Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection
•The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The constr...
Uložené v:
| Vydané v: | Applied energy Ročník 311; s. 118682 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2022
|
| Predmet: | |
| ISSN: | 0306-2619 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting.
The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10−11 and 5.1 × 10−3%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system. |
|---|---|
| AbstractList | The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10⁻¹¹ and 5.1 × 10⁻³%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system. •The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier removal.•A partial mutual information-based feature selection is performed.•Our hybrid method has superior performance in ORC forecasting. The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods have obvious limitations in constructing strong coupling relationship between operating parameters and performance due to the complex thermal power conversion process of ORC system. First, this study systematically analyzes the nonlinear relationship between ORC system operating parameters and performance by using unsupervised learning and bilinear interpolation algorithm. Compared with the traditional thermodynamic modeling method, the artificial neural network (ANN) has obvious advantages in constructing the mapping relationship of ORC system. However, the ORC system prediction model still has the defects of low accuracy, poor robustness, and high time cost due to the absence of outlier removal and feature dimensionality reduction. A hybrid algorithm for ORC system prediction model construction is proposed on the basis of the data characteristics, information theory and unsupervised learning. This algorithm can remove outliers and reduce the dimensionality of features in ORC system simultaneously. Then, the effectiveness of outlier removal, feature dimensionality reduction, and overall performance of the hybrid algorithm is verified. The mean squared error and mean absolute percentage error of the model is 1.64 × 10−11 and 5.1 × 10−3%. Compared with other algorithms, the hybrid algorithm suitable for ORC system has improved in accuracy and time cost. The accuracy of the hybrid algorithm is improved by 5.56% at least. The time cost of the hybrid algorithm is reduced by at least 17.05%. The hybrid algorithm can provide direct guidance for constructing ANN model of ORC system. |
| ArticleNumber | 118682 |
| Author | Zhang, Hongguang Ping, Xu Xing, Chengda Yang, Fubin Zhang, Wujie Wang, Yan |
| Author_xml | – sequence: 1 givenname: Xu surname: Ping fullname: Ping, Xu – sequence: 2 givenname: Fubin surname: Yang fullname: Yang, Fubin email: yangfubin@bjut.edu.cn – sequence: 3 givenname: Hongguang surname: Zhang fullname: Zhang, Hongguang – sequence: 4 givenname: Chengda surname: Xing fullname: Xing, Chengda – sequence: 5 givenname: Wujie surname: Zhang fullname: Zhang, Wujie – sequence: 6 givenname: Yan surname: Wang fullname: Wang, Yan |
| BookMark | eNqFkc9O3DAQxn2gUmHhFSofe8nWf5KQrXooQrQgIVWq4GxN7MnirWMH21lpX6jPWYelFy7IhxmP_Ps8M98ZOfHBIyGfOFtzxtsvuzVM6DFuD2vBhFhz3rWdOCGnTLK2Ei3ffCRnKe0YY4ILdkr-3uzBzZBt8DQM9OnQR2voECJqSNn6LR0xPwWTlhoNcQveavob_B_rkeqDdviVPvo0Txj3NqGhDiH6AlY9LNcwZ2cx0ohjKF9R8IZOELMt-TjnuQTri_b40sMrNCDkOSJN6FAv9XPyYQCX8OI1rsjjj5uH69vq_tfPu-ur-0rLuslV03TCYL_hvOGdQd3UbNPXRiMbagN1B6IfDIiSmY1kQppaNsNlC1r2nWQc5Yp8PupOMTzPmLIabdLoHHgMc1LikndCyqacFfl2fKpjSCnioLTNL0PkCNYpztRiidqp_5aoxRJ1tKTg7Rt8inaEeHgf_H4EsexhX1arkrboNRpbTMvKBPuexD-HkLQ2 |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106744 crossref_primary_10_1109_ACCESS_2023_3307412 crossref_primary_10_1016_j_applthermaleng_2023_121677 crossref_primary_10_1016_j_applthermaleng_2023_120455 crossref_primary_10_1016_j_rser_2023_113998 crossref_primary_10_1016_j_jobe_2024_111607 crossref_primary_10_1016_j_applthermaleng_2023_120904 crossref_primary_10_1016_j_engappai_2023_106979 crossref_primary_10_1016_j_rineng_2025_106068 crossref_primary_10_3390_en15217832 crossref_primary_10_1007_s11269_023_03613_x crossref_primary_10_1016_j_energy_2022_126311 crossref_primary_10_1016_j_energy_2022_125551 crossref_primary_10_1016_j_energy_2022_125672 crossref_primary_10_1016_j_conbuildmat_2024_137840 crossref_primary_10_1016_j_applthermaleng_2023_121256 crossref_primary_10_1016_j_apenergy_2023_121569 crossref_primary_10_1016_j_geothermics_2024_103002 crossref_primary_10_1109_TTE_2023_3291818 crossref_primary_10_3390_a18050273 crossref_primary_10_1016_j_energy_2023_127519 crossref_primary_10_1016_j_jobe_2024_109418 |
| Cites_doi | 10.1016/j.psep.2021.11.029 10.1016/j.compeleceng.2021.107608 10.1016/j.applthermaleng.2017.08.128 10.1016/j.applthermaleng.2021.116980 10.1016/j.measurement.2021.110064 10.1016/j.enconman.2020.113738 10.1016/j.apenergy.2018.09.025 10.1016/j.applthermaleng.2020.116048 10.1016/j.asoc.2021.107354 10.1016/j.enconman.2020.112700 10.1016/j.energy.2021.121508 10.1016/j.ins.2021.10.075 10.1016/j.applthermaleng.2021.117032 10.1016/j.energy.2020.118731 10.1016/j.ins.2021.04.066 10.1016/j.applthermaleng.2021.117188 10.1016/j.energy.2021.121259 10.1109/TII.2018.2867373 10.1016/j.enconman.2020.113552 10.1016/j.apenergy.2020.114514 10.1016/j.patcog.2021.108115 10.1016/j.energy.2014.06.088 10.1016/j.applthermaleng.2019.114861 10.1016/j.energy.2018.04.072 10.1016/j.measurement.2020.107738 10.1016/j.energy.2019.02.124 10.1016/j.energy.2020.118380 10.1016/j.energy.2021.121412 10.1016/j.enconman.2016.11.040 10.1016/j.ins.2021.06.033 10.1016/j.isatra.2020.05.029 10.1016/j.apenergy.2019.114384 10.1016/j.enconman.2021.113949 10.1016/j.apenergy.2019.01.035 10.1016/j.energy.2014.09.034 10.1016/j.envres.2020.109604 10.1016/j.conbuildmat.2020.121396 10.1016/j.fss.2008.12.010 10.1016/j.neucom.2018.10.052 10.1016/j.egyai.2020.100011 10.1016/j.energy.2017.12.094 10.1016/j.energy.2020.118196 10.1016/j.enconman.2020.113011 10.1016/j.enconman.2018.10.086 10.1016/j.enconman.2020.113204 10.1016/j.engappai.2017.09.021 10.1016/j.compstruc.2020.106358 10.1016/j.conengprac.2021.105038 10.1016/j.cogsys.2018.01.006 10.1016/j.apor.2021.102681 10.1109/TSG.2018.2861221 10.1016/j.ijhydene.2020.08.160 10.1016/j.geothermics.2019.03.003 10.1016/j.tsep.2019.100381 10.1016/j.ijhydene.2020.03.235 10.1016/j.applthermaleng.2018.12.084 10.1016/j.enconman.2020.112483 10.1016/j.energy.2021.120007 10.1016/j.enconman.2020.113175 10.1016/j.seta.2020.100898 10.1016/j.enconman.2018.02.062 10.1016/j.eswa.2021.115561 10.1016/j.enconman.2018.12.062 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2022.118682 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | 10_1016_j_apenergy_2022_118682 S0306261922001477 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSH SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAQXK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-5582deb911518dec5409b4dce0f4da48a2bfda2a48d93023d435f76ac3b8301e3 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776716700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Nov 09 11:31:55 EST 2025 Tue Nov 18 22:15:34 EST 2025 Sat Nov 29 06:09:37 EST 2025 Sun Apr 06 06:53:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Partial mutual information Outlier removal Feature selection Organic Rankine cycle Unsupervised learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-5582deb911518dec5409b4dce0f4da48a2bfda2a48d93023d435f76ac3b8301e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718233535 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718233535 crossref_citationtrail_10_1016_j_apenergy_2022_118682 crossref_primary_10_1016_j_apenergy_2022_118682 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118682 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Qin, Hua, Cao (b0090) 2019; 10 Zhao, Deng, Zhao, Xu, Wang, Nie (b0120) 2020; 1 Xu, Zhang, Yang, Tong, Yang, Yan (b0010) 2021; 234 Yang, Cho, Zhang, Zhang, Wu (b0065) 2018; 164 Looney (b0290) 2009; 160 Ziviani, James, Accorsi, Braun, Groll (b0050) 2018; 230 Özdenizci, Erdoğmuş (b0270) 2021; 570 Emadi, Chitgar, Oyewunmi, Markides (b0205) 2020; 261 Ping, Yao, Zhang, Yang (b0140) 2021; 193 Alirahmi, Rostami, Farajollahi (b0210) 2020; 45 Hua, Qin, Hao, Cao (b0095) 2019; 15 Cai, Deng (b0315) 2020; 105 Liu, Han, Dong, Yang, Qiao (b0310) 2022; 121 Tao, Chang, Li, Wang, Liu (b0320) 2019; 329 Zhang, Srivastava, Sharma, Eachempati (b0100) 2021; 184 Kim, Kim, Kim (b0190) 2019; 149 Mensi, Bicego (b0215) 2021; 120 Puggini, McLoone (b0255) 2018; 67 Su, Zhao, Deng (b0085) 2017; 132 Fatigati, Di Bartolomeo, Di Battista, Cipollone (b0020) 2021; 193 Huster, Schweidtmann, Mitsos (b0125) 2020; 212 Zhang, Wu, Xia, Ma, Ji, Liu (b0200) 2014; 77 He, Zheng (b0280) 2018; 154 Neto, Sotomonte, Coronado (b0005) 2021; 195 Hu, Yang, Li, Duan (b0170) 2021; 229 Feng, Liu, Wang, He, Hung, Wang (b0185) 2020; 226 Gabbay, Shapira, Rokach (b0225) 2021; 574 Yang, Yang, Chu, Liu, Yang, Duan (b0035) 2020; 217 Hashmi, Kene, Kotambkar, Matte, Keskar (b0325) 2022; 97 Anastasovski, Rasković, Guzović (b0040) 2020; 221 Jang, Lee (b0145) 2019; 182 Mensi, Bicego (b0265) 2021; 120 Ping, Yao, Zhang, Yang (b0025) 2021; 236 Karczmarek, Kiersztyn, Pedrycz, Czerwiński (b0220) 2021; 106 Zhang, Li, Lang, Miao (b0305) 2020; 158 Han, Song, Liu, Geng, Ma, Xu (b0295) 2022; 157 Peng, Su, Zhou, Zhao (b0330) 2020; 221 Wang, Chen, Guan, Gong, Zhang (b0235) 2021; 112 Alirahmi, Assareh (b0180) 2020; 45 Karczmarek, Kiersztyn, Pedrycz, Czerwiński (b0260) 2021; 106 Lu, Roskilly, Yu, Tang, Jiang, Smallbone (b0030) 2017; 127 Dong, Zhang, He, Deng, Yu, Yao (b0135) 2018; 144 Wang, Dai, Wu, Zhao, Wang, Hu (b0160) 2020; 210 Prajapati, Patel (b0165) 2020; 17 Zhou, Peng (b0285) 2020; 241 Ping, Yang, Zhang, Zhang, Zhang, Song (b0110) 2021; 182 Feng, Du, Shreka, Zhu, Zhou, Zhang (b0015) 2020; 206 Jin, Gao, Wang (b0150) 2020; 207 Khosravi, Syri, Zhao, Assad (b0195) 2019; 80 Tokovarov, Karczmarek (b0250) 2022; 584 Zhi, Hu, Chen, Zhao (b0055) 2019; 180 Lesouple, Baudoin, Spigai, Tourneret (b0245) 2021; 149 Brown, Brignoli, Daubman (b0080) 2014; 73 Alsini, Almakrab, Ibrahim, Ma (b0230) 2021; 270 Wang, Deng, Zhao, Zhao, Lin, Chen (b0070) 2020; 210 Lee, Kwon, Kim, Jo (b0155) 2021; 234 Ping, Yang, Zhang, Zhang, Song, Yang (b0045) 2020; 42 Luo, Wang, Liang, Qi, Su, Yang (b0075) 2019; 174 Ping, Yang, Zhang, Zhang, Zhang, Song (b0175) 2021; 222 Alirahmi, Mousavi, Ahmadi, Arabkoohsar (b0105) 2021; 236 Ni, Wang, Wu, Wang, Tao, Zhang (b0275) 2020; 186 Palagi, Sciubba, Tocci (b0130) 2019; 237 Ahn, Kim, Cho, Kim (b0115) 2020; 168 Wang, Jiang, Deng, Geng (b0240) 2021; 185 Lu, Meng, Yan, Gao (b0300) 2019; 53 Xu, Rathod, Yebi, Filipi (b0060) 2020; 262 Puggini (10.1016/j.apenergy.2022.118682_b0255) 2018; 67 Tao (10.1016/j.apenergy.2022.118682_b0320) 2019; 329 Yang (10.1016/j.apenergy.2022.118682_b0065) 2018; 164 Zhang (10.1016/j.apenergy.2022.118682_b0100) 2021; 184 Emadi (10.1016/j.apenergy.2022.118682_b0205) 2020; 261 Jin (10.1016/j.apenergy.2022.118682_b0150) 2020; 207 Hashmi (10.1016/j.apenergy.2022.118682_b0325) 2022; 97 Feng (10.1016/j.apenergy.2022.118682_b0015) 2020; 206 Zhang (10.1016/j.apenergy.2022.118682_b0200) 2014; 77 Zhao (10.1016/j.apenergy.2022.118682_b0120) 2020; 1 Xu (10.1016/j.apenergy.2022.118682_b0010) 2021; 234 Su (10.1016/j.apenergy.2022.118682_b0085) 2017; 132 Ahn (10.1016/j.apenergy.2022.118682_b0115) 2020; 168 Hu (10.1016/j.apenergy.2022.118682_b0170) 2021; 229 Han (10.1016/j.apenergy.2022.118682_b0295) 2022; 157 Huster (10.1016/j.apenergy.2022.118682_b0125) 2020; 212 Palagi (10.1016/j.apenergy.2022.118682_b0130) 2019; 237 Mensi (10.1016/j.apenergy.2022.118682_b0215) 2021; 120 Lu (10.1016/j.apenergy.2022.118682_b0300) 2019; 53 Ping (10.1016/j.apenergy.2022.118682_b0140) 2021; 193 Neto (10.1016/j.apenergy.2022.118682_b0005) 2021; 195 Cai (10.1016/j.apenergy.2022.118682_b0315) 2020; 105 Brown (10.1016/j.apenergy.2022.118682_b0080) 2014; 73 Ni (10.1016/j.apenergy.2022.118682_b0275) 2020; 186 Alirahmi (10.1016/j.apenergy.2022.118682_b0180) 2020; 45 Alirahmi (10.1016/j.apenergy.2022.118682_b0210) 2020; 45 Mensi (10.1016/j.apenergy.2022.118682_b0265) 2021; 120 Hua (10.1016/j.apenergy.2022.118682_b0095) 2019; 15 Özdenizci (10.1016/j.apenergy.2022.118682_b0270) 2021; 570 Qin (10.1016/j.apenergy.2022.118682_b0090) 2019; 10 Zhi (10.1016/j.apenergy.2022.118682_b0055) 2019; 180 Gabbay (10.1016/j.apenergy.2022.118682_b0225) 2021; 574 Xu (10.1016/j.apenergy.2022.118682_b0060) 2020; 262 Zhou (10.1016/j.apenergy.2022.118682_b0285) 2020; 241 Alsini (10.1016/j.apenergy.2022.118682_b0230) 2021; 270 Ziviani (10.1016/j.apenergy.2022.118682_b0050) 2018; 230 Kim (10.1016/j.apenergy.2022.118682_b0190) 2019; 149 Tokovarov (10.1016/j.apenergy.2022.118682_b0250) 2022; 584 Wang (10.1016/j.apenergy.2022.118682_b0240) 2021; 185 Peng (10.1016/j.apenergy.2022.118682_b0330) 2020; 221 Yang (10.1016/j.apenergy.2022.118682_b0035) 2020; 217 Jang (10.1016/j.apenergy.2022.118682_b0145) 2019; 182 Wang (10.1016/j.apenergy.2022.118682_b0070) 2020; 210 Luo (10.1016/j.apenergy.2022.118682_b0075) 2019; 174 Lee (10.1016/j.apenergy.2022.118682_b0155) 2021; 234 Liu (10.1016/j.apenergy.2022.118682_b0310) 2022; 121 Prajapati (10.1016/j.apenergy.2022.118682_b0165) 2020; 17 Alirahmi (10.1016/j.apenergy.2022.118682_b0105) 2021; 236 Fatigati (10.1016/j.apenergy.2022.118682_b0020) 2021; 193 Wang (10.1016/j.apenergy.2022.118682_b0235) 2021; 112 Lu (10.1016/j.apenergy.2022.118682_b0030) 2017; 127 Karczmarek (10.1016/j.apenergy.2022.118682_b0260) 2021; 106 Looney (10.1016/j.apenergy.2022.118682_b0290) 2009; 160 Ping (10.1016/j.apenergy.2022.118682_b0175) 2021; 222 Feng (10.1016/j.apenergy.2022.118682_b0185) 2020; 226 Lesouple (10.1016/j.apenergy.2022.118682_b0245) 2021; 149 He (10.1016/j.apenergy.2022.118682_b0280) 2018; 154 Anastasovski (10.1016/j.apenergy.2022.118682_b0040) 2020; 221 Zhang (10.1016/j.apenergy.2022.118682_b0305) 2020; 158 Wang (10.1016/j.apenergy.2022.118682_b0160) 2020; 210 Khosravi (10.1016/j.apenergy.2022.118682_b0195) 2019; 80 Dong (10.1016/j.apenergy.2022.118682_b0135) 2018; 144 Karczmarek (10.1016/j.apenergy.2022.118682_b0220) 2021; 106 Ping (10.1016/j.apenergy.2022.118682_b0110) 2021; 182 Ping (10.1016/j.apenergy.2022.118682_b0025) 2021; 236 Ping (10.1016/j.apenergy.2022.118682_b0045) 2020; 42 |
| References_xml | – volume: 168 start-page: 114861 year: 2020 ident: b0115 article-title: A quadruple power generation system for very high efficiency and its performance optimization using an artificial intelligence method publication-title: Appl Therm Eng – volume: 570 start-page: 298 year: 2021 end-page: 305 ident: b0270 article-title: Stochastic mutual information gradient estimation for dimensionality reduction networks publication-title: Inf Sci – volume: 154 start-page: 143 year: 2018 end-page: 156 ident: b0280 article-title: Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel Function publication-title: Energy – volume: 226 start-page: 113552 year: 2020 ident: b0185 article-title: Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network publication-title: Energy Convers Manage – volume: 127 start-page: 1252 year: 2017 end-page: 1266 ident: b0030 article-title: Parametric study for small scale engine coolant and exhaust heat recovery system using different Organic Rankine cycle layouts publication-title: Appl Therm Eng – volume: 212 start-page: 118731 year: 2020 ident: b0125 article-title: Globally optimal working fluid mixture composition for geothermal power cycles publication-title: Energy – volume: 121 start-page: 105038 year: 2022 ident: b0310 article-title: Intelligent decision method of sludge bulking using recursive kernel principal component analysis and Bayesian network publication-title: Control Eng Pract – volume: 234 start-page: 113949 year: 2021 ident: b0010 article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air publication-title: Energy Convers Manage – volume: 180 start-page: 44 year: 2019 end-page: 59 ident: b0055 article-title: Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery publication-title: Energy Convers Manage – volume: 217 start-page: 113011 year: 2020 ident: b0035 article-title: Thermodynamic performance limits of the organic Rankine cycle: Working fluid parameterization based on corresponding states modeling publication-title: Energy Convers Manage – volume: 193 start-page: 116980 year: 2021 ident: b0140 article-title: Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery publication-title: Appl Therm Eng – volume: 261 start-page: 114384 year: 2020 ident: b0205 article-title: Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery publication-title: Appl Energy – volume: 80 start-page: 138 year: 2019 end-page: 154 ident: b0195 article-title: An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system publication-title: Geothermics – volume: 237 start-page: 210 year: 2019 end-page: 226 ident: b0130 article-title: A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications publication-title: Appl Energy – volume: 45 start-page: 31555 year: 2020 end-page: 31573 ident: b0180 article-title: Energy, exergy, and exergoeconomics (3E) analysis and multi-objective optimization of a multi-generation energy system for day and night time power generation - Case study: Dezful city publication-title: Int J Hydrogen Energy – volume: 241 start-page: 106358 year: 2020 ident: b0285 article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis publication-title: Comput Struct – volume: 221 start-page: 113175 year: 2020 ident: b0040 article-title: A review of heat integration approaches for organic rankine cycle with waste heat in production processes publication-title: Energy Convers Manage – volume: 10 start-page: 4467 year: 2019 end-page: 4475 ident: b0090 article-title: Stochastic Optimal Control Scheme for Battery Lifetime Extension in Islanded Microgrid via a Novel Modeling Approach publication-title: IEEE Trans Smart Grid – volume: 106 start-page: 107354 year: 2021 ident: b0260 article-title: Fuzzy C-Means-based Isolation Forest publication-title: Appl Soft Comput – volume: 221 start-page: 113204 year: 2020 ident: b0330 article-title: How to evaluate the performance of sub-critical Organic Rankine Cycle from key properties of working fluids by group contribution methods? publication-title: Energy Convers Manage – volume: 144 start-page: 851 year: 2018 end-page: 864 ident: b0135 article-title: Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system publication-title: Energy – volume: 120 start-page: 108115 year: 2021 ident: b0215 article-title: Enhanced anomaly scores for isolation forests publication-title: Pattern Recogn – volume: 195 start-page: 117188 year: 2021 ident: b0005 article-title: Off-design model of an ORC system for waste heat recovery of an internal combustion engine publication-title: Appl Therm Eng – volume: 132 start-page: 307 year: 2017 end-page: 315 ident: b0085 article-title: Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method publication-title: Energy Convers Manage – volume: 105 start-page: 210 year: 2020 end-page: 220 ident: b0315 article-title: Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis publication-title: ISA Trans – volume: 174 start-page: 122 year: 2019 end-page: 137 ident: b0075 article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle publication-title: Energy – volume: 185 start-page: 110064 year: 2021 ident: b0240 article-title: A new method for fault detection of aero-engine based on isolation forest publication-title: Measurement – volume: 149 start-page: 633 year: 2019 end-page: 643 ident: b0190 article-title: Experiment on radial inflow turbines and performance prediction using deep neural network for the organic Rankine cycle publication-title: Appl Therm Eng – volume: 193 start-page: 117032 year: 2021 ident: b0020 article-title: Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit publication-title: Appl Therm Eng – volume: 164 start-page: 15 year: 2018 end-page: 26 ident: b0065 article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Energy Convers Manage – volume: 574 start-page: 473 year: 2021 end-page: 489 ident: b0225 article-title: Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning publication-title: Inf Sci – volume: 160 start-page: 1868 year: 2009 end-page: 1885 ident: b0290 article-title: Fuzzy connectivity clustering with radial basis kernel functions publication-title: Fuzzy Sets Syst – volume: 149 start-page: 109 year: 2021 end-page: 119 ident: b0245 article-title: Generalized isolation forest for anomaly detection publication-title: Generalized isolation forest for anomaly detection – volume: 206 start-page: 112483 year: 2020 ident: b0015 article-title: Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine publication-title: Energy Convers Manage – volume: 45 start-page: 15047 year: 2020 end-page: 15062 ident: b0210 article-title: Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater publication-title: Int J Hydrogen Energy – volume: 230 start-page: 1140 year: 2018 end-page: 1156 ident: b0050 article-title: Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications publication-title: Appl Energy – volume: 42 start-page: 100898 year: 2020 ident: b0045 article-title: Prediction and optimization of isentropic efficiency of vortex pump under full operating conditions in Organic Rankine Cycle waste heat recovery system based on deep learning and intelligent algorithm publication-title: Sustainable Energy Technol Assess – volume: 158 start-page: 107738 year: 2020 ident: b0305 article-title: Improved dynamic kernel principal component analysis for fault detection publication-title: Measurement – volume: 17 start-page: 100381 year: 2020 ident: b0165 article-title: Thermo-economic optimization of a nanofluid based organic Rankine cycle: A multi-objective study and analysis publication-title: Thermal Science and Engineering Progress – volume: 157 start-page: 397 year: 2022 end-page: 410 ident: b0295 article-title: Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis publication-title: Process Saf Environ Prot – volume: 184 start-page: 115561 year: 2021 ident: b0100 article-title: Big data analytics and machine learning: A retrospective overview and bibliometric analysis publication-title: Expert Syst Appl – volume: 73 start-page: 818 year: 2014 end-page: 828 ident: b0080 article-title: Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles publication-title: Energy – volume: 234 start-page: 121259 year: 2021 ident: b0155 article-title: Cycle analysis and economic evaluation for seawater-LNG Organic Rankine Cycles publication-title: Energy – volume: 222 start-page: 120007 year: 2021 ident: b0175 article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system publication-title: Energy – volume: 186 start-page: 109604 year: 2020 ident: b0275 article-title: Vine copula selection using mutual information for hydrological dependence modeling publication-title: Environ Res – volume: 229 start-page: 113738 year: 2021 ident: b0170 article-title: Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation publication-title: Energy Convers Manage – volume: 270 start-page: 121396 year: 2021 ident: b0230 article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor publication-title: Constr Build Mater – volume: 120 start-page: 108115 year: 2021 ident: b0265 article-title: Enhanced anomaly scores for isolation forests publication-title: Pattern Recogn – volume: 15 start-page: 1788 year: 2019 end-page: 1797 ident: b0095 article-title: Stochastic Optimal Control for Energy Internet: A Bottom-Up Energy Management Approach publication-title: IEEE Trans Ind Inf – volume: 53 start-page: 111 year: 2019 end-page: 122 ident: b0300 article-title: Kernel principal component analysis combining rotation forest method for linearly inseparable data publication-title: Cognit Syst Res – volume: 210 start-page: 112700 year: 2020 ident: b0070 article-title: Application of machine learning into organic Rankine cycle for prediction and optimization of thermal and exergy efficiency publication-title: Energy Convers Manage – volume: 112 start-page: 102681 year: 2021 ident: b0235 article-title: Research on the fault monitoring method of marine diesel engines based on the manifold learning and isolation forest publication-title: Appl Ocean Res – volume: 329 start-page: 210 year: 2019 end-page: 226 ident: b0320 article-title: Density-sensitive Robust Fuzzy Kernel Principal Component Analysis technique publication-title: Neurocomputing – volume: 1 start-page: 100011 year: 2020 ident: b0120 article-title: Overview on artificial intelligence in design of Organic Rankine Cycle publication-title: Energy and AI – volume: 67 start-page: 126 year: 2018 end-page: 135 ident: b0255 article-title: An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data publication-title: Eng Appl Artif Intell – volume: 236 start-page: 121508 year: 2021 ident: b0025 article-title: Thermodynamic analysis and high-dimensional evolutionary manyobjective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery publication-title: Energy – volume: 262 start-page: 114514 year: 2020 ident: b0060 article-title: Real-time realization of Dynamic Programming using machine learning methods for IC engine waste heat recovery system power optimization publication-title: Appl Energy – volume: 207 start-page: 118196 year: 2020 ident: b0150 article-title: Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC) publication-title: Energy – volume: 77 start-page: 499 year: 2014 end-page: 508 ident: b0200 article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine publication-title: Energy – volume: 584 start-page: 433 year: 2022 end-page: 449 ident: b0250 article-title: A probabilistic generalization of isolation forest publication-title: Inf Sci – volume: 236 start-page: 121412 year: 2021 ident: b0105 article-title: Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization publication-title: Energy – volume: 182 start-page: 116048 year: 2021 ident: b0110 article-title: Prediction and optimization of power output of single screw expander in organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Appl Therm Eng – volume: 210 year: 2020 ident: b0160 article-title: Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source publication-title: Energy – volume: 182 start-page: 369 year: 2019 end-page: 382 ident: b0145 article-title: Comprehensive assessment of the impact of operating parameters on sub 1 - kW compact ORC performance publication-title: Energy Convers Manage – volume: 97 start-page: 107608 year: 2022 ident: b0325 article-title: An efficient P300 detection algorithm based on Kernel Principal Component Analysis-Support Vector Machine publication-title: Comput Electr Eng – volume: 106 start-page: 107354 year: 2021 ident: b0220 article-title: Fuzzy C-Means-based Isolation Forest publication-title: Fuzzy C-Means-based Isolation Forest – volume: 157 start-page: 397 year: 2022 ident: 10.1016/j.apenergy.2022.118682_b0295 article-title: Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2021.11.029 – volume: 97 start-page: 107608 year: 2022 ident: 10.1016/j.apenergy.2022.118682_b0325 article-title: An efficient P300 detection algorithm based on Kernel Principal Component Analysis-Support Vector Machine publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107608 – volume: 127 start-page: 1252 year: 2017 ident: 10.1016/j.apenergy.2022.118682_b0030 article-title: Parametric study for small scale engine coolant and exhaust heat recovery system using different Organic Rankine cycle layouts publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.08.128 – volume: 193 start-page: 116980 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0140 article-title: Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.116980 – volume: 185 start-page: 110064 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0240 article-title: A new method for fault detection of aero-engine based on isolation forest publication-title: Measurement doi: 10.1016/j.measurement.2021.110064 – volume: 229 start-page: 113738 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0170 article-title: Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113738 – volume: 230 start-page: 1140 year: 2018 ident: 10.1016/j.apenergy.2022.118682_b0050 article-title: Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.025 – volume: 182 start-page: 116048 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0110 article-title: Prediction and optimization of power output of single screw expander in organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.116048 – volume: 106 start-page: 107354 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0260 article-title: Fuzzy C-Means-based Isolation Forest publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107354 – volume: 210 start-page: 112700 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0070 article-title: Application of machine learning into organic Rankine cycle for prediction and optimization of thermal and exergy efficiency publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112700 – volume: 236 start-page: 121508 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0025 article-title: Thermodynamic analysis and high-dimensional evolutionary manyobjective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2021.121508 – volume: 584 start-page: 433 year: 2022 ident: 10.1016/j.apenergy.2022.118682_b0250 article-title: A probabilistic generalization of isolation forest publication-title: Inf Sci doi: 10.1016/j.ins.2021.10.075 – volume: 193 start-page: 117032 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0020 article-title: Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117032 – volume: 212 start-page: 118731 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0125 article-title: Globally optimal working fluid mixture composition for geothermal power cycles publication-title: Energy doi: 10.1016/j.energy.2020.118731 – volume: 570 start-page: 298 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0270 article-title: Stochastic mutual information gradient estimation for dimensionality reduction networks publication-title: Inf Sci doi: 10.1016/j.ins.2021.04.066 – volume: 195 start-page: 117188 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0005 article-title: Off-design model of an ORC system for waste heat recovery of an internal combustion engine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117188 – volume: 234 start-page: 121259 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0155 article-title: Cycle analysis and economic evaluation for seawater-LNG Organic Rankine Cycles publication-title: Energy doi: 10.1016/j.energy.2021.121259 – volume: 15 start-page: 1788 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0095 article-title: Stochastic Optimal Control for Energy Internet: A Bottom-Up Energy Management Approach publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2867373 – volume: 226 start-page: 113552 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0185 article-title: Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113552 – volume: 262 start-page: 114514 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0060 article-title: Real-time realization of Dynamic Programming using machine learning methods for IC engine waste heat recovery system power optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114514 – volume: 120 start-page: 108115 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0215 article-title: Enhanced anomaly scores for isolation forests publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108115 – volume: 73 start-page: 818 year: 2014 ident: 10.1016/j.apenergy.2022.118682_b0080 article-title: Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2014.06.088 – volume: 168 start-page: 114861 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0115 article-title: A quadruple power generation system for very high efficiency and its performance optimization using an artificial intelligence method publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114861 – volume: 154 start-page: 143 year: 2018 ident: 10.1016/j.apenergy.2022.118682_b0280 article-title: Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel Function publication-title: Energy doi: 10.1016/j.energy.2018.04.072 – volume: 158 start-page: 107738 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0305 article-title: Improved dynamic kernel principal component analysis for fault detection publication-title: Measurement doi: 10.1016/j.measurement.2020.107738 – volume: 174 start-page: 122 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0075 article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle publication-title: Energy doi: 10.1016/j.energy.2019.02.124 – volume: 210 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0160 article-title: Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source publication-title: Energy doi: 10.1016/j.energy.2020.118380 – volume: 236 start-page: 121412 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0105 article-title: Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization publication-title: Energy doi: 10.1016/j.energy.2021.121412 – volume: 132 start-page: 307 year: 2017 ident: 10.1016/j.apenergy.2022.118682_b0085 article-title: Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.11.040 – volume: 149 start-page: 109 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0245 article-title: Generalized isolation forest for anomaly detection publication-title: Generalized isolation forest for anomaly detection – volume: 574 start-page: 473 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0225 article-title: Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning publication-title: Inf Sci doi: 10.1016/j.ins.2021.06.033 – volume: 105 start-page: 210 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0315 article-title: Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis publication-title: ISA Trans doi: 10.1016/j.isatra.2020.05.029 – volume: 261 start-page: 114384 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0205 article-title: Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114384 – volume: 234 start-page: 113949 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0010 article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.113949 – volume: 237 start-page: 210 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0130 article-title: A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.035 – volume: 77 start-page: 499 year: 2014 ident: 10.1016/j.apenergy.2022.118682_b0200 article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine publication-title: Energy doi: 10.1016/j.energy.2014.09.034 – volume: 186 start-page: 109604 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0275 article-title: Vine copula selection using mutual information for hydrological dependence modeling publication-title: Environ Res doi: 10.1016/j.envres.2020.109604 – volume: 106 start-page: 107354 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0220 article-title: Fuzzy C-Means-based Isolation Forest publication-title: Fuzzy C-Means-based Isolation Forest – volume: 120 start-page: 108115 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0265 article-title: Enhanced anomaly scores for isolation forests publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108115 – volume: 270 start-page: 121396 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0230 article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121396 – volume: 160 start-page: 1868 issue: 13 year: 2009 ident: 10.1016/j.apenergy.2022.118682_b0290 article-title: Fuzzy connectivity clustering with radial basis kernel functions publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2008.12.010 – volume: 329 start-page: 210 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0320 article-title: Density-sensitive Robust Fuzzy Kernel Principal Component Analysis technique publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.052 – volume: 1 start-page: 100011 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0120 article-title: Overview on artificial intelligence in design of Organic Rankine Cycle publication-title: Energy and AI doi: 10.1016/j.egyai.2020.100011 – volume: 144 start-page: 851 year: 2018 ident: 10.1016/j.apenergy.2022.118682_b0135 article-title: Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system publication-title: Energy doi: 10.1016/j.energy.2017.12.094 – volume: 207 start-page: 118196 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0150 article-title: Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC) publication-title: Energy doi: 10.1016/j.energy.2020.118196 – volume: 217 start-page: 113011 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0035 article-title: Thermodynamic performance limits of the organic Rankine cycle: Working fluid parameterization based on corresponding states modeling publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113011 – volume: 180 start-page: 44 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0055 article-title: Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.086 – volume: 221 start-page: 113204 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0330 article-title: How to evaluate the performance of sub-critical Organic Rankine Cycle from key properties of working fluids by group contribution methods? publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113204 – volume: 67 start-page: 126 year: 2018 ident: 10.1016/j.apenergy.2022.118682_b0255 article-title: An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.09.021 – volume: 241 start-page: 106358 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0285 article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106358 – volume: 121 start-page: 105038 year: 2022 ident: 10.1016/j.apenergy.2022.118682_b0310 article-title: Intelligent decision method of sludge bulking using recursive kernel principal component analysis and Bayesian network publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2021.105038 – volume: 53 start-page: 111 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0300 article-title: Kernel principal component analysis combining rotation forest method for linearly inseparable data publication-title: Cognit Syst Res doi: 10.1016/j.cogsys.2018.01.006 – volume: 112 start-page: 102681 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0235 article-title: Research on the fault monitoring method of marine diesel engines based on the manifold learning and isolation forest publication-title: Appl Ocean Res doi: 10.1016/j.apor.2021.102681 – volume: 10 start-page: 4467 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0090 article-title: Stochastic Optimal Control Scheme for Battery Lifetime Extension in Islanded Microgrid via a Novel Modeling Approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2861221 – volume: 45 start-page: 31555 issue: 56 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0180 article-title: Energy, exergy, and exergoeconomics (3E) analysis and multi-objective optimization of a multi-generation energy system for day and night time power generation - Case study: Dezful city publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.160 – volume: 80 start-page: 138 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0195 article-title: An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system publication-title: Geothermics doi: 10.1016/j.geothermics.2019.03.003 – volume: 17 start-page: 100381 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0165 article-title: Thermo-economic optimization of a nanofluid based organic Rankine cycle: A multi-objective study and analysis publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2019.100381 – volume: 45 start-page: 15047 issue: 30 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0210 article-title: Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.235 – volume: 149 start-page: 633 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0190 article-title: Experiment on radial inflow turbines and performance prediction using deep neural network for the organic Rankine cycle publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.12.084 – volume: 206 start-page: 112483 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0015 article-title: Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112483 – volume: 222 start-page: 120007 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0175 article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system publication-title: Energy doi: 10.1016/j.energy.2021.120007 – volume: 221 start-page: 113175 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0040 article-title: A review of heat integration approaches for organic rankine cycle with waste heat in production processes publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113175 – volume: 42 start-page: 100898 year: 2020 ident: 10.1016/j.apenergy.2022.118682_b0045 article-title: Prediction and optimization of isentropic efficiency of vortex pump under full operating conditions in Organic Rankine Cycle waste heat recovery system based on deep learning and intelligent algorithm publication-title: Sustainable Energy Technol Assess doi: 10.1016/j.seta.2020.100898 – volume: 164 start-page: 15 year: 2018 ident: 10.1016/j.apenergy.2022.118682_b0065 article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.02.062 – volume: 184 start-page: 115561 year: 2021 ident: 10.1016/j.apenergy.2022.118682_b0100 article-title: Big data analytics and machine learning: A retrospective overview and bibliometric analysis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115561 – volume: 182 start-page: 369 year: 2019 ident: 10.1016/j.apenergy.2022.118682_b0145 article-title: Comprehensive assessment of the impact of operating parameters on sub 1 - kW compact ORC performance publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.12.062 |
| SSID | ssj0002120 |
| Score | 2.478519 |
| Snippet | •The nonlinear characteristics of real organic Rankine cycle (ORC) data are analysed.•An unsupervised learning-based algorithm is proposed for outlier... The construction of organic Rankine cycle (ORC) system model is the key to system performance analysis and prediction. However, traditional analysis methods... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118682 |
| SubjectTerms | algorithms energy Feature selection mathematical theory neural networks Organic Rankine cycle Outlier removal Partial mutual information prediction thermodynamics Unsupervised learning |
| Title | Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.118682 https://www.proquest.com/docview/2718233535 |
| Volume | 311 |
| WOSCitedRecordID | wos000776716700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002120 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqykuLhLhELvErsblVVaKCooBQIvm2Wu-u01bFMXEctf-GE7-TGXvWCVDUcuBiWY53vdJ8mflmdmeGsTdRGMi-60rHADjAQUmlI3vGOJnJjIpcX8qs7loyHkwmUZLEnzud7zYXZn0xyPPo8jIu_quo4RkIG1Nn_0Hc7aTwAO5B6HAFscP1VoIftvW7ayJ4hSlZeJjQKFnWZ5ybptF1HQZq6qS6XyS2UDBddQWzYZRglpdVgXqkBEZKrSXmDto83cVDRJiksjRfF2tbawBXgpkoVZ2QQvVYcRU0KDN1CdFuWTfesWiw9W-JC5s6E7FV19RvJala3UTR7VGVnrWobmPeJ4t8Pq8k2WL4JaEJjk9NPqfQA0U4wDneHIyhzK5e30FPb1tr-67bLUDhR31wEa61BU1Y4vxQFs3iD3FuGrGxfnbHf_JJjGbjsZgOk-nb4puDfclw_56atNxhu94gjEFv7h59GCYfW2vvUelPu8atLPTrP_03AvQbFaj5zfQhe0COCT9qAPWIdUy-x-5vlavcY_vDTVYkvEpmoXzMfmwwxxcZbzDHtzDHCXP4jBPmOGGO15h7z7cRx39FHCfEcUIcB8RxQhxvEMf_QBwnxPEWcU_YbDScHp841ADEUX4QrpwwjDxtUrDHoRtpo8C7iNNAK9PLAi2DSHpppqUHdzrG5lcauH826EvlpxEYLuPvs518kZunjEsVapkFgzTWwKGBw-sA_MpIxQYIMTC5AxZaqQhF1fGxScuFsMcgz4WVpkBpikaaB-xdO65o6sPcOCK2QhfEchv2KgC4N459bVEiwAzg3p7MzaIqhQcc0_P90A-f3eKd5-ze5o_2gu2slpV5ye6q9eqsXL4iiP8EWTng5A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+hybrid+forecasting+methods+for+organic+Rankine+cycle%3A+Unsupervised+learning-based+outlier+removal+and+partial+mutual+information-based+feature+selection&rft.jtitle=Applied+energy&rft.au=Ping%2C+Xu&rft.au=Yang%2C+Fubin&rft.au=Zhang%2C+Hongguang&rft.au=Xing%2C+Chengda&rft.date=2022-04-01&rft.issn=0306-2619&rft.volume=311+p.118682-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118682&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |