Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection

•The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The constr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 311; s. 118682
Hlavní autori: Ping, Xu, Yang, Fubin, Zhang, Hongguang, Xing, Chengda, Zhang, Wujie, Wang, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2022
Predmet:
ISSN:0306-2619
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10−11 and 5.1 × 10−3%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system.
AbstractList The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10⁻¹¹ and 5.1 × 10⁻³%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system.
•The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10−11 and 5.1 × 10−3%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system.
ArticleNumber 118682
Author Zhang, Hongguang
Ping, Xu
Xing, Chengda
Yang, Fubin
Zhang, Wujie
Wang, Yan
Author_xml – sequence: 1
  givenname: Xu
  surname: Ping
  fullname: Ping, Xu
– sequence: 2
  givenname: Fubin
  surname: Yang
  fullname: Yang, Fubin
  email: yangfubin@bjut.edu.cn
– sequence: 3
  givenname: Hongguang
  surname: Zhang
  fullname: Zhang, Hongguang
– sequence: 4
  givenname: Chengda
  surname: Xing
  fullname: Xing, Chengda
– sequence: 5
  givenname: Wujie
  surname: Zhang
  fullname: Zhang, Wujie
– sequence: 6
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
BookMark eNqFkc9O3DAQxn2gUmHhFSofe8nWf5KQrXooQrQgIVWq4GxN7MnirWMH21lpX6jPWYelFy7IhxmP_Ps8M98ZOfHBIyGfOFtzxtsvuzVM6DFuD2vBhFhz3rWdOCGnTLK2Ei3ffCRnKe0YY4ILdkr-3uzBzZBt8DQM9OnQR2voECJqSNn6LR0xPwWTlhoNcQveavob_B_rkeqDdviVPvo0Txj3NqGhDiH6AlY9LNcwZ2cx0ohjKF9R8IZOELMt-TjnuQTri_b40sMrNCDkOSJN6FAv9XPyYQCX8OI1rsjjj5uH69vq_tfPu-ur-0rLuslV03TCYL_hvOGdQd3UbNPXRiMbagN1B6IfDIiSmY1kQppaNsNlC1r2nWQc5Yp8PupOMTzPmLIabdLoHHgMc1LikndCyqacFfl2fKpjSCnioLTNL0PkCNYpztRiidqp_5aoxRJ1tKTg7Rt8inaEeHgf_H4EsexhX1arkrboNRpbTMvKBPuexD-HkLQ2
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106744
crossref_primary_10_1109_ACCESS_2023_3307412
crossref_primary_10_1016_j_applthermaleng_2023_121677
crossref_primary_10_1016_j_applthermaleng_2023_120455
crossref_primary_10_1016_j_rser_2023_113998
crossref_primary_10_1016_j_jobe_2024_111607
crossref_primary_10_1016_j_applthermaleng_2023_120904
crossref_primary_10_1016_j_engappai_2023_106979
crossref_primary_10_1016_j_rineng_2025_106068
crossref_primary_10_3390_en15217832
crossref_primary_10_1007_s11269_023_03613_x
crossref_primary_10_1016_j_energy_2022_126311
crossref_primary_10_1016_j_energy_2022_125551
crossref_primary_10_1016_j_energy_2022_125672
crossref_primary_10_1016_j_conbuildmat_2024_137840
crossref_primary_10_1016_j_applthermaleng_2023_121256
crossref_primary_10_1016_j_apenergy_2023_121569
crossref_primary_10_1016_j_geothermics_2024_103002
crossref_primary_10_1109_TTE_2023_3291818
crossref_primary_10_3390_a18050273
crossref_primary_10_1016_j_energy_2023_127519
crossref_primary_10_1016_j_jobe_2024_109418
Cites_doi 10.1016/j.psep.2021.11.029
10.1016/j.compeleceng.2021.107608
10.1016/j.applthermaleng.2017.08.128
10.1016/j.applthermaleng.2021.116980
10.1016/j.measurement.2021.110064
10.1016/j.enconman.2020.113738
10.1016/j.apenergy.2018.09.025
10.1016/j.applthermaleng.2020.116048
10.1016/j.asoc.2021.107354
10.1016/j.enconman.2020.112700
10.1016/j.energy.2021.121508
10.1016/j.ins.2021.10.075
10.1016/j.applthermaleng.2021.117032
10.1016/j.energy.2020.118731
10.1016/j.ins.2021.04.066
10.1016/j.applthermaleng.2021.117188
10.1016/j.energy.2021.121259
10.1109/TII.2018.2867373
10.1016/j.enconman.2020.113552
10.1016/j.apenergy.2020.114514
10.1016/j.patcog.2021.108115
10.1016/j.energy.2014.06.088
10.1016/j.applthermaleng.2019.114861
10.1016/j.energy.2018.04.072
10.1016/j.measurement.2020.107738
10.1016/j.energy.2019.02.124
10.1016/j.energy.2020.118380
10.1016/j.energy.2021.121412
10.1016/j.enconman.2016.11.040
10.1016/j.ins.2021.06.033
10.1016/j.isatra.2020.05.029
10.1016/j.apenergy.2019.114384
10.1016/j.enconman.2021.113949
10.1016/j.apenergy.2019.01.035
10.1016/j.energy.2014.09.034
10.1016/j.envres.2020.109604
10.1016/j.conbuildmat.2020.121396
10.1016/j.fss.2008.12.010
10.1016/j.neucom.2018.10.052
10.1016/j.egyai.2020.100011
10.1016/j.energy.2017.12.094
10.1016/j.energy.2020.118196
10.1016/j.enconman.2020.113011
10.1016/j.enconman.2018.10.086
10.1016/j.enconman.2020.113204
10.1016/j.engappai.2017.09.021
10.1016/j.compstruc.2020.106358
10.1016/j.conengprac.2021.105038
10.1016/j.cogsys.2018.01.006
10.1016/j.apor.2021.102681
10.1109/TSG.2018.2861221
10.1016/j.ijhydene.2020.08.160
10.1016/j.geothermics.2019.03.003
10.1016/j.tsep.2019.100381
10.1016/j.ijhydene.2020.03.235
10.1016/j.applthermaleng.2018.12.084
10.1016/j.enconman.2020.112483
10.1016/j.energy.2021.120007
10.1016/j.enconman.2020.113175
10.1016/j.seta.2020.100898
10.1016/j.enconman.2018.02.062
10.1016/j.eswa.2021.115561
10.1016/j.enconman.2018.12.062
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.118682
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2022_118682
S0306261922001477
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-5582deb911518dec5409b4dce0f4da48a2bfda2a48d93023d435f76ac3b8301e3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776716700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Nov 09 11:31:55 EST 2025
Tue Nov 18 22:15:34 EST 2025
Sat Nov 29 06:09:37 EST 2025
Sun Apr 06 06:53:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Partial mutual information
Outlier removal
Feature selection
Organic Rankine cycle
Unsupervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-5582deb911518dec5409b4dce0f4da48a2bfda2a48d93023d435f76ac3b8301e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718233535
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718233535
crossref_citationtrail_10_1016_j_apenergy_2022_118682
crossref_primary_10_1016_j_apenergy_2022_118682
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118682
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qin, Hua, Cao (b0090) 2019; 10
Zhao, Deng, Zhao, Xu, Wang, Nie (b0120) 2020; 1
Xu, Zhang, Yang, Tong, Yang, Yan (b0010) 2021; 234
Yang, Cho, Zhang, Zhang, Wu (b0065) 2018; 164
Looney (b0290) 2009; 160
Ziviani, James, Accorsi, Braun, Groll (b0050) 2018; 230
Özdenizci, Erdoğmuş (b0270) 2021; 570
Emadi, Chitgar, Oyewunmi, Markides (b0205) 2020; 261
Ping, Yao, Zhang, Yang (b0140) 2021; 193
Alirahmi, Rostami, Farajollahi (b0210) 2020; 45
Hua, Qin, Hao, Cao (b0095) 2019; 15
Cai, Deng (b0315) 2020; 105
Liu, Han, Dong, Yang, Qiao (b0310) 2022; 121
Tao, Chang, Li, Wang, Liu (b0320) 2019; 329
Zhang, Srivastava, Sharma, Eachempati (b0100) 2021; 184
Kim, Kim, Kim (b0190) 2019; 149
Mensi, Bicego (b0215) 2021; 120
Puggini, McLoone (b0255) 2018; 67
Su, Zhao, Deng (b0085) 2017; 132
Fatigati, Di Bartolomeo, Di Battista, Cipollone (b0020) 2021; 193
Huster, Schweidtmann, Mitsos (b0125) 2020; 212
Zhang, Wu, Xia, Ma, Ji, Liu (b0200) 2014; 77
He, Zheng (b0280) 2018; 154
Neto, Sotomonte, Coronado (b0005) 2021; 195
Hu, Yang, Li, Duan (b0170) 2021; 229
Feng, Liu, Wang, He, Hung, Wang (b0185) 2020; 226
Gabbay, Shapira, Rokach (b0225) 2021; 574
Yang, Yang, Chu, Liu, Yang, Duan (b0035) 2020; 217
Hashmi, Kene, Kotambkar, Matte, Keskar (b0325) 2022; 97
Anastasovski, Rasković, Guzović (b0040) 2020; 221
Jang, Lee (b0145) 2019; 182
Mensi, Bicego (b0265) 2021; 120
Ping, Yao, Zhang, Yang (b0025) 2021; 236
Karczmarek, Kiersztyn, Pedrycz, Czerwiński (b0220) 2021; 106
Zhang, Li, Lang, Miao (b0305) 2020; 158
Han, Song, Liu, Geng, Ma, Xu (b0295) 2022; 157
Peng, Su, Zhou, Zhao (b0330) 2020; 221
Wang, Chen, Guan, Gong, Zhang (b0235) 2021; 112
Alirahmi, Assareh (b0180) 2020; 45
Karczmarek, Kiersztyn, Pedrycz, Czerwiński (b0260) 2021; 106
Lu, Roskilly, Yu, Tang, Jiang, Smallbone (b0030) 2017; 127
Dong, Zhang, He, Deng, Yu, Yao (b0135) 2018; 144
Wang, Dai, Wu, Zhao, Wang, Hu (b0160) 2020; 210
Prajapati, Patel (b0165) 2020; 17
Zhou, Peng (b0285) 2020; 241
Ping, Yang, Zhang, Zhang, Zhang, Song (b0110) 2021; 182
Feng, Du, Shreka, Zhu, Zhou, Zhang (b0015) 2020; 206
Jin, Gao, Wang (b0150) 2020; 207
Khosravi, Syri, Zhao, Assad (b0195) 2019; 80
Tokovarov, Karczmarek (b0250) 2022; 584
Zhi, Hu, Chen, Zhao (b0055) 2019; 180
Lesouple, Baudoin, Spigai, Tourneret (b0245) 2021; 149
Brown, Brignoli, Daubman (b0080) 2014; 73
Alsini, Almakrab, Ibrahim, Ma (b0230) 2021; 270
Wang, Deng, Zhao, Zhao, Lin, Chen (b0070) 2020; 210
Lee, Kwon, Kim, Jo (b0155) 2021; 234
Ping, Yang, Zhang, Zhang, Song, Yang (b0045) 2020; 42
Luo, Wang, Liang, Qi, Su, Yang (b0075) 2019; 174
Ping, Yang, Zhang, Zhang, Zhang, Song (b0175) 2021; 222
Alirahmi, Mousavi, Ahmadi, Arabkoohsar (b0105) 2021; 236
Ni, Wang, Wu, Wang, Tao, Zhang (b0275) 2020; 186
Palagi, Sciubba, Tocci (b0130) 2019; 237
Ahn, Kim, Cho, Kim (b0115) 2020; 168
Wang, Jiang, Deng, Geng (b0240) 2021; 185
Lu, Meng, Yan, Gao (b0300) 2019; 53
Xu, Rathod, Yebi, Filipi (b0060) 2020; 262
Puggini (10.1016/j.apenergy.2022.118682_b0255) 2018; 67
Tao (10.1016/j.apenergy.2022.118682_b0320) 2019; 329
Yang (10.1016/j.apenergy.2022.118682_b0065) 2018; 164
Zhang (10.1016/j.apenergy.2022.118682_b0100) 2021; 184
Emadi (10.1016/j.apenergy.2022.118682_b0205) 2020; 261
Jin (10.1016/j.apenergy.2022.118682_b0150) 2020; 207
Hashmi (10.1016/j.apenergy.2022.118682_b0325) 2022; 97
Feng (10.1016/j.apenergy.2022.118682_b0015) 2020; 206
Zhang (10.1016/j.apenergy.2022.118682_b0200) 2014; 77
Zhao (10.1016/j.apenergy.2022.118682_b0120) 2020; 1
Xu (10.1016/j.apenergy.2022.118682_b0010) 2021; 234
Su (10.1016/j.apenergy.2022.118682_b0085) 2017; 132
Ahn (10.1016/j.apenergy.2022.118682_b0115) 2020; 168
Hu (10.1016/j.apenergy.2022.118682_b0170) 2021; 229
Han (10.1016/j.apenergy.2022.118682_b0295) 2022; 157
Huster (10.1016/j.apenergy.2022.118682_b0125) 2020; 212
Palagi (10.1016/j.apenergy.2022.118682_b0130) 2019; 237
Mensi (10.1016/j.apenergy.2022.118682_b0215) 2021; 120
Lu (10.1016/j.apenergy.2022.118682_b0300) 2019; 53
Ping (10.1016/j.apenergy.2022.118682_b0140) 2021; 193
Neto (10.1016/j.apenergy.2022.118682_b0005) 2021; 195
Cai (10.1016/j.apenergy.2022.118682_b0315) 2020; 105
Brown (10.1016/j.apenergy.2022.118682_b0080) 2014; 73
Ni (10.1016/j.apenergy.2022.118682_b0275) 2020; 186
Alirahmi (10.1016/j.apenergy.2022.118682_b0180) 2020; 45
Alirahmi (10.1016/j.apenergy.2022.118682_b0210) 2020; 45
Mensi (10.1016/j.apenergy.2022.118682_b0265) 2021; 120
Hua (10.1016/j.apenergy.2022.118682_b0095) 2019; 15
Özdenizci (10.1016/j.apenergy.2022.118682_b0270) 2021; 570
Qin (10.1016/j.apenergy.2022.118682_b0090) 2019; 10
Zhi (10.1016/j.apenergy.2022.118682_b0055) 2019; 180
Gabbay (10.1016/j.apenergy.2022.118682_b0225) 2021; 574
Xu (10.1016/j.apenergy.2022.118682_b0060) 2020; 262
Zhou (10.1016/j.apenergy.2022.118682_b0285) 2020; 241
Alsini (10.1016/j.apenergy.2022.118682_b0230) 2021; 270
Ziviani (10.1016/j.apenergy.2022.118682_b0050) 2018; 230
Kim (10.1016/j.apenergy.2022.118682_b0190) 2019; 149
Tokovarov (10.1016/j.apenergy.2022.118682_b0250) 2022; 584
Wang (10.1016/j.apenergy.2022.118682_b0240) 2021; 185
Peng (10.1016/j.apenergy.2022.118682_b0330) 2020; 221
Yang (10.1016/j.apenergy.2022.118682_b0035) 2020; 217
Jang (10.1016/j.apenergy.2022.118682_b0145) 2019; 182
Wang (10.1016/j.apenergy.2022.118682_b0070) 2020; 210
Luo (10.1016/j.apenergy.2022.118682_b0075) 2019; 174
Lee (10.1016/j.apenergy.2022.118682_b0155) 2021; 234
Liu (10.1016/j.apenergy.2022.118682_b0310) 2022; 121
Prajapati (10.1016/j.apenergy.2022.118682_b0165) 2020; 17
Alirahmi (10.1016/j.apenergy.2022.118682_b0105) 2021; 236
Fatigati (10.1016/j.apenergy.2022.118682_b0020) 2021; 193
Wang (10.1016/j.apenergy.2022.118682_b0235) 2021; 112
Lu (10.1016/j.apenergy.2022.118682_b0030) 2017; 127
Karczmarek (10.1016/j.apenergy.2022.118682_b0260) 2021; 106
Looney (10.1016/j.apenergy.2022.118682_b0290) 2009; 160
Ping (10.1016/j.apenergy.2022.118682_b0175) 2021; 222
Feng (10.1016/j.apenergy.2022.118682_b0185) 2020; 226
Lesouple (10.1016/j.apenergy.2022.118682_b0245) 2021; 149
He (10.1016/j.apenergy.2022.118682_b0280) 2018; 154
Anastasovski (10.1016/j.apenergy.2022.118682_b0040) 2020; 221
Zhang (10.1016/j.apenergy.2022.118682_b0305) 2020; 158
Wang (10.1016/j.apenergy.2022.118682_b0160) 2020; 210
Khosravi (10.1016/j.apenergy.2022.118682_b0195) 2019; 80
Dong (10.1016/j.apenergy.2022.118682_b0135) 2018; 144
Karczmarek (10.1016/j.apenergy.2022.118682_b0220) 2021; 106
Ping (10.1016/j.apenergy.2022.118682_b0110) 2021; 182
Ping (10.1016/j.apenergy.2022.118682_b0025) 2021; 236
Ping (10.1016/j.apenergy.2022.118682_b0045) 2020; 42
References_xml – volume: 168
  start-page: 114861
  year: 2020
  ident: b0115
  article-title: A quadruple power generation system for very high efficiency and its performance optimization using an artificial intelligence method
  publication-title: Appl Therm Eng
– volume: 570
  start-page: 298
  year: 2021
  end-page: 305
  ident: b0270
  article-title: Stochastic mutual information gradient estimation for dimensionality reduction networks
  publication-title: Inf Sci
– volume: 154
  start-page: 143
  year: 2018
  end-page: 156
  ident: b0280
  article-title: Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel Function
  publication-title: Energy
– volume: 226
  start-page: 113552
  year: 2020
  ident: b0185
  article-title: Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network
  publication-title: Energy Convers Manage
– volume: 127
  start-page: 1252
  year: 2017
  end-page: 1266
  ident: b0030
  article-title: Parametric study for small scale engine coolant and exhaust heat recovery system using different Organic Rankine cycle layouts
  publication-title: Appl Therm Eng
– volume: 212
  start-page: 118731
  year: 2020
  ident: b0125
  article-title: Globally optimal working fluid mixture composition for geothermal power cycles
  publication-title: Energy
– volume: 121
  start-page: 105038
  year: 2022
  ident: b0310
  article-title: Intelligent decision method of sludge bulking using recursive kernel principal component analysis and Bayesian network
  publication-title: Control Eng Pract
– volume: 234
  start-page: 113949
  year: 2021
  ident: b0010
  article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air
  publication-title: Energy Convers Manage
– volume: 180
  start-page: 44
  year: 2019
  end-page: 59
  ident: b0055
  article-title: Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery
  publication-title: Energy Convers Manage
– volume: 217
  start-page: 113011
  year: 2020
  ident: b0035
  article-title: Thermodynamic performance limits of the organic Rankine cycle: Working fluid parameterization based on corresponding states modeling
  publication-title: Energy Convers Manage
– volume: 193
  start-page: 116980
  year: 2021
  ident: b0140
  article-title: Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery
  publication-title: Appl Therm Eng
– volume: 261
  start-page: 114384
  year: 2020
  ident: b0205
  article-title: Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery
  publication-title: Appl Energy
– volume: 80
  start-page: 138
  year: 2019
  end-page: 154
  ident: b0195
  article-title: An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system
  publication-title: Geothermics
– volume: 237
  start-page: 210
  year: 2019
  end-page: 226
  ident: b0130
  article-title: A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications
  publication-title: Appl Energy
– volume: 45
  start-page: 31555
  year: 2020
  end-page: 31573
  ident: b0180
  article-title: Energy, exergy, and exergoeconomics (3E) analysis and multi-objective optimization of a multi-generation energy system for day and night time power generation - Case study: Dezful city
  publication-title: Int J Hydrogen Energy
– volume: 241
  start-page: 106358
  year: 2020
  ident: b0285
  article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
  publication-title: Comput Struct
– volume: 221
  start-page: 113175
  year: 2020
  ident: b0040
  article-title: A review of heat integration approaches for organic rankine cycle with waste heat in production processes
  publication-title: Energy Convers Manage
– volume: 10
  start-page: 4467
  year: 2019
  end-page: 4475
  ident: b0090
  article-title: Stochastic Optimal Control Scheme for Battery Lifetime Extension in Islanded Microgrid via a Novel Modeling Approach
  publication-title: IEEE Trans Smart Grid
– volume: 106
  start-page: 107354
  year: 2021
  ident: b0260
  article-title: Fuzzy C-Means-based Isolation Forest
  publication-title: Appl Soft Comput
– volume: 221
  start-page: 113204
  year: 2020
  ident: b0330
  article-title: How to evaluate the performance of sub-critical Organic Rankine Cycle from key properties of working fluids by group contribution methods?
  publication-title: Energy Convers Manage
– volume: 144
  start-page: 851
  year: 2018
  end-page: 864
  ident: b0135
  article-title: Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system
  publication-title: Energy
– volume: 120
  start-page: 108115
  year: 2021
  ident: b0215
  article-title: Enhanced anomaly scores for isolation forests
  publication-title: Pattern Recogn
– volume: 195
  start-page: 117188
  year: 2021
  ident: b0005
  article-title: Off-design model of an ORC system for waste heat recovery of an internal combustion engine
  publication-title: Appl Therm Eng
– volume: 132
  start-page: 307
  year: 2017
  end-page: 315
  ident: b0085
  article-title: Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method
  publication-title: Energy Convers Manage
– volume: 105
  start-page: 210
  year: 2020
  end-page: 220
  ident: b0315
  article-title: Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis
  publication-title: ISA Trans
– volume: 174
  start-page: 122
  year: 2019
  end-page: 137
  ident: b0075
  article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle
  publication-title: Energy
– volume: 185
  start-page: 110064
  year: 2021
  ident: b0240
  article-title: A new method for fault detection of aero-engine based on isolation forest
  publication-title: Measurement
– volume: 149
  start-page: 633
  year: 2019
  end-page: 643
  ident: b0190
  article-title: Experiment on radial inflow turbines and performance prediction using deep neural network for the organic Rankine cycle
  publication-title: Appl Therm Eng
– volume: 193
  start-page: 117032
  year: 2021
  ident: b0020
  article-title: Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit
  publication-title: Appl Therm Eng
– volume: 164
  start-page: 15
  year: 2018
  end-page: 26
  ident: b0065
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers Manage
– volume: 574
  start-page: 473
  year: 2021
  end-page: 489
  ident: b0225
  article-title: Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning
  publication-title: Inf Sci
– volume: 160
  start-page: 1868
  year: 2009
  end-page: 1885
  ident: b0290
  article-title: Fuzzy connectivity clustering with radial basis kernel functions
  publication-title: Fuzzy Sets Syst
– volume: 149
  start-page: 109
  year: 2021
  end-page: 119
  ident: b0245
  article-title: Generalized isolation forest for anomaly detection
  publication-title: Generalized isolation forest for anomaly detection
– volume: 206
  start-page: 112483
  year: 2020
  ident: b0015
  article-title: Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine
  publication-title: Energy Convers Manage
– volume: 45
  start-page: 15047
  year: 2020
  end-page: 15062
  ident: b0210
  article-title: Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater
  publication-title: Int J Hydrogen Energy
– volume: 230
  start-page: 1140
  year: 2018
  end-page: 1156
  ident: b0050
  article-title: Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications
  publication-title: Appl Energy
– volume: 42
  start-page: 100898
  year: 2020
  ident: b0045
  article-title: Prediction and optimization of isentropic efficiency of vortex pump under full operating conditions in Organic Rankine Cycle waste heat recovery system based on deep learning and intelligent algorithm
  publication-title: Sustainable Energy Technol Assess
– volume: 158
  start-page: 107738
  year: 2020
  ident: b0305
  article-title: Improved dynamic kernel principal component analysis for fault detection
  publication-title: Measurement
– volume: 17
  start-page: 100381
  year: 2020
  ident: b0165
  article-title: Thermo-economic optimization of a nanofluid based organic Rankine cycle: A multi-objective study and analysis
  publication-title: Thermal Science and Engineering Progress
– volume: 157
  start-page: 397
  year: 2022
  end-page: 410
  ident: b0295
  article-title: Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis
  publication-title: Process Saf Environ Prot
– volume: 184
  start-page: 115561
  year: 2021
  ident: b0100
  article-title: Big data analytics and machine learning: A retrospective overview and bibliometric analysis
  publication-title: Expert Syst Appl
– volume: 73
  start-page: 818
  year: 2014
  end-page: 828
  ident: b0080
  article-title: Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles
  publication-title: Energy
– volume: 234
  start-page: 121259
  year: 2021
  ident: b0155
  article-title: Cycle analysis and economic evaluation for seawater-LNG Organic Rankine Cycles
  publication-title: Energy
– volume: 222
  start-page: 120007
  year: 2021
  ident: b0175
  article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system
  publication-title: Energy
– volume: 186
  start-page: 109604
  year: 2020
  ident: b0275
  article-title: Vine copula selection using mutual information for hydrological dependence modeling
  publication-title: Environ Res
– volume: 229
  start-page: 113738
  year: 2021
  ident: b0170
  article-title: Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation
  publication-title: Energy Convers Manage
– volume: 270
  start-page: 121396
  year: 2021
  ident: b0230
  article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor
  publication-title: Constr Build Mater
– volume: 120
  start-page: 108115
  year: 2021
  ident: b0265
  article-title: Enhanced anomaly scores for isolation forests
  publication-title: Pattern Recogn
– volume: 15
  start-page: 1788
  year: 2019
  end-page: 1797
  ident: b0095
  article-title: Stochastic Optimal Control for Energy Internet: A Bottom-Up Energy Management Approach
  publication-title: IEEE Trans Ind Inf
– volume: 53
  start-page: 111
  year: 2019
  end-page: 122
  ident: b0300
  article-title: Kernel principal component analysis combining rotation forest method for linearly inseparable data
  publication-title: Cognit Syst Res
– volume: 210
  start-page: 112700
  year: 2020
  ident: b0070
  article-title: Application of machine learning into organic Rankine cycle for prediction and optimization of thermal and exergy efficiency
  publication-title: Energy Convers Manage
– volume: 112
  start-page: 102681
  year: 2021
  ident: b0235
  article-title: Research on the fault monitoring method of marine diesel engines based on the manifold learning and isolation forest
  publication-title: Appl Ocean Res
– volume: 329
  start-page: 210
  year: 2019
  end-page: 226
  ident: b0320
  article-title: Density-sensitive Robust Fuzzy Kernel Principal Component Analysis technique
  publication-title: Neurocomputing
– volume: 1
  start-page: 100011
  year: 2020
  ident: b0120
  article-title: Overview on artificial intelligence in design of Organic Rankine Cycle
  publication-title: Energy and AI
– volume: 67
  start-page: 126
  year: 2018
  end-page: 135
  ident: b0255
  article-title: An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data
  publication-title: Eng Appl Artif Intell
– volume: 236
  start-page: 121508
  year: 2021
  ident: b0025
  article-title: Thermodynamic analysis and high-dimensional evolutionary manyobjective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery
  publication-title: Energy
– volume: 262
  start-page: 114514
  year: 2020
  ident: b0060
  article-title: Real-time realization of Dynamic Programming using machine learning methods for IC engine waste heat recovery system power optimization
  publication-title: Appl Energy
– volume: 207
  start-page: 118196
  year: 2020
  ident: b0150
  article-title: Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC)
  publication-title: Energy
– volume: 77
  start-page: 499
  year: 2014
  end-page: 508
  ident: b0200
  article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine
  publication-title: Energy
– volume: 584
  start-page: 433
  year: 2022
  end-page: 449
  ident: b0250
  article-title: A probabilistic generalization of isolation forest
  publication-title: Inf Sci
– volume: 236
  start-page: 121412
  year: 2021
  ident: b0105
  article-title: Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization
  publication-title: Energy
– volume: 182
  start-page: 116048
  year: 2021
  ident: b0110
  article-title: Prediction and optimization of power output of single screw expander in organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Appl Therm Eng
– volume: 210
  year: 2020
  ident: b0160
  article-title: Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source
  publication-title: Energy
– volume: 182
  start-page: 369
  year: 2019
  end-page: 382
  ident: b0145
  article-title: Comprehensive assessment of the impact of operating parameters on sub 1 - kW compact ORC performance
  publication-title: Energy Convers Manage
– volume: 97
  start-page: 107608
  year: 2022
  ident: b0325
  article-title: An efficient P300 detection algorithm based on Kernel Principal Component Analysis-Support Vector Machine
  publication-title: Comput Electr Eng
– volume: 106
  start-page: 107354
  year: 2021
  ident: b0220
  article-title: Fuzzy C-Means-based Isolation Forest
  publication-title: Fuzzy C-Means-based Isolation Forest
– volume: 157
  start-page: 397
  year: 2022
  ident: 10.1016/j.apenergy.2022.118682_b0295
  article-title: Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2021.11.029
– volume: 97
  start-page: 107608
  year: 2022
  ident: 10.1016/j.apenergy.2022.118682_b0325
  article-title: An efficient P300 detection algorithm based on Kernel Principal Component Analysis-Support Vector Machine
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107608
– volume: 127
  start-page: 1252
  year: 2017
  ident: 10.1016/j.apenergy.2022.118682_b0030
  article-title: Parametric study for small scale engine coolant and exhaust heat recovery system using different Organic Rankine cycle layouts
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.08.128
– volume: 193
  start-page: 116980
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0140
  article-title: Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.116980
– volume: 185
  start-page: 110064
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0240
  article-title: A new method for fault detection of aero-engine based on isolation forest
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110064
– volume: 229
  start-page: 113738
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0170
  article-title: Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113738
– volume: 230
  start-page: 1140
  year: 2018
  ident: 10.1016/j.apenergy.2022.118682_b0050
  article-title: Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.025
– volume: 182
  start-page: 116048
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0110
  article-title: Prediction and optimization of power output of single screw expander in organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.116048
– volume: 106
  start-page: 107354
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0260
  article-title: Fuzzy C-Means-based Isolation Forest
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107354
– volume: 210
  start-page: 112700
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0070
  article-title: Application of machine learning into organic Rankine cycle for prediction and optimization of thermal and exergy efficiency
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112700
– volume: 236
  start-page: 121508
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0025
  article-title: Thermodynamic analysis and high-dimensional evolutionary manyobjective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121508
– volume: 584
  start-page: 433
  year: 2022
  ident: 10.1016/j.apenergy.2022.118682_b0250
  article-title: A probabilistic generalization of isolation forest
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.10.075
– volume: 193
  start-page: 117032
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0020
  article-title: Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117032
– volume: 212
  start-page: 118731
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0125
  article-title: Globally optimal working fluid mixture composition for geothermal power cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118731
– volume: 570
  start-page: 298
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0270
  article-title: Stochastic mutual information gradient estimation for dimensionality reduction networks
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.066
– volume: 195
  start-page: 117188
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0005
  article-title: Off-design model of an ORC system for waste heat recovery of an internal combustion engine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117188
– volume: 234
  start-page: 121259
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0155
  article-title: Cycle analysis and economic evaluation for seawater-LNG Organic Rankine Cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121259
– volume: 15
  start-page: 1788
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0095
  article-title: Stochastic Optimal Control for Energy Internet: A Bottom-Up Energy Management Approach
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2867373
– volume: 226
  start-page: 113552
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0185
  article-title: Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113552
– volume: 262
  start-page: 114514
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0060
  article-title: Real-time realization of Dynamic Programming using machine learning methods for IC engine waste heat recovery system power optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114514
– volume: 120
  start-page: 108115
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0215
  article-title: Enhanced anomaly scores for isolation forests
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108115
– volume: 73
  start-page: 818
  year: 2014
  ident: 10.1016/j.apenergy.2022.118682_b0080
  article-title: Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.088
– volume: 168
  start-page: 114861
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0115
  article-title: A quadruple power generation system for very high efficiency and its performance optimization using an artificial intelligence method
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114861
– volume: 154
  start-page: 143
  year: 2018
  ident: 10.1016/j.apenergy.2022.118682_b0280
  article-title: Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel Function
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.072
– volume: 158
  start-page: 107738
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0305
  article-title: Improved dynamic kernel principal component analysis for fault detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107738
– volume: 174
  start-page: 122
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0075
  article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.124
– volume: 210
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0160
  article-title: Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118380
– volume: 236
  start-page: 121412
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0105
  article-title: Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121412
– volume: 132
  start-page: 307
  year: 2017
  ident: 10.1016/j.apenergy.2022.118682_b0085
  article-title: Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.11.040
– volume: 149
  start-page: 109
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0245
  article-title: Generalized isolation forest for anomaly detection
  publication-title: Generalized isolation forest for anomaly detection
– volume: 574
  start-page: 473
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0225
  article-title: Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.06.033
– volume: 105
  start-page: 210
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0315
  article-title: Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.05.029
– volume: 261
  start-page: 114384
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0205
  article-title: Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114384
– volume: 234
  start-page: 113949
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0010
  article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.113949
– volume: 237
  start-page: 210
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0130
  article-title: A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.035
– volume: 77
  start-page: 499
  year: 2014
  ident: 10.1016/j.apenergy.2022.118682_b0200
  article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.034
– volume: 186
  start-page: 109604
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0275
  article-title: Vine copula selection using mutual information for hydrological dependence modeling
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.109604
– volume: 106
  start-page: 107354
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0220
  article-title: Fuzzy C-Means-based Isolation Forest
  publication-title: Fuzzy C-Means-based Isolation Forest
– volume: 120
  start-page: 108115
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0265
  article-title: Enhanced anomaly scores for isolation forests
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108115
– volume: 270
  start-page: 121396
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0230
  article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.121396
– volume: 160
  start-page: 1868
  issue: 13
  year: 2009
  ident: 10.1016/j.apenergy.2022.118682_b0290
  article-title: Fuzzy connectivity clustering with radial basis kernel functions
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2008.12.010
– volume: 329
  start-page: 210
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0320
  article-title: Density-sensitive Robust Fuzzy Kernel Principal Component Analysis technique
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.052
– volume: 1
  start-page: 100011
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0120
  article-title: Overview on artificial intelligence in design of Organic Rankine Cycle
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2020.100011
– volume: 144
  start-page: 851
  year: 2018
  ident: 10.1016/j.apenergy.2022.118682_b0135
  article-title: Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.094
– volume: 207
  start-page: 118196
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0150
  article-title: Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC)
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118196
– volume: 217
  start-page: 113011
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0035
  article-title: Thermodynamic performance limits of the organic Rankine cycle: Working fluid parameterization based on corresponding states modeling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113011
– volume: 180
  start-page: 44
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0055
  article-title: Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.086
– volume: 221
  start-page: 113204
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0330
  article-title: How to evaluate the performance of sub-critical Organic Rankine Cycle from key properties of working fluids by group contribution methods?
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113204
– volume: 67
  start-page: 126
  year: 2018
  ident: 10.1016/j.apenergy.2022.118682_b0255
  article-title: An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.09.021
– volume: 241
  start-page: 106358
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0285
  article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106358
– volume: 121
  start-page: 105038
  year: 2022
  ident: 10.1016/j.apenergy.2022.118682_b0310
  article-title: Intelligent decision method of sludge bulking using recursive kernel principal component analysis and Bayesian network
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2021.105038
– volume: 53
  start-page: 111
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0300
  article-title: Kernel principal component analysis combining rotation forest method for linearly inseparable data
  publication-title: Cognit Syst Res
  doi: 10.1016/j.cogsys.2018.01.006
– volume: 112
  start-page: 102681
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0235
  article-title: Research on the fault monitoring method of marine diesel engines based on the manifold learning and isolation forest
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2021.102681
– volume: 10
  start-page: 4467
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0090
  article-title: Stochastic Optimal Control Scheme for Battery Lifetime Extension in Islanded Microgrid via a Novel Modeling Approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2861221
– volume: 45
  start-page: 31555
  issue: 56
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0180
  article-title: Energy, exergy, and exergoeconomics (3E) analysis and multi-objective optimization of a multi-generation energy system for day and night time power generation - Case study: Dezful city
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.160
– volume: 80
  start-page: 138
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0195
  article-title: An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.03.003
– volume: 17
  start-page: 100381
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0165
  article-title: Thermo-economic optimization of a nanofluid based organic Rankine cycle: A multi-objective study and analysis
  publication-title: Thermal Science and Engineering Progress
  doi: 10.1016/j.tsep.2019.100381
– volume: 45
  start-page: 15047
  issue: 30
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0210
  article-title: Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.235
– volume: 149
  start-page: 633
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0190
  article-title: Experiment on radial inflow turbines and performance prediction using deep neural network for the organic Rankine cycle
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.12.084
– volume: 206
  start-page: 112483
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0015
  article-title: Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112483
– volume: 222
  start-page: 120007
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0175
  article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120007
– volume: 221
  start-page: 113175
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0040
  article-title: A review of heat integration approaches for organic rankine cycle with waste heat in production processes
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113175
– volume: 42
  start-page: 100898
  year: 2020
  ident: 10.1016/j.apenergy.2022.118682_b0045
  article-title: Prediction and optimization of isentropic efficiency of vortex pump under full operating conditions in Organic Rankine Cycle waste heat recovery system based on deep learning and intelligent algorithm
  publication-title: Sustainable Energy Technol Assess
  doi: 10.1016/j.seta.2020.100898
– volume: 164
  start-page: 15
  year: 2018
  ident: 10.1016/j.apenergy.2022.118682_b0065
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.062
– volume: 184
  start-page: 115561
  year: 2021
  ident: 10.1016/j.apenergy.2022.118682_b0100
  article-title: Big data analytics and machine learning: A retrospective overview and bibliometric analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115561
– volume: 182
  start-page: 369
  year: 2019
  ident: 10.1016/j.apenergy.2022.118682_b0145
  article-title: Comprehensive assessment of the impact of operating parameters on sub 1 - kW compact ORC performance
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.12.062
SSID ssj0002120
Score 2.478519
Snippet •The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier...
The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118682
SubjectTerms algorithms
energy
Feature selection
mathematical theory
neural networks
Organic Rankine cycle
Outlier removal
Partial mutual information
prediction
thermodynamics
Unsupervised learning
Title Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection
URI https://dx.doi.org/10.1016/j.apenergy.2022.118682
https://www.proquest.com/docview/2718233535
Volume 311
WOSCitedRecordID wos000776716700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqykuLhLhELvErsblVVaKCooBQIvm2Wu-u01bFMXEctf-GE7-TGXvWCVDUcuBiWY53vdJ8mflmdmeGsTdRGMi-60rHADjAQUmlI3vGOJnJjIpcX8qs7loyHkwmUZLEnzud7zYXZn0xyPPo8jIu_quo4RkIG1Nn_0Hc7aTwAO5B6HAFscP1VoIftvW7ayJ4hSlZeJjQKFnWZ5ybptF1HQZq6qS6XyS2UDBddQWzYZRglpdVgXqkBEZKrSXmDto83cVDRJiksjRfF2tbawBXgpkoVZ2QQvVYcRU0KDN1CdFuWTfesWiw9W-JC5s6E7FV19RvJala3UTR7VGVnrWobmPeJ4t8Pq8k2WL4JaEJjk9NPqfQA0U4wDneHIyhzK5e30FPb1tr-67bLUDhR31wEa61BU1Y4vxQFs3iD3FuGrGxfnbHf_JJjGbjsZgOk-nb4puDfclw_56atNxhu94gjEFv7h59GCYfW2vvUelPu8atLPTrP_03AvQbFaj5zfQhe0COCT9qAPWIdUy-x-5vlavcY_vDTVYkvEpmoXzMfmwwxxcZbzDHtzDHCXP4jBPmOGGO15h7z7cRx39FHCfEcUIcB8RxQhxvEMf_QBwnxPEWcU_YbDScHp841ADEUX4QrpwwjDxtUrDHoRtpo8C7iNNAK9PLAi2DSHpppqUHdzrG5lcauH826EvlpxEYLuPvs518kZunjEsVapkFgzTWwKGBw-sA_MpIxQYIMTC5AxZaqQhF1fGxScuFsMcgz4WVpkBpikaaB-xdO65o6sPcOCK2QhfEchv2KgC4N459bVEiwAzg3p7MzaIqhQcc0_P90A-f3eKd5-ze5o_2gu2slpV5ye6q9eqsXL4iiP8EWTng5A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+hybrid+forecasting+methods+for+organic+Rankine+cycle%3A+Unsupervised+learning-based+outlier+removal+and+partial+mutual+information-based+feature+selection&rft.jtitle=Applied+energy&rft.au=Ping%2C+Xu&rft.au=Yang%2C+Fubin&rft.au=Zhang%2C+Hongguang&rft.au=Xing%2C+Chengda&rft.date=2022-04-01&rft.issn=0306-2619&rft.volume=311+p.118682-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118682&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon