Process metallurgy analyses to design a high-bendability and high-springback property sheet by using two-scale finite element method
In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal tex...
Uložené v:
| Vydané v: | International journal of mechanical sciences Ročník 87; s. 89 - 101 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2014
|
| Predmet: | |
| ISSN: | 0020-7403, 1879-2162 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in “V-bend” test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for “V-bend” process analyses. The RVE model was featured as 3×3×3 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}〈100〉 orientation by using the Johnson–Mehl–Avrami׳s equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained.
•Process metallurgy simulation technique for a new high-formability Al alloy sheet.•Design of polycrystal texture through asymmetric rolling and heat treatment process.•We found an optimum process parameters to generate crystal texture. |
|---|---|
| AbstractList | In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in "V-bend" test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for "V-bend" process analyses. The RVE model was featured as 333 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}100 orientation by using the Johnson-Mehl-Avrami's equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained. In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in “V-bend” test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for “V-bend” process analyses. The RVE model was featured as 3×3×3 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}〈100〉 orientation by using the Johnson–Mehl–Avrami׳s equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained. •Process metallurgy simulation technique for a new high-formability Al alloy sheet.•Design of polycrystal texture through asymmetric rolling and heat treatment process.•We found an optimum process parameters to generate crystal texture. |
| Author | Honda, Takeshi Morimoto, Hideo Kuramae, Hiroyuki Nakamachi, Eiji Morita, Yusuke |
| Author_xml | – sequence: 1 givenname: Eiji surname: Nakamachi fullname: Nakamachi, Eiji organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan – sequence: 2 givenname: Takeshi surname: Honda fullname: Honda, Takeshi organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan – sequence: 3 givenname: Hiroyuki orcidid: 0000-0001-5571-8288 surname: Kuramae fullname: Kuramae, Hiroyuki email: kuramae@dim.oit.ac.jp organization: Department of Technology Management, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan – sequence: 4 givenname: Yusuke surname: Morita fullname: Morita, Yusuke organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan – sequence: 5 givenname: Hideo surname: Morimoto fullname: Morimoto, Hideo organization: Furukawa Electric Co. Ltd., 2-4-3 Okano, Nishi-ku, Yokohama 220-0073, Japan |
| BookMark | eNqFkE1vEzEQhi1UJNLCX0A-ctnt2PsZiQOooh9SJTjA2fLas4mD1w4eB5Q7PxxHKZdeehpp5nlnRs8luwgxIGPvBdQCRH-9q91uQUPG1RJEW0NfA4hXbCXGYV1J0csLtgKQUA0tNG_YJdGuAAN0zYr9_ZaiQSK-YNbeH9LmyHXQ_khIPEdukdwmcM23brOtJgxWT867fKLsuUn75MJm0uYn36e4x1SGtEXMfDryA5UZz39iRUZ75LMLLiNHjwuGfLq6jfYtez1rT_juqV6xH7dfvt_cV49f7x5uPj9Wpmm7XHVyNBNIK4TENYKdYRgHi6Jvx7kDAx3qcZjMMEIvjBWTbiyISUrbdN3UNOvmin047y1__jogZbU4Mui9DhgPpETfiVbIdSsL-vGMmhSJEs7KuKyziyEn7bwSoE7y1U79l69O8hX0qrgt8f5ZvEhadDq-HPx0DmLx8NthUoXAYNC6hCYrG91LK_4BddWn5g |
| CitedBy_id | crossref_primary_10_1080_21642583_2020_1843084 crossref_primary_10_1016_j_ijmecsci_2015_11_021 |
| Cites_doi | 10.1016/j.jmps.2013.05.005 10.1016/0001-6160(85)90188-9 10.1016/j.proeng.2011.04.372 10.1016/j.jmatprotec.2006.11.096 10.2320/matertrans.L-MG200951 10.1016/j.ijplas.2006.06.002 10.1016/j.msea.2011.01.048 10.1016/j.ijplas.2004.05.017 10.1016/S1359-6454(01)00036-2 10.1016/S0749-6419(99)00002-9 10.1016/j.jmatprotec.2004.04.253 10.1115/1.2788923 10.1016/j.actamat.2008.12.017 10.1016/0022-5096(96)00001-4 10.1016/j.ijmecsci.2007.09.008 10.1016/S0749-6419(01)00052-3 10.1016/0956-716X(92)90139-6 10.1016/j.scriptamat.2007.10.049 10.1016/S0924-0136(98)00170-8 10.1016/S0924-0136(03)00314-5 10.1016/j.ijmecsci.2009.08.009 10.1016/S0020-7403(01)00025-X 10.1016/j.msea.2012.11.037 10.1016/j.ijplas.2006.03.014 10.1115/1.3167205 10.1016/0749-6419(93)90061-T 10.1016/0045-7825(94)90076-0 10.1016/0020-7683(83)90023-9 10.1007/s11661-007-9218-2 10.1016/S0749-6419(01)00064-X 10.1016/0956-7151(95)90164-7 10.1016/j.ijplas.2008.01.005 10.1016/j.scriptamat.2003.12.031 10.1016/j.ijmecsci.2009.09.007 10.1016/j.ijplas.2010.03.010 10.1016/0924-0136(96)02384-9 10.1016/S0749-6419(99)00092-3 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7QF 7TB 8BQ 8FD FR3 JG9 |
| DOI | 10.1016/j.ijmecsci.2014.06.001 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Aluminium Industry Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2162 |
| EndPage | 101 |
| ExternalDocumentID | 10_1016_j_ijmecsci_2014_06_001 S0020740314002185 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH WUQ XFK XPP XSW ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7TB 8BQ 8FD FR3 JG9 |
| ID | FETCH-LOGICAL-c345t-528cb02d112e9e0df0787de1648f50c05ea87bc78061cd1ba3d01b22d355b3393 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342477100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7403 |
| IngestDate | Sat Sep 27 21:38:59 EDT 2025 Tue Nov 18 22:13:34 EST 2025 Sat Nov 29 06:11:40 EST 2025 Fri Feb 23 02:23:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Crystallographic homogenization method Two-scale finite element method Process metallurgy Springback Bendability Texture evolution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-528cb02d112e9e0df0787de1648f50c05ea87bc78061cd1ba3d01b22d355b3393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5571-8288 |
| PQID | 1651412942 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1651412942 crossref_citationtrail_10_1016_j_ijmecsci_2014_06_001 crossref_primary_10_1016_j_ijmecsci_2014_06_001 elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2014_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of mechanical sciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kaneko, Eguchi (bib13) 2011; 50-1 (bib44) 1998 Johnson, Mehl (bib29) 1939; 135 Knezevic, Lebensohn, Cazacu, Revil-Baudard, Proust, Vogel (bib34) 2013; 564 Engler, Lücke (bib30) 1992; 27-11 Bunge (bib23) 1982 Beaudoin, Dawson, Mathur, Kocks, Korzewa (bib42) 1994; 177 Kang, Kang, Kim, Huh, Suk (bib7) 2007; 187–188 Wagner, Engler, Lücke (bib15) 1995; 43-10 Nakamachi, Tam, Morimoto (bib24) 2007; 23 Nakamachi, Hiraiwa, Morimoto, Harimoto (bib26) 2000; 16 Zhang, Vincent, Sha, Zuo, Fundenberger, Esling (bib17) 2004; 50 Harder (bib41) 1999; 15 Asaro (bib37) 1983; 50 Kim, Lee (bib8) 2001; 49-13 Nakamachi, Kuramae, Sakamoto, Morimoto (bib5) 2010; 52 Nakamachi, Xie, Morimoto, Morita, Yokoyama (bib25) 2002; 18 Katayama, Nakamachi, Nakamura, Ohata, Morishita, Murase (bib4) 2004; 155–156 Lee, Lee (bib9) 2001; 43-9 Pan, Rice (bib39) 1983; 19 Ohata, Nakamura, Katayama, Nakamachi, Nakano (bib1) 1996; 60 Anand, Kothari (bib21) 1996; 44 Nakamachi, Dong (bib28) 1997; 64 Knezevic, McCabe, Lebensohn, Tome, Liu, Lovato (bib35) 2013; 61 Knezevic, Al-Harbi, Kalidinidi (bib32) 2009; 57 Kuroda, Tvergaard (bib11) 2007; 23 Muramatsu, Takeuchi, Yamaue, Sakai, Utsunomiya (bib16) 2009; 48 Ohata, Nakamura, Katayama, Nakamachi (bib3) 2003; 143–144 Diard, Leclercq, Rousselier, Cailletaud (bib22) 2005; 21 Lee, Lee (bib10) 2008; 50-5 Nah, Kang, Huh, Engler (bib31) 2008; 58-6 Asaro, Needleman (bib38) 1985; 33 Zhou, Neale, Tóth (bib40) 1993; 9 Ohata, Nakamura, Katayama, Nakamachi, Omori (bib2) 1998; 80-81 Signorelli, Bertinetti, Turner (bib20) 2009; 25 Sachs (bib43) 1928; 72 Shaffer, Knezevic, Kalidindi (bib33) 2010; 26 Takeda, Hibino, Takata (bib14) 2010; 51-4 Man (bib18) 2002; 18-12 Homer, Adams, Wagoner (bib19) 2007; 38 Needleman A., Finite element for finite strain plasticity problems. in: Proceeding of the workshop on plasticity of materials at finite strain, 1981, 1-11. Kuramae, Ikeya, Sakamoto, Morimoto, Nakamachi (bib27) 2010; 52-2 Kuramae, Sakamoto, Morimoto, Nakamachi (bib6) 2011; 10 Ikawa, Asano, Kuroda, Yoshida (bib12) 2011; 528 Ikawa (10.1016/j.ijmecsci.2014.06.001_bib12) 2011; 528 Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib26) 2000; 16 Knezevic (10.1016/j.ijmecsci.2014.06.001_bib32) 2009; 57 Shaffer (10.1016/j.ijmecsci.2014.06.001_bib33) 2010; 26 Sachs (10.1016/j.ijmecsci.2014.06.001_bib43) 1928; 72 Man (10.1016/j.ijmecsci.2014.06.001_bib18) 2002; 18-12 Lee (10.1016/j.ijmecsci.2014.06.001_bib10) 2008; 50-5 Beaudoin (10.1016/j.ijmecsci.2014.06.001_bib42) 1994; 177 Katayama (10.1016/j.ijmecsci.2014.06.001_bib4) 2004; 155–156 Kuramae (10.1016/j.ijmecsci.2014.06.001_bib27) 2010; 52-2 Kaneko (10.1016/j.ijmecsci.2014.06.001_bib13) 2011; 50-1 Kuramae (10.1016/j.ijmecsci.2014.06.001_bib6) 2011; 10 Zhang (10.1016/j.ijmecsci.2014.06.001_bib17) 2004; 50 Kang (10.1016/j.ijmecsci.2014.06.001_bib7) 2007; 187–188 Homer (10.1016/j.ijmecsci.2014.06.001_bib19) 2007; 38 Johnson (10.1016/j.ijmecsci.2014.06.001_bib29) 1939; 135 Engler (10.1016/j.ijmecsci.2014.06.001_bib30) 1992; 27-11 Harder (10.1016/j.ijmecsci.2014.06.001_bib41) 1999; 15 Takeda (10.1016/j.ijmecsci.2014.06.001_bib14) 2010; 51-4 10.1016/j.ijmecsci.2014.06.001_bib36 Ohata (10.1016/j.ijmecsci.2014.06.001_bib1) 1996; 60 Ohata (10.1016/j.ijmecsci.2014.06.001_bib2) 1998; 80-81 Kim (10.1016/j.ijmecsci.2014.06.001_bib8) 2001; 49-13 Asaro (10.1016/j.ijmecsci.2014.06.001_bib38) 1985; 33 Knezevic (10.1016/j.ijmecsci.2014.06.001_bib35) 2013; 61 Bunge (10.1016/j.ijmecsci.2014.06.001_bib23) 1982 Nah (10.1016/j.ijmecsci.2014.06.001_bib31) 2008; 58-6 Lee (10.1016/j.ijmecsci.2014.06.001_bib9) 2001; 43-9 Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib28) 1997; 64 Asaro (10.1016/j.ijmecsci.2014.06.001_bib37) 1983; 50 Wagner (10.1016/j.ijmecsci.2014.06.001_bib15) 1995; 43-10 Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib5) 2010; 52 Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib25) 2002; 18 Pan (10.1016/j.ijmecsci.2014.06.001_bib39) 1983; 19 Muramatsu (10.1016/j.ijmecsci.2014.06.001_bib16) 2009; 48 (10.1016/j.ijmecsci.2014.06.001_bib44) 1998 Diard (10.1016/j.ijmecsci.2014.06.001_bib22) 2005; 21 Ohata (10.1016/j.ijmecsci.2014.06.001_bib3) 2003; 143–144 Signorelli (10.1016/j.ijmecsci.2014.06.001_bib20) 2009; 25 Anand (10.1016/j.ijmecsci.2014.06.001_bib21) 1996; 44 Kuroda (10.1016/j.ijmecsci.2014.06.001_bib11) 2007; 23 Zhou (10.1016/j.ijmecsci.2014.06.001_bib40) 1993; 9 Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib24) 2007; 23 Knezevic (10.1016/j.ijmecsci.2014.06.001_bib34) 2013; 564 |
| References_xml | – volume: 51-4 start-page: 614 year: 2010 end-page: 619 ident: bib14 article-title: Influence of crystal orientations on the bendability of Al–Mg–Si publication-title: Mater Trans – volume: 21 start-page: 691 year: 2005 end-page: 722 ident: bib22 article-title: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity—application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries publication-title: Int J Plasticity – volume: 49-13 start-page: 2583 year: 2001 end-page: 2595 ident: bib8 article-title: Analysis of deformation textures of asymmetrically rolled aluminum sheets publication-title: Acta Mater – volume: 38 start-page: 1575 year: 2007 end-page: 1586 ident: bib19 article-title: Recovering grain-boundary inclination parameters through oblique double sectioning publication-title: Metall Mater Trans A – volume: 10 start-page: 2250 year: 2011 end-page: 2255 ident: bib6 article-title: Process metallurgy design for high-formability aluminum alloy sheet metal generation by using two-scale FEM publication-title: Procedia Eng – year: 1998 ident: bib44 publication-title: Texture and anisotropy, preferred orientations, and their effect on materials properties – volume: 61 start-page: 2034 year: 2013 end-page: 2046 ident: bib35 article-title: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals publication-title: J Mech Phys Solids – volume: 80-81 start-page: 635 year: 1998 end-page: 641 ident: bib2 article-title: Improvement of optimum process design system by numerical simulation publication-title: J Mater Process Technol – volume: 16 start-page: 1419 year: 2000 end-page: 1441 ident: bib26 article-title: Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification publication-title: Int J Plasticity – volume: 50 start-page: 921 year: 1983 end-page: 934 ident: bib37 article-title: Crystal plasticity publication-title: J App Mech Trans, ASME – year: 1982 ident: bib23 article-title: Texture analysis in materials science – volume: 18 start-page: 617 year: 2002 end-page: 632 ident: bib25 article-title: Formability assessment of FCC aluminum alloy sheet by using elastic/crystalline viscoplastic finite element analysis publication-title: Int J Plasticity – volume: 177 start-page: 49 year: 1994 end-page: 70 ident: bib42 article-title: Application of polycrystal plasticity to sheet forming publication-title: Comput Meth Appl Mech Eng – volume: 52 start-page: 146 year: 2010 end-page: 157 ident: bib5 article-title: Process metallurgy design of aluminum alloy sheet rolling by using two-scale finite element analysis and optimization algorithm publication-title: Int J Mech Sci – volume: 52-2 start-page: 183 year: 2010 end-page: 197 ident: bib27 article-title: Two-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method publication-title: Int J Mech Sci – volume: 19 start-page: 973 year: 1983 end-page: 987 ident: bib39 article-title: Rate sensitivity of plastic flow and implications for yield-surface vertices publication-title: Int J Solid Struct – volume: 44 start-page: 525 year: 1996 end-page: 558 ident: bib21 article-title: A computational procedure for rate-independent crystal plasticity publication-title: J Mech Phys Solids – volume: 64 start-page: 519 year: 1997 end-page: 524 ident: bib28 article-title: Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis publication-title: J Appl Mech Trans ASME – volume: 143–144 start-page: 667 year: 2003 end-page: 672 ident: bib3 article-title: Development of optimum process design system for sheet fabrication using response surface method publication-title: J Mater Process Technol – volume: 528 start-page: 4050 year: 2011 end-page: 4054 ident: bib12 article-title: Effects of crystal orientation on bendability of aluminum alloy sheet publication-title: Mater. Sci. Eng, A – volume: 135 start-page: 416 year: 1939 end-page: 458 ident: bib29 article-title: Reaction kinetics in processes of nucleation and growth publication-title: Trans Am Inst Min Eng – volume: 50-5 start-page: 869 year: 2008 end-page: 887 ident: bib10 article-title: Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling publication-title: Int J Mech Sci – volume: 43-10 start-page: 3799 year: 1995 end-page: 3812 ident: bib15 article-title: Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {1 publication-title: Acta Metall Mater – reference: Needleman A., Finite element for finite strain plasticity problems. in: Proceeding of the workshop on plasticity of materials at finite strain, 1981, 1-11. – volume: 187–188 start-page: 542 year: 2007 end-page: 545 ident: bib7 article-title: Formation of shear texture components during hot rolling of AA 1050 publication-title: J Mater Process Technol – volume: 25 start-page: 1 year: 2009 end-page: 25 ident: bib20 article-title: Prediction of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model publication-title: Int J Plasticity – volume: 43-9 start-page: 1997 year: 2001 end-page: 2015 ident: bib9 article-title: Analysis of deformation textures of asymmetrically rolled steel sheets publication-title: Int J Mech Sci – volume: 72 start-page: 734 year: 1928 end-page: 736 ident: bib43 article-title: Zur Ableilung einer Fleissbedingung publication-title: Z Ver Dtsch Ing – volume: 23 start-page: 244 year: 2007 end-page: 272 ident: bib11 article-title: Effects of texture on shear band formation in plane strain tension/compression and bending publication-title: Int J Plasticity – volume: 155–156 start-page: 1564 year: 2004 end-page: 1570 ident: bib4 article-title: Development of process design system for press forming—multi-objective optimization of intermediate die shape in transfer forming publication-title: J Mater Process Technol – volume: 18-12 start-page: 1683 year: 2002 end-page: 1706 ident: bib18 article-title: On the publication-title: Int J Plasticity – volume: 58-6 start-page: 500 year: 2008 end-page: 503 ident: bib31 article-title: Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy publication-title: Scr Mater – volume: 48 start-page: 123 year: 2009 end-page: 128 ident: bib16 article-title: Effect of differential speed rolling on the texture and bend formability of Cu–Be–Co and Cu–Sn–P strips and consideration for industrial applications publication-title: J JRICu (in Japanese) – volume: 57 start-page: 1777 year: 2009 end-page: 1784 ident: bib32 article-title: Crystal plasticity simulations using discrete Fourier transforms publication-title: Acta Mater. – volume: 27-11 start-page: 1527 year: 1992 end-page: 1532 ident: bib30 article-title: Mechanisms of recrystallization texture formation in aluminum alloys publication-title: Scr Metall Mater – volume: 60 start-page: 543 year: 1996 end-page: 548 ident: bib1 article-title: Development of optimum process design system by numerical simulation publication-title: J Mater Process Technol – volume: 33 start-page: 923 year: 1985 end-page: 953 ident: bib38 article-title: Texture development and strain hardening in rate dependent polycrystals publication-title: Acta Metal – volume: 564 start-page: 116 year: 2013 end-page: 126 ident: bib34 article-title: Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements publication-title: Mater Sci Eng, A – volume: 50-1 start-page: 33 year: 2011 end-page: 37 ident: bib13 article-title: Influence of texture on bendability of Cu–Ni–Si alloys publication-title: J JRICu (in Japanese) – volume: 50 start-page: 1011 year: 2004 end-page: 1015 ident: bib17 article-title: Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet publication-title: Scr Mater – volume: 15 start-page: 605 year: 1999 end-page: 624 ident: bib41 article-title: Crystallographic model for the study of local deformation processes in polycrystals publication-title: Int J Plasticity – volume: 23 start-page: 450 year: 2007 end-page: 489 ident: bib24 article-title: Two-scale finite element analyses of sheet materials by using SEM-EBSD measured crystallographic RVE models publication-title: Int J Plasticity – volume: 26 start-page: 1183 year: 2010 end-page: 1194 ident: bib33 article-title: Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance publication-title: Int J Plasticity – volume: 9 start-page: 961 year: 1993 end-page: 978 ident: bib40 article-title: A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals publication-title: Int J Plasticity – volume: 48 start-page: 123 year: 2009 ident: 10.1016/j.ijmecsci.2014.06.001_bib16 article-title: Effect of differential speed rolling on the texture and bend formability of Cu–Be–Co and Cu–Sn–P strips and consideration for industrial applications publication-title: J JRICu (in Japanese) – volume: 61 start-page: 2034 year: 2013 ident: 10.1016/j.ijmecsci.2014.06.001_bib35 article-title: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2013.05.005 – volume: 72 start-page: 734 year: 1928 ident: 10.1016/j.ijmecsci.2014.06.001_bib43 article-title: Zur Ableilung einer Fleissbedingung publication-title: Z Ver Dtsch Ing – volume: 33 start-page: 923 year: 1985 ident: 10.1016/j.ijmecsci.2014.06.001_bib38 article-title: Texture development and strain hardening in rate dependent polycrystals publication-title: Acta Metal doi: 10.1016/0001-6160(85)90188-9 – volume: 10 start-page: 2250 year: 2011 ident: 10.1016/j.ijmecsci.2014.06.001_bib6 article-title: Process metallurgy design for high-formability aluminum alloy sheet metal generation by using two-scale FEM publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.04.372 – volume: 187–188 start-page: 542 year: 2007 ident: 10.1016/j.ijmecsci.2014.06.001_bib7 article-title: Formation of shear texture components during hot rolling of AA 1050 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2006.11.096 – volume: 135 start-page: 416 year: 1939 ident: 10.1016/j.ijmecsci.2014.06.001_bib29 article-title: Reaction kinetics in processes of nucleation and growth publication-title: Trans Am Inst Min Eng – volume: 51-4 start-page: 614 year: 2010 ident: 10.1016/j.ijmecsci.2014.06.001_bib14 article-title: Influence of crystal orientations on the bendability of Al–Mg–Si publication-title: Mater Trans doi: 10.2320/matertrans.L-MG200951 – volume: 23 start-page: 450 year: 2007 ident: 10.1016/j.ijmecsci.2014.06.001_bib24 article-title: Two-scale finite element analyses of sheet materials by using SEM-EBSD measured crystallographic RVE models publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2006.06.002 – year: 1998 ident: 10.1016/j.ijmecsci.2014.06.001_bib44 – volume: 528 start-page: 4050 year: 2011 ident: 10.1016/j.ijmecsci.2014.06.001_bib12 article-title: Effects of crystal orientation on bendability of aluminum alloy sheet publication-title: Mater. Sci. Eng, A doi: 10.1016/j.msea.2011.01.048 – volume: 21 start-page: 691 year: 2005 ident: 10.1016/j.ijmecsci.2014.06.001_bib22 article-title: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity—application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2004.05.017 – volume: 49-13 start-page: 2583 year: 2001 ident: 10.1016/j.ijmecsci.2014.06.001_bib8 article-title: Analysis of deformation textures of asymmetrically rolled aluminum sheets publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00036-2 – volume: 15 start-page: 605 year: 1999 ident: 10.1016/j.ijmecsci.2014.06.001_bib41 article-title: Crystallographic model for the study of local deformation processes in polycrystals publication-title: Int J Plasticity doi: 10.1016/S0749-6419(99)00002-9 – volume: 155–156 start-page: 1564 year: 2004 ident: 10.1016/j.ijmecsci.2014.06.001_bib4 article-title: Development of process design system for press forming—multi-objective optimization of intermediate die shape in transfer forming publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.04.253 – volume: 64 start-page: 519 year: 1997 ident: 10.1016/j.ijmecsci.2014.06.001_bib28 article-title: Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis publication-title: J Appl Mech Trans ASME doi: 10.1115/1.2788923 – volume: 57 start-page: 1777 year: 2009 ident: 10.1016/j.ijmecsci.2014.06.001_bib32 article-title: Crystal plasticity simulations using discrete Fourier transforms publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.12.017 – volume: 44 start-page: 525 year: 1996 ident: 10.1016/j.ijmecsci.2014.06.001_bib21 article-title: A computational procedure for rate-independent crystal plasticity publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(96)00001-4 – volume: 50-5 start-page: 869 year: 2008 ident: 10.1016/j.ijmecsci.2014.06.001_bib10 article-title: Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2007.09.008 – volume: 50-1 start-page: 33 year: 2011 ident: 10.1016/j.ijmecsci.2014.06.001_bib13 article-title: Influence of texture on bendability of Cu–Ni–Si alloys publication-title: J JRICu (in Japanese) – volume: 18 start-page: 617 year: 2002 ident: 10.1016/j.ijmecsci.2014.06.001_bib25 article-title: Formability assessment of FCC aluminum alloy sheet by using elastic/crystalline viscoplastic finite element analysis publication-title: Int J Plasticity doi: 10.1016/S0749-6419(01)00052-3 – volume: 27-11 start-page: 1527 year: 1992 ident: 10.1016/j.ijmecsci.2014.06.001_bib30 article-title: Mechanisms of recrystallization texture formation in aluminum alloys publication-title: Scr Metall Mater doi: 10.1016/0956-716X(92)90139-6 – volume: 58-6 start-page: 500 year: 2008 ident: 10.1016/j.ijmecsci.2014.06.001_bib31 article-title: Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy publication-title: Scr Mater doi: 10.1016/j.scriptamat.2007.10.049 – volume: 80-81 start-page: 635 year: 1998 ident: 10.1016/j.ijmecsci.2014.06.001_bib2 article-title: Improvement of optimum process design system by numerical simulation publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(98)00170-8 – volume: 143–144 start-page: 667 year: 2003 ident: 10.1016/j.ijmecsci.2014.06.001_bib3 article-title: Development of optimum process design system for sheet fabrication using response surface method publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00314-5 – volume: 52 start-page: 146 year: 2010 ident: 10.1016/j.ijmecsci.2014.06.001_bib5 article-title: Process metallurgy design of aluminum alloy sheet rolling by using two-scale finite element analysis and optimization algorithm publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2009.08.009 – volume: 43-9 start-page: 1997 year: 2001 ident: 10.1016/j.ijmecsci.2014.06.001_bib9 article-title: Analysis of deformation textures of asymmetrically rolled steel sheets publication-title: Int J Mech Sci doi: 10.1016/S0020-7403(01)00025-X – volume: 564 start-page: 116 year: 2013 ident: 10.1016/j.ijmecsci.2014.06.001_bib34 article-title: Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2012.11.037 – volume: 23 start-page: 244 year: 2007 ident: 10.1016/j.ijmecsci.2014.06.001_bib11 article-title: Effects of texture on shear band formation in plane strain tension/compression and bending publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2006.03.014 – volume: 50 start-page: 921 year: 1983 ident: 10.1016/j.ijmecsci.2014.06.001_bib37 article-title: Crystal plasticity publication-title: J App Mech Trans, ASME doi: 10.1115/1.3167205 – volume: 9 start-page: 961 year: 1993 ident: 10.1016/j.ijmecsci.2014.06.001_bib40 article-title: A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals publication-title: Int J Plasticity doi: 10.1016/0749-6419(93)90061-T – volume: 177 start-page: 49 year: 1994 ident: 10.1016/j.ijmecsci.2014.06.001_bib42 article-title: Application of polycrystal plasticity to sheet forming publication-title: Comput Meth Appl Mech Eng doi: 10.1016/0045-7825(94)90076-0 – volume: 19 start-page: 973 year: 1983 ident: 10.1016/j.ijmecsci.2014.06.001_bib39 article-title: Rate sensitivity of plastic flow and implications for yield-surface vertices publication-title: Int J Solid Struct doi: 10.1016/0020-7683(83)90023-9 – year: 1982 ident: 10.1016/j.ijmecsci.2014.06.001_bib23 – volume: 38 start-page: 1575 year: 2007 ident: 10.1016/j.ijmecsci.2014.06.001_bib19 article-title: Recovering grain-boundary inclination parameters through oblique double sectioning publication-title: Metall Mater Trans A doi: 10.1007/s11661-007-9218-2 – volume: 18-12 start-page: 1683 year: 2002 ident: 10.1016/j.ijmecsci.2014.06.001_bib18 article-title: On the r-value of textured sheet metals publication-title: Int J Plasticity doi: 10.1016/S0749-6419(01)00064-X – volume: 43-10 start-page: 3799 year: 1995 ident: 10.1016/j.ijmecsci.2014.06.001_bib15 article-title: Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {112}〈111〉 single crystals publication-title: Acta Metall Mater doi: 10.1016/0956-7151(95)90164-7 – volume: 25 start-page: 1 year: 2009 ident: 10.1016/j.ijmecsci.2014.06.001_bib20 article-title: Prediction of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2008.01.005 – ident: 10.1016/j.ijmecsci.2014.06.001_bib36 – volume: 50 start-page: 1011 year: 2004 ident: 10.1016/j.ijmecsci.2014.06.001_bib17 article-title: Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet publication-title: Scr Mater doi: 10.1016/j.scriptamat.2003.12.031 – volume: 52-2 start-page: 183 year: 2010 ident: 10.1016/j.ijmecsci.2014.06.001_bib27 article-title: Two-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2009.09.007 – volume: 26 start-page: 1183 year: 2010 ident: 10.1016/j.ijmecsci.2014.06.001_bib33 article-title: Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2010.03.010 – volume: 60 start-page: 543 year: 1996 ident: 10.1016/j.ijmecsci.2014.06.001_bib1 article-title: Development of optimum process design system by numerical simulation publication-title: J Mater Process Technol doi: 10.1016/0924-0136(96)02384-9 – volume: 16 start-page: 1419 year: 2000 ident: 10.1016/j.ijmecsci.2014.06.001_bib26 article-title: Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification publication-title: Int J Plasticity doi: 10.1016/S0749-6419(99)00092-3 |
| SSID | ssj0017053 |
| Score | 2.0911164 |
| Snippet | In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Annealing Bendability Crystallographic homogenization method Finite element method Formability Heat treatment Mathematical models Process metallurgy Springback Surface layer Texture Texture evolution Two-scale finite element method |
| Title | Process metallurgy analyses to design a high-bendability and high-springback property sheet by using two-scale finite element method |
| URI | https://dx.doi.org/10.1016/j.ijmecsci.2014.06.001 https://www.proquest.com/docview/1651412942 |
| Volume | 87 |
| WOSCitedRecordID | wos000342477100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2162 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017053 issn: 0020-7403 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-15aFF4ma5-JldHytUVEBEHIqUm7WvqE5SO4rt0t77C_lFzD5spwFUEOJiReusbXk-z347-80sQm9CQjIOxNWnCRN-Qsc60BQyPxIx2ISxNBozs9kEmUzodJp9GY2-d7kwF0tSlvTyMlv9V1NDGxhbp87-hbn7i0ID_AajwxHMDsc_MryT_uu9odly2a5NhSVdecQWc5BGsuExTxcq9rmCKbnRx9o6TKbRrtVyJhZavrXS1Xe9-kwvXgNXbU1woflW-TWYV3mzQrNWT1kZutuRepPy3ow5blSqOFc663hIyxSDnHHCFuxcyzyNqy7mRY--Cp7XYIwtVH3Wt39q19DBBGdPinV11S76U58rHf8wQ01btwu1GecIk14x54JvXQLOoHayyQiBT5LA-khlfTglmR-FN528G9Wtl7abFrnxPrQ3-WkosVGN-WExh9cBr0HLAJNDu3Y1DJ69pFGvegf6SWDGqnlTegftRiTNwNPuHn04nn7s17ZI4GqjukffyFv_9d1-R5m2yINhRKcP0QM3lcFHFoKP0EiVj9H9jQKXT9C1AyMewIg7MOKmwhaMmOFtMMK_JN4CI-7AiA0YMb_CBoy4ByO2YMQOjNiC8Sn6-v749N2J7_b98EWcpI2fRlTwIJIwFVCZCuQMaCyRCib2dJYGIkgVo4QLQoGLChlyFssg5FEkgTvzOM7iZ2inrEq1h7DiNEzZmPM4nSVSBpTRcKzgYhGXVCq1j9Lu1ebCFcXXe7Ms8079OM87k-TaJLmVge6jt32_lS0Lc2uPrLNc7j4qS1pzANytfV93ps7B--slPVaqqq3zcAwTHqDsSXTwD9d_ju4NX9wLtNOsW_US3RUXTVGvXzn8_gA2OuF_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+metallurgy+analyses+to+design+a+high-bendability+and+high-springback+property+sheet+by+using+two-scale+finite+element+method&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Nakamachi%2C+Eiji&rft.au=Honda%2C+Takeshi&rft.au=Kuramae%2C+Hiroyuki&rft.au=Morita%2C+Yusuke&rft.date=2014-10-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=87&rft.spage=89&rft.epage=101&rft_id=info:doi/10.1016%2Fj.ijmecsci.2014.06.001&rft.externalDocID=S0020740314002185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon |