy Rev – volume: 81 start-page: 2217 year: 2018 end-page: 2235 ident: b0265 article-title: Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 101 year: 2014 end-page: 112 ident: b0210 article-title: Algorithms for optimization of building design: A review publication-title: Renew Sustain Energy Rev – volume: 224 year: 2020 ident: b0015 article-title: Optimization of the renewable energy system for nearly zero energy buildings: A future-oriented approach publication-title: Energy Convers Manag – volume: 30 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0320 article-title: Energy, carbon, and cost analysis of rural housing retrofit in different climates publication-title: J Build Eng – volume: 169 start-page: 613 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0125 article-title: Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria publication-title: Energy doi: 10.1016/j.energy.2018.12.049 – volume: 55 start-page: 438 year: 2013 ident: 10.1016/j.enconman.2023.117515_b0040 article-title: Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study publication-title: Renew Energy doi: 10.1016/j.renene.2012.12.034 – volume: 31 start-page: 1943 year: 2006 ident: 10.1016/j.enconman.2023.117515_b0315 article-title: Optimization of integrated photovoltaic–wind power generation systems with battery storage publication-title: Energy doi: 10.1016/j.energy.2005.10.032 – volume: 77 start-page: 257 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0035 article-title: Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy publication-title: Geothermics doi: 10.1016/j.geothermics.2018.10.004 – volume: 132 start-page: 1088 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0060 article-title: Whole building optimization of a residential home with PV and battery storage in The Bahamas publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.034 – volume: 7 year: 2015 ident: 10.1016/j.enconman.2023.117515_b0270 article-title: Theories and methodology of complementary hydro/photovoltaic operation: Applications to short-term scheduling publication-title: J Renew Sustain Energy doi: 10.1063/1.4939056 – volume: 36 start-page: 936 year: 2011 ident: 10.1016/j.enconman.2023.117515_b0230 article-title: Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms publication-title: Renew Energy doi: 10.1016/j.renene.2010.08.039 – volume: 91 start-page: 1121 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0025 article-title: A review on the utilization of hybrid renewable energy publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.105 – volume: 128 start-page: 178 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0150 article-title: Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.046 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.enconman.2023.117515_b0205 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 202 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0050 article-title: Multi-Objective optimisation of a micro-grid hybrid power system for household application publication-title: Energy doi: 10.1016/j.energy.2020.117738 – volume: 133 start-page: 971 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0175 article-title: Optimization of renewable hybrid energy systems – A multi-objective approach publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.053 – volume: 210 start-page: 1151 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0245 article-title: An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.005 – volume: 83 start-page: 1026 year: 2015 ident: 10.1016/j.enconman.2023.117515_b0070 article-title: Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio publication-title: Renew Energy doi: 10.1016/j.renene.2015.05.022 – volume: 234 start-page: 285 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0280 article-title: Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.06.210 – volume: 59 start-page: 388 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0095 article-title: Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.290 – volume: 163 start-page: 585 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0225 article-title: A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China publication-title: Energy doi: 10.1016/j.energy.2018.08.152 – volume: 143 start-page: 719 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0130 article-title: Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system publication-title: Energy doi: 10.1016/j.energy.2017.11.053 – volume: 48 start-page: 118 year: 2012 ident: 10.1016/j.enconman.2023.117515_b0190 article-title: A cost optimization model for 100% renewable residential energy supply systems publication-title: Energy doi: 10.1016/j.energy.2012.05.034 – volume: 133 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0185 article-title: Optimization and energy-economic assessment of a geothermal heat pump system publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110282 – volume: 199 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0300 article-title: A review on recent sizing methodologies of hybrid renewable energy systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112027 – volume: 190 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0170 article-title: Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran publication-title: Energy doi: 10.1016/j.energy.2019.116421 – volume: 201 start-page: 70 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0120 article-title: Optimal renewable energy supply choices for net-zero ready buildings: A life cycle thinking approach under uncertainty publication-title: Energ Buildings doi: 10.1016/j.enbuild.2019.07.030 – volume: 191 start-page: 481 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0340 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol Energy doi: 10.1016/j.solener.2019.09.003 – volume: 211 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0105 article-title: Optimal sizing and performance assessment of a hybrid combined heat and power system with energy storage for residential buildings publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112751 – volume: 16 start-page: 1577 year: 2012 ident: 10.1016/j.enconman.2023.117515_b0155 article-title: A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.11.030 – volume: 194 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0275 article-title: Multi-objective particle swarm optimization of flat plate solar collector using constructal theory publication-title: Energy doi: 10.1016/j.energy.2019.116846 – volume: 33 start-page: 2559 year: 2008 ident: 10.1016/j.enconman.2023.117515_b0160 article-title: Multi-objective design of PV–wind–diesel–hydrogen–battery systems publication-title: Renew Energy doi: 10.1016/j.renene.2008.02.027 – volume: 221 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0110 article-title: Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113192 – volume: 175 start-page: 481 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0145 article-title: Optimal component selection of integrated renewable energy system for power generation in stand-alone applications publication-title: Energy doi: 10.1016/j.energy.2019.03.055 – volume: 36 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0350 article-title: Site-specific tailoring of an optimal design of renewable energy system for remote water supply station in Silchar, India publication-title: Sustain Energy Technol Assessments – volume: 154 start-page: 581 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0065 article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability publication-title: Energy doi: 10.1016/j.energy.2017.12.057 – ident: 10.1016/j.enconman.2023.117515_b0325 – volume: 72 start-page: 680 year: 2014 ident: 10.1016/j.enconman.2023.117515_b0285 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.095 – volume: 119 start-page: 459 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0090 article-title: Socio-techno-economic design of hybrid renewable energy system using optimization techniques publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.058 – volume: 181 start-page: 80 year: 2019 ident: 10.1016/j.enconman.2023.117515_b0240 article-title: Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.11.079 – volume: 38 start-page: 1949 year: 2014 ident: 10.1016/j.enconman.2023.117515_b0355 article-title: A dynamic MOPSO algorithm for multiobjective optimal design of hybrid renewable energy systems publication-title: Int J Energy Res doi: 10.1002/er.3202 – volume: 218 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0075 article-title: Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113017 – volume: 224 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0015 article-title: Optimization of the renewable energy system for nearly zero energy buildings: A future-oriented approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113370 – volume: 127 start-page: 552 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0260 article-title: A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in Iran publication-title: Energ Buildings doi: 10.1016/j.enbuild.2016.05.052 – volume: 60 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0295 article-title: Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102178 – volume: 43 start-page: 57 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0255 article-title: A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA, and MOPSO publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.014 – volume: 81 start-page: 2217 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0265 article-title: Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.033 – volume: 16 year: 2022 ident: 10.1016/j.enconman.2023.117515_b0100 article-title: Techno-economic and environmental assessment of low carbon hybrid renewable electric systems for urban energy planning: Tehran-Iran publication-title: City Environ Interact doi: 10.1016/j.cacint.2022.100085 – volume: 42 start-page: 3747 year: 2007 ident: 10.1016/j.enconman.2023.117515_b0180 article-title: A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings publication-title: Build Environ doi: 10.1016/j.buildenv.2006.09.003 – volume: 71 start-page: 295 year: 2014 ident: 10.1016/j.enconman.2023.117515_b0135 article-title: Optimization of micro-grid system using MOPSO publication-title: Renew Energy doi: 10.1016/j.renene.2014.05.006 – volume: 73 start-page: 840 year: 2017 ident: 10.1016/j.enconman.2023.117515_b0310 article-title: Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.118 – volume: 147 start-page: 1418 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0200 article-title: Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system publication-title: Renew Energy doi: 10.1016/j.renene.2019.09.099 – volume: 74 start-page: 187 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0250 article-title: Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.07.007 – volume: 219 year: 2021 ident: 10.1016/j.enconman.2023.117515_b0045 article-title: Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria publication-title: Energy doi: 10.1016/j.energy.2020.119605 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.enconman.2023.117515_b0215 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 93 start-page: 652 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0195 article-title: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.05.032 – volume: 16 start-page: 2926 year: 2012 ident: 10.1016/j.enconman.2023.117515_b0030 article-title: Hybrid renewable energy systems for power generation in stand-alone applications: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.009 – volume: 163 start-page: 555 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0335 article-title: Modeling and performance analysis of a hybrid system for a residential application publication-title: Energy doi: 10.1016/j.energy.2018.08.089 – volume: 115 start-page: 242 year: 2014 ident: 10.1016/j.enconman.2023.117515_b0165 article-title: Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.021 – volume: 446 start-page: 94 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0220 article-title: Sizing methodology based on design of experiments for freshwater and electricity production from multi-source renewable energy systems publication-title: Desalination doi: 10.1016/j.desal.2018.08.008 – volume: 213 year: 2020 ident: 10.1016/j.enconman.2023.117515_b0055 article-title: Techno-economic design optimization of hybrid renewable energy applications for high-rise residential buildings publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112868 – volume: 160 start-page: 384 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0235 article-title: Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.01.050 – volume: 215 year: 2021 ident: 10.1016/j.enconman.2023.117515_b0080 article-title: Multi-objective optimization and evaluation of hybrid CCHP systems for different building types publication-title: Energy doi: 10.1016/j.energy.2020.119096 – volume: 34 start-page: 2380 year: 2009 ident: 10.1016/j.enconman.2023.117515_b0140 article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages publication-title: Renew Energy doi: 10.1016/j.renene.2009.03.020 – volume: 41 start-page: 1 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0290 article-title: Multi-objective optimization framework of a photovoltaic-diesel generator hybrid energy system considering operating reserve publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.05.002 – volume: 54 start-page: 1172 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0020 article-title: Energy demands and renewable energy resources in the Middle East publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.058 – volume: 128 start-page: 178 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0115 article-title: Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.046 – volume: 94 start-page: 280 year: 2016 ident: 10.1016/j.enconman.2023.117515_b0085 article-title: Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.065 – volume: 104 start-page: 65 year: 2015 ident: 10.1016/j.enconman.2023.117515_b0330 article-title: Energy retrofit techniques: An experimental study of two typical school buildings in Tehran publication-title: Energ Buildings doi: 10.1016/j.enbuild.2015.06.079 – volume: 31 start-page: 101 year: 2014 ident: 10.1016/j.enconman.2023.117515_b0210 article-title: Algorithms for optimization of building design: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.11.036 – volume: 23 start-page: 41 year: 2013 ident: 10.1016/j.enconman.2023.117515_b0345 article-title: Architectural design optimization of school buildings for reduction of energy demand in hot and dry climates of Iran publication-title: Int J Arch Eng Urban Plan – volume: 163 start-page: 300 year: 2021 ident: 10.1016/j.enconman.2023.117515_b0005 article-title: Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran) publication-title: Renew Energy doi: 10.1016/j.renene.2020.08.051 – volume: 83 start-page: 1026 year: 2015 ident: 10.1016/j.enconman.2023.117515_b0010 article-title: Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio. Renew publication-title: Energy – volume: 115 start-page: 238 year: 2018 ident: 10.1016/j.enconman.2023.117515_b0305 article-title: Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran publication-title: Renew Energy doi: 10.1016/j.renene.2017.08.054 |
| SSID | ssj0003506 |
| Score | 2.668831 |
| Snippet | •Economic, technical, environmental, and social objective functions are considered in the optimization.•The levelized cost of energy in selected solutions is... Multi-objective optimization of a hybrid system is investigated to supply an autonomous residential building. The proposed system consists of photovoltaic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117515 |
| SubjectTerms | algorithms batteries Building energy consumption carbon dioxide decision making energy conversion environmental assessment Evolutionary algorithms fuel cells generators (equipment) Genetic algorithm heat pumps human development Multi-objective optimization natural gas probability Renewable energy renewable energy sources residential housing solar collectors wind turbines |
| Title | Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms |
| URI | https://dx.doi.org/10.1016/j.enconman.2023.117515 https://www.proquest.com/docview/3154168641 |
| Volume | 294 |
| WOSCitedRecordID | wos001070489400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjgd4QHyKMUBG4i1yIYmT2I_VNFgn6CY6pL5FduKsqZpk6sc23uH_5mwnadhAAyFerCjyR9r75ey73O8OoTdepqSEnZy840IRmqqI8CSU0GR-ykUW-pkhCn-MxmM2nfKTXu97w4W5WERlya6u-Pl_FTXcA2Fr6uxfiLudFG7ANQgdWhA7tH8keEOpJZWcW1XmVKAUipptadmQs6-apuXoZJaXhjmlLAHQZnV2VrrQp2E_Ceijy3mWa-1Xl3UFbWdj_AvjyYchGY1spMbxyeTYEYuzapmvZ3UC9Mbfbyc34e3GN2dGFDfCbvY1E8zWGHY-iyJvUXsI-7jKS-dIaOd2biD2qZqJohBp12nhmfA3S9u0nrSGTbMNXTLOTR4Sxm054oGyCplFnGi-bldje7Yu8g3tbx0R84FOAVrC7xjopfVn6aBe--fM2hO9oF4PzDCw7DRRb8eLAs76aGc4OpgetVu6H5gire0Ddqjmv17td6eca_u9OcScPkD3a-sDDy1qHqKeKh-he52clI_Rt2v4wV384CrDAlv84BY_2OIHW_zgFj_QtYMf3OAHG_zgGj8Y0IANfvAWP0_Ql_cHp_uHpC7VQRKfBmsSJGCpRSn1RJrwVDGWMDdTiSc5S71M0NCjmQRbXnlCZIkMXSkSVyrhgzWbBb7nP0X9sirVM4SppKFwmVAwMwVtwSiPVBSk0M0P4fC8i4Lmr42TOo-9LqeyiJuAxXnciCTWIomtSHbR23bcuc3kcusI3kgurs-j9pwZA-BuHfu6EXUMClt_hROlqjar2AejxQ1ZSN3n_zD_Hrq7fa9eoP56uVEv0Z3kYp2vlq9q_P4AzE3G3A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+a+hybrid+renewable+energy+system+supplying+a+residential+building+using+NSGA-II+and+MOPSO+algorithms&rft.jtitle=Energy+conversion+and+management&rft.au=Cheraghi%2C+Ramin&rft.au=Hossein+Jahangir%2C+Mohammad&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=294&rft_id=info:doi/10.1016%2Fj.enconman.2023.117515&rft.externalDocID=S0196890423008610 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |