Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection
•The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The constr...
Uložené v:
| Vydané v: | Applied energy Ročník 311; s. 118682 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2022
|
| Predmet: | |
| ISSN: | 0306-2619 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!