Process metallurgy analyses to design a high-bendability and high-springback property sheet by using two-scale finite element method

In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal tex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of mechanical sciences Ročník 87; s. 89 - 101
Hlavní autori: Nakamachi, Eiji, Honda, Takeshi, Kuramae, Hiroyuki, Morita, Yusuke, Morimoto, Hideo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2014
Predmet:
ISSN:0020-7403, 1879-2162
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in “V-bend” test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for “V-bend” process analyses. The RVE model was featured as 3×3×3 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}〈100〉 orientation by using the Johnson–Mehl–Avrami׳s equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained. •Process metallurgy simulation technique for a new high-formability Al alloy sheet.•Design of polycrystal texture through asymmetric rolling and heat treatment process.•We found an optimum process parameters to generate crystal texture.
AbstractList In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in "V-bend" test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for "V-bend" process analyses. The RVE model was featured as 333 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}100 orientation by using the Johnson-Mehl-Avrami's equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained.
In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To elucidate the relationships between the sheet metal formability and the crystal texture, we applied our two-scale finite element (FE) procedure based on the crystallographic homogenization method to analyze the bending and springback process. Our code employed two-scale FE model, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the crystal orientation distribution, such as the texture characteristics. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture and hardening evolutions in the micro-scale. The macro-FE model consisted of the die, the punch and the sheet metal. The die and the punch were modelled as the rigid bodies in “V-bend” test problem. The crystal orientation distribution was employed in the microscopic polycrystal FE model, which was assigned by a three-dimensional representative volume element (RVE). This FE model was used as the initial textures for “V-bend” process analyses. The RVE model was featured as 3×3×3 equi-divided iso-parametric solid elements, totally 27 FEs with 216 crystal orientations. Bendability was evaluated by the coefficient of shear strain concentration index using two-scale FE results. On the other hand, the springback characteristics were evaluated by springback angle defined by the angular difference between before and after springback, which occurred in the punch and die removing process. We studied two relationships between (1) the bendability and (2) the springback. Furthermore, we designed the polycrystal texture through the asymmetric rolling and annealing heat treatment process to generate a high-bendability and high-springback property polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}〈100〉 orientation by using the Johnson–Mehl–Avrami׳s equation. In the process optimization, we adopted the asymmetric rolling ratio and the annealing heat treatment time for the design parameters, and the bendability factor and the springback angle as the objective functions. The response surface algorithm was used to optimize the design parameter for maximizing the bendability and minimizing the springback angle. As an optimized result, the asymmetric ratio 1.13 and the annealing heat treatment time 13.5min were obtained. •Process metallurgy simulation technique for a new high-formability Al alloy sheet.•Design of polycrystal texture through asymmetric rolling and heat treatment process.•We found an optimum process parameters to generate crystal texture.
Author Honda, Takeshi
Morimoto, Hideo
Kuramae, Hiroyuki
Nakamachi, Eiji
Morita, Yusuke
Author_xml – sequence: 1
  givenname: Eiji
  surname: Nakamachi
  fullname: Nakamachi, Eiji
  organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
– sequence: 2
  givenname: Takeshi
  surname: Honda
  fullname: Honda, Takeshi
  organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
– sequence: 3
  givenname: Hiroyuki
  orcidid: 0000-0001-5571-8288
  surname: Kuramae
  fullname: Kuramae, Hiroyuki
  email: kuramae@dim.oit.ac.jp
  organization: Department of Technology Management, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
– sequence: 4
  givenname: Yusuke
  surname: Morita
  fullname: Morita, Yusuke
  organization: Department of Biomedical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
– sequence: 5
  givenname: Hideo
  surname: Morimoto
  fullname: Morimoto, Hideo
  organization: Furukawa Electric Co. Ltd., 2-4-3 Okano, Nishi-ku, Yokohama 220-0073, Japan
BookMark eNqFkE1vEzEQhi1UJNLCX0A-ctnt2PsZiQOooh9SJTjA2fLas4mD1w4eB5Q7PxxHKZdeehpp5nlnRs8luwgxIGPvBdQCRH-9q91uQUPG1RJEW0NfA4hXbCXGYV1J0csLtgKQUA0tNG_YJdGuAAN0zYr9_ZaiQSK-YNbeH9LmyHXQ_khIPEdukdwmcM23brOtJgxWT867fKLsuUn75MJm0uYn36e4x1SGtEXMfDryA5UZz39iRUZ75LMLLiNHjwuGfLq6jfYtez1rT_juqV6xH7dfvt_cV49f7x5uPj9Wpmm7XHVyNBNIK4TENYKdYRgHi6Jvx7kDAx3qcZjMMEIvjBWTbiyISUrbdN3UNOvmin047y1__jogZbU4Mui9DhgPpETfiVbIdSsL-vGMmhSJEs7KuKyziyEn7bwSoE7y1U79l69O8hX0qrgt8f5ZvEhadDq-HPx0DmLx8NthUoXAYNC6hCYrG91LK_4BddWn5g
CitedBy_id crossref_primary_10_1080_21642583_2020_1843084
crossref_primary_10_1016_j_ijmecsci_2015_11_021
Cites_doi 10.1016/j.jmps.2013.05.005
10.1016/0001-6160(85)90188-9
10.1016/j.proeng.2011.04.372
10.1016/j.jmatprotec.2006.11.096
10.2320/matertrans.L-MG200951
10.1016/j.ijplas.2006.06.002
10.1016/j.msea.2011.01.048
10.1016/j.ijplas.2004.05.017
10.1016/S1359-6454(01)00036-2
10.1016/S0749-6419(99)00002-9
10.1016/j.jmatprotec.2004.04.253
10.1115/1.2788923
10.1016/j.actamat.2008.12.017
10.1016/0022-5096(96)00001-4
10.1016/j.ijmecsci.2007.09.008
10.1016/S0749-6419(01)00052-3
10.1016/0956-716X(92)90139-6
10.1016/j.scriptamat.2007.10.049
10.1016/S0924-0136(98)00170-8
10.1016/S0924-0136(03)00314-5
10.1016/j.ijmecsci.2009.08.009
10.1016/S0020-7403(01)00025-X
10.1016/j.msea.2012.11.037
10.1016/j.ijplas.2006.03.014
10.1115/1.3167205
10.1016/0749-6419(93)90061-T
10.1016/0045-7825(94)90076-0
10.1016/0020-7683(83)90023-9
10.1007/s11661-007-9218-2
10.1016/S0749-6419(01)00064-X
10.1016/0956-7151(95)90164-7
10.1016/j.ijplas.2008.01.005
10.1016/j.scriptamat.2003.12.031
10.1016/j.ijmecsci.2009.09.007
10.1016/j.ijplas.2010.03.010
10.1016/0924-0136(96)02384-9
10.1016/S0749-6419(99)00092-3
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7QF
7TB
8BQ
8FD
FR3
JG9
DOI 10.1016/j.ijmecsci.2014.06.001
DatabaseName CrossRef
Aluminium Industry Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Aluminium Industry Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2162
EndPage 101
ExternalDocumentID 10_1016_j_ijmecsci_2014_06_001
S0020740314002185
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
WUQ
XFK
XPP
XSW
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7TB
8BQ
8FD
FR3
JG9
ID FETCH-LOGICAL-c345t-528cb02d112e9e0df0787de1648f50c05ea87bc78061cd1ba3d01b22d355b3393
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342477100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7403
IngestDate Sat Sep 27 21:38:59 EDT 2025
Tue Nov 18 22:13:34 EST 2025
Sat Nov 29 06:11:40 EST 2025
Fri Feb 23 02:23:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crystallographic homogenization method
Two-scale finite element method
Process metallurgy
Springback
Bendability
Texture evolution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-528cb02d112e9e0df0787de1648f50c05ea87bc78061cd1ba3d01b22d355b3393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5571-8288
PQID 1651412942
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1651412942
crossref_citationtrail_10_1016_j_ijmecsci_2014_06_001
crossref_primary_10_1016_j_ijmecsci_2014_06_001
elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2014_06_001
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of mechanical sciences
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kaneko, Eguchi (bib13) 2011; 50-1
(bib44) 1998
Johnson, Mehl (bib29) 1939; 135
Knezevic, Lebensohn, Cazacu, Revil-Baudard, Proust, Vogel (bib34) 2013; 564
Engler, Lücke (bib30) 1992; 27-11
Bunge (bib23) 1982
Beaudoin, Dawson, Mathur, Kocks, Korzewa (bib42) 1994; 177
Kang, Kang, Kim, Huh, Suk (bib7) 2007; 187–188
Wagner, Engler, Lücke (bib15) 1995; 43-10
Nakamachi, Tam, Morimoto (bib24) 2007; 23
Nakamachi, Hiraiwa, Morimoto, Harimoto (bib26) 2000; 16
Zhang, Vincent, Sha, Zuo, Fundenberger, Esling (bib17) 2004; 50
Harder (bib41) 1999; 15
Asaro (bib37) 1983; 50
Kim, Lee (bib8) 2001; 49-13
Nakamachi, Kuramae, Sakamoto, Morimoto (bib5) 2010; 52
Nakamachi, Xie, Morimoto, Morita, Yokoyama (bib25) 2002; 18
Katayama, Nakamachi, Nakamura, Ohata, Morishita, Murase (bib4) 2004; 155–156
Lee, Lee (bib9) 2001; 43-9
Pan, Rice (bib39) 1983; 19
Ohata, Nakamura, Katayama, Nakamachi, Nakano (bib1) 1996; 60
Anand, Kothari (bib21) 1996; 44
Nakamachi, Dong (bib28) 1997; 64
Knezevic, McCabe, Lebensohn, Tome, Liu, Lovato (bib35) 2013; 61
Knezevic, Al-Harbi, Kalidinidi (bib32) 2009; 57
Kuroda, Tvergaard (bib11) 2007; 23
Muramatsu, Takeuchi, Yamaue, Sakai, Utsunomiya (bib16) 2009; 48
Ohata, Nakamura, Katayama, Nakamachi (bib3) 2003; 143–144
Diard, Leclercq, Rousselier, Cailletaud (bib22) 2005; 21
Lee, Lee (bib10) 2008; 50-5
Nah, Kang, Huh, Engler (bib31) 2008; 58-6
Asaro, Needleman (bib38) 1985; 33
Zhou, Neale, Tóth (bib40) 1993; 9
Ohata, Nakamura, Katayama, Nakamachi, Omori (bib2) 1998; 80-81
Signorelli, Bertinetti, Turner (bib20) 2009; 25
Sachs (bib43) 1928; 72
Shaffer, Knezevic, Kalidindi (bib33) 2010; 26
Takeda, Hibino, Takata (bib14) 2010; 51-4
Man (bib18) 2002; 18-12
Homer, Adams, Wagoner (bib19) 2007; 38
Needleman A., Finite element for finite strain plasticity problems. in: Proceeding of the workshop on plasticity of materials at finite strain, 1981, 1-11.
Kuramae, Ikeya, Sakamoto, Morimoto, Nakamachi (bib27) 2010; 52-2
Kuramae, Sakamoto, Morimoto, Nakamachi (bib6) 2011; 10
Ikawa, Asano, Kuroda, Yoshida (bib12) 2011; 528
Ikawa (10.1016/j.ijmecsci.2014.06.001_bib12) 2011; 528
Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib26) 2000; 16
Knezevic (10.1016/j.ijmecsci.2014.06.001_bib32) 2009; 57
Shaffer (10.1016/j.ijmecsci.2014.06.001_bib33) 2010; 26
Sachs (10.1016/j.ijmecsci.2014.06.001_bib43) 1928; 72
Man (10.1016/j.ijmecsci.2014.06.001_bib18) 2002; 18-12
Lee (10.1016/j.ijmecsci.2014.06.001_bib10) 2008; 50-5
Beaudoin (10.1016/j.ijmecsci.2014.06.001_bib42) 1994; 177
Katayama (10.1016/j.ijmecsci.2014.06.001_bib4) 2004; 155–156
Kuramae (10.1016/j.ijmecsci.2014.06.001_bib27) 2010; 52-2
Kaneko (10.1016/j.ijmecsci.2014.06.001_bib13) 2011; 50-1
Kuramae (10.1016/j.ijmecsci.2014.06.001_bib6) 2011; 10
Zhang (10.1016/j.ijmecsci.2014.06.001_bib17) 2004; 50
Kang (10.1016/j.ijmecsci.2014.06.001_bib7) 2007; 187–188
Homer (10.1016/j.ijmecsci.2014.06.001_bib19) 2007; 38
Johnson (10.1016/j.ijmecsci.2014.06.001_bib29) 1939; 135
Engler (10.1016/j.ijmecsci.2014.06.001_bib30) 1992; 27-11
Harder (10.1016/j.ijmecsci.2014.06.001_bib41) 1999; 15
Takeda (10.1016/j.ijmecsci.2014.06.001_bib14) 2010; 51-4
10.1016/j.ijmecsci.2014.06.001_bib36
Ohata (10.1016/j.ijmecsci.2014.06.001_bib1) 1996; 60
Ohata (10.1016/j.ijmecsci.2014.06.001_bib2) 1998; 80-81
Kim (10.1016/j.ijmecsci.2014.06.001_bib8) 2001; 49-13
Asaro (10.1016/j.ijmecsci.2014.06.001_bib38) 1985; 33
Knezevic (10.1016/j.ijmecsci.2014.06.001_bib35) 2013; 61
Bunge (10.1016/j.ijmecsci.2014.06.001_bib23) 1982
Nah (10.1016/j.ijmecsci.2014.06.001_bib31) 2008; 58-6
Lee (10.1016/j.ijmecsci.2014.06.001_bib9) 2001; 43-9
Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib28) 1997; 64
Asaro (10.1016/j.ijmecsci.2014.06.001_bib37) 1983; 50
Wagner (10.1016/j.ijmecsci.2014.06.001_bib15) 1995; 43-10
Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib5) 2010; 52
Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib25) 2002; 18
Pan (10.1016/j.ijmecsci.2014.06.001_bib39) 1983; 19
Muramatsu (10.1016/j.ijmecsci.2014.06.001_bib16) 2009; 48
(10.1016/j.ijmecsci.2014.06.001_bib44) 1998
Diard (10.1016/j.ijmecsci.2014.06.001_bib22) 2005; 21
Ohata (10.1016/j.ijmecsci.2014.06.001_bib3) 2003; 143–144
Signorelli (10.1016/j.ijmecsci.2014.06.001_bib20) 2009; 25
Anand (10.1016/j.ijmecsci.2014.06.001_bib21) 1996; 44
Kuroda (10.1016/j.ijmecsci.2014.06.001_bib11) 2007; 23
Zhou (10.1016/j.ijmecsci.2014.06.001_bib40) 1993; 9
Nakamachi (10.1016/j.ijmecsci.2014.06.001_bib24) 2007; 23
Knezevic (10.1016/j.ijmecsci.2014.06.001_bib34) 2013; 564
References_xml – volume: 51-4
  start-page: 614
  year: 2010
  end-page: 619
  ident: bib14
  article-title: Influence of crystal orientations on the bendability of Al–Mg–Si
  publication-title: Mater Trans
– volume: 21
  start-page: 691
  year: 2005
  end-page: 722
  ident: bib22
  article-title: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity—application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries
  publication-title: Int J Plasticity
– volume: 49-13
  start-page: 2583
  year: 2001
  end-page: 2595
  ident: bib8
  article-title: Analysis of deformation textures of asymmetrically rolled aluminum sheets
  publication-title: Acta Mater
– volume: 38
  start-page: 1575
  year: 2007
  end-page: 1586
  ident: bib19
  article-title: Recovering grain-boundary inclination parameters through oblique double sectioning
  publication-title: Metall Mater Trans A
– volume: 10
  start-page: 2250
  year: 2011
  end-page: 2255
  ident: bib6
  article-title: Process metallurgy design for high-formability aluminum alloy sheet metal generation by using two-scale FEM
  publication-title: Procedia Eng
– year: 1998
  ident: bib44
  publication-title: Texture and anisotropy, preferred orientations, and their effect on materials properties
– volume: 61
  start-page: 2034
  year: 2013
  end-page: 2046
  ident: bib35
  article-title: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals
  publication-title: J Mech Phys Solids
– volume: 80-81
  start-page: 635
  year: 1998
  end-page: 641
  ident: bib2
  article-title: Improvement of optimum process design system by numerical simulation
  publication-title: J Mater Process Technol
– volume: 16
  start-page: 1419
  year: 2000
  end-page: 1441
  ident: bib26
  article-title: Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification
  publication-title: Int J Plasticity
– volume: 50
  start-page: 921
  year: 1983
  end-page: 934
  ident: bib37
  article-title: Crystal plasticity
  publication-title: J App Mech Trans, ASME
– year: 1982
  ident: bib23
  article-title: Texture analysis in materials science
– volume: 18
  start-page: 617
  year: 2002
  end-page: 632
  ident: bib25
  article-title: Formability assessment of FCC aluminum alloy sheet by using elastic/crystalline viscoplastic finite element analysis
  publication-title: Int J Plasticity
– volume: 177
  start-page: 49
  year: 1994
  end-page: 70
  ident: bib42
  article-title: Application of polycrystal plasticity to sheet forming
  publication-title: Comput Meth Appl Mech Eng
– volume: 52
  start-page: 146
  year: 2010
  end-page: 157
  ident: bib5
  article-title: Process metallurgy design of aluminum alloy sheet rolling by using two-scale finite element analysis and optimization algorithm
  publication-title: Int J Mech Sci
– volume: 52-2
  start-page: 183
  year: 2010
  end-page: 197
  ident: bib27
  article-title: Two-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method
  publication-title: Int J Mech Sci
– volume: 19
  start-page: 973
  year: 1983
  end-page: 987
  ident: bib39
  article-title: Rate sensitivity of plastic flow and implications for yield-surface vertices
  publication-title: Int J Solid Struct
– volume: 44
  start-page: 525
  year: 1996
  end-page: 558
  ident: bib21
  article-title: A computational procedure for rate-independent crystal plasticity
  publication-title: J Mech Phys Solids
– volume: 64
  start-page: 519
  year: 1997
  end-page: 524
  ident: bib28
  article-title: Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis
  publication-title: J Appl Mech Trans ASME
– volume: 143–144
  start-page: 667
  year: 2003
  end-page: 672
  ident: bib3
  article-title: Development of optimum process design system for sheet fabrication using response surface method
  publication-title: J Mater Process Technol
– volume: 528
  start-page: 4050
  year: 2011
  end-page: 4054
  ident: bib12
  article-title: Effects of crystal orientation on bendability of aluminum alloy sheet
  publication-title: Mater. Sci. Eng, A
– volume: 135
  start-page: 416
  year: 1939
  end-page: 458
  ident: bib29
  article-title: Reaction kinetics in processes of nucleation and growth
  publication-title: Trans Am Inst Min Eng
– volume: 50-5
  start-page: 869
  year: 2008
  end-page: 887
  ident: bib10
  article-title: Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling
  publication-title: Int J Mech Sci
– volume: 43-10
  start-page: 3799
  year: 1995
  end-page: 3812
  ident: bib15
  article-title: Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {1
  publication-title: Acta Metall Mater
– reference: Needleman A., Finite element for finite strain plasticity problems. in: Proceeding of the workshop on plasticity of materials at finite strain, 1981, 1-11.
– volume: 187–188
  start-page: 542
  year: 2007
  end-page: 545
  ident: bib7
  article-title: Formation of shear texture components during hot rolling of AA 1050
  publication-title: J Mater Process Technol
– volume: 25
  start-page: 1
  year: 2009
  end-page: 25
  ident: bib20
  article-title: Prediction of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model
  publication-title: Int J Plasticity
– volume: 43-9
  start-page: 1997
  year: 2001
  end-page: 2015
  ident: bib9
  article-title: Analysis of deformation textures of asymmetrically rolled steel sheets
  publication-title: Int J Mech Sci
– volume: 72
  start-page: 734
  year: 1928
  end-page: 736
  ident: bib43
  article-title: Zur Ableilung einer Fleissbedingung
  publication-title: Z Ver Dtsch Ing
– volume: 23
  start-page: 244
  year: 2007
  end-page: 272
  ident: bib11
  article-title: Effects of texture on shear band formation in plane strain tension/compression and bending
  publication-title: Int J Plasticity
– volume: 155–156
  start-page: 1564
  year: 2004
  end-page: 1570
  ident: bib4
  article-title: Development of process design system for press forming—multi-objective optimization of intermediate die shape in transfer forming
  publication-title: J Mater Process Technol
– volume: 18-12
  start-page: 1683
  year: 2002
  end-page: 1706
  ident: bib18
  article-title: On the
  publication-title: Int J Plasticity
– volume: 58-6
  start-page: 500
  year: 2008
  end-page: 503
  ident: bib31
  article-title: Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy
  publication-title: Scr Mater
– volume: 48
  start-page: 123
  year: 2009
  end-page: 128
  ident: bib16
  article-title: Effect of differential speed rolling on the texture and bend formability of Cu–Be–Co and Cu–Sn–P strips and consideration for industrial applications
  publication-title: J JRICu (in Japanese)
– volume: 57
  start-page: 1777
  year: 2009
  end-page: 1784
  ident: bib32
  article-title: Crystal plasticity simulations using discrete Fourier transforms
  publication-title: Acta Mater.
– volume: 27-11
  start-page: 1527
  year: 1992
  end-page: 1532
  ident: bib30
  article-title: Mechanisms of recrystallization texture formation in aluminum alloys
  publication-title: Scr Metall Mater
– volume: 60
  start-page: 543
  year: 1996
  end-page: 548
  ident: bib1
  article-title: Development of optimum process design system by numerical simulation
  publication-title: J Mater Process Technol
– volume: 33
  start-page: 923
  year: 1985
  end-page: 953
  ident: bib38
  article-title: Texture development and strain hardening in rate dependent polycrystals
  publication-title: Acta Metal
– volume: 564
  start-page: 116
  year: 2013
  end-page: 126
  ident: bib34
  article-title: Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements
  publication-title: Mater Sci Eng, A
– volume: 50-1
  start-page: 33
  year: 2011
  end-page: 37
  ident: bib13
  article-title: Influence of texture on bendability of Cu–Ni–Si alloys
  publication-title: J JRICu (in Japanese)
– volume: 50
  start-page: 1011
  year: 2004
  end-page: 1015
  ident: bib17
  article-title: Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet
  publication-title: Scr Mater
– volume: 15
  start-page: 605
  year: 1999
  end-page: 624
  ident: bib41
  article-title: Crystallographic model for the study of local deformation processes in polycrystals
  publication-title: Int J Plasticity
– volume: 23
  start-page: 450
  year: 2007
  end-page: 489
  ident: bib24
  article-title: Two-scale finite element analyses of sheet materials by using SEM-EBSD measured crystallographic RVE models
  publication-title: Int J Plasticity
– volume: 26
  start-page: 1183
  year: 2010
  end-page: 1194
  ident: bib33
  article-title: Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance
  publication-title: Int J Plasticity
– volume: 9
  start-page: 961
  year: 1993
  end-page: 978
  ident: bib40
  article-title: A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals
  publication-title: Int J Plasticity
– volume: 48
  start-page: 123
  year: 2009
  ident: 10.1016/j.ijmecsci.2014.06.001_bib16
  article-title: Effect of differential speed rolling on the texture and bend formability of Cu–Be–Co and Cu–Sn–P strips and consideration for industrial applications
  publication-title: J JRICu (in Japanese)
– volume: 61
  start-page: 2034
  year: 2013
  ident: 10.1016/j.ijmecsci.2014.06.001_bib35
  article-title: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2013.05.005
– volume: 72
  start-page: 734
  year: 1928
  ident: 10.1016/j.ijmecsci.2014.06.001_bib43
  article-title: Zur Ableilung einer Fleissbedingung
  publication-title: Z Ver Dtsch Ing
– volume: 33
  start-page: 923
  year: 1985
  ident: 10.1016/j.ijmecsci.2014.06.001_bib38
  article-title: Texture development and strain hardening in rate dependent polycrystals
  publication-title: Acta Metal
  doi: 10.1016/0001-6160(85)90188-9
– volume: 10
  start-page: 2250
  year: 2011
  ident: 10.1016/j.ijmecsci.2014.06.001_bib6
  article-title: Process metallurgy design for high-formability aluminum alloy sheet metal generation by using two-scale FEM
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.04.372
– volume: 187–188
  start-page: 542
  year: 2007
  ident: 10.1016/j.ijmecsci.2014.06.001_bib7
  article-title: Formation of shear texture components during hot rolling of AA 1050
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.11.096
– volume: 135
  start-page: 416
  year: 1939
  ident: 10.1016/j.ijmecsci.2014.06.001_bib29
  article-title: Reaction kinetics in processes of nucleation and growth
  publication-title: Trans Am Inst Min Eng
– volume: 51-4
  start-page: 614
  year: 2010
  ident: 10.1016/j.ijmecsci.2014.06.001_bib14
  article-title: Influence of crystal orientations on the bendability of Al–Mg–Si
  publication-title: Mater Trans
  doi: 10.2320/matertrans.L-MG200951
– volume: 23
  start-page: 450
  year: 2007
  ident: 10.1016/j.ijmecsci.2014.06.001_bib24
  article-title: Two-scale finite element analyses of sheet materials by using SEM-EBSD measured crystallographic RVE models
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2006.06.002
– year: 1998
  ident: 10.1016/j.ijmecsci.2014.06.001_bib44
– volume: 528
  start-page: 4050
  year: 2011
  ident: 10.1016/j.ijmecsci.2014.06.001_bib12
  article-title: Effects of crystal orientation on bendability of aluminum alloy sheet
  publication-title: Mater. Sci. Eng, A
  doi: 10.1016/j.msea.2011.01.048
– volume: 21
  start-page: 691
  year: 2005
  ident: 10.1016/j.ijmecsci.2014.06.001_bib22
  article-title: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity—application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2004.05.017
– volume: 49-13
  start-page: 2583
  year: 2001
  ident: 10.1016/j.ijmecsci.2014.06.001_bib8
  article-title: Analysis of deformation textures of asymmetrically rolled aluminum sheets
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00036-2
– volume: 15
  start-page: 605
  year: 1999
  ident: 10.1016/j.ijmecsci.2014.06.001_bib41
  article-title: Crystallographic model for the study of local deformation processes in polycrystals
  publication-title: Int J Plasticity
  doi: 10.1016/S0749-6419(99)00002-9
– volume: 155–156
  start-page: 1564
  year: 2004
  ident: 10.1016/j.ijmecsci.2014.06.001_bib4
  article-title: Development of process design system for press forming—multi-objective optimization of intermediate die shape in transfer forming
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.04.253
– volume: 64
  start-page: 519
  year: 1997
  ident: 10.1016/j.ijmecsci.2014.06.001_bib28
  article-title: Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis
  publication-title: J Appl Mech Trans ASME
  doi: 10.1115/1.2788923
– volume: 57
  start-page: 1777
  year: 2009
  ident: 10.1016/j.ijmecsci.2014.06.001_bib32
  article-title: Crystal plasticity simulations using discrete Fourier transforms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.12.017
– volume: 44
  start-page: 525
  year: 1996
  ident: 10.1016/j.ijmecsci.2014.06.001_bib21
  article-title: A computational procedure for rate-independent crystal plasticity
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(96)00001-4
– volume: 50-5
  start-page: 869
  year: 2008
  ident: 10.1016/j.ijmecsci.2014.06.001_bib10
  article-title: Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2007.09.008
– volume: 50-1
  start-page: 33
  year: 2011
  ident: 10.1016/j.ijmecsci.2014.06.001_bib13
  article-title: Influence of texture on bendability of Cu–Ni–Si alloys
  publication-title: J JRICu (in Japanese)
– volume: 18
  start-page: 617
  year: 2002
  ident: 10.1016/j.ijmecsci.2014.06.001_bib25
  article-title: Formability assessment of FCC aluminum alloy sheet by using elastic/crystalline viscoplastic finite element analysis
  publication-title: Int J Plasticity
  doi: 10.1016/S0749-6419(01)00052-3
– volume: 27-11
  start-page: 1527
  year: 1992
  ident: 10.1016/j.ijmecsci.2014.06.001_bib30
  article-title: Mechanisms of recrystallization texture formation in aluminum alloys
  publication-title: Scr Metall Mater
  doi: 10.1016/0956-716X(92)90139-6
– volume: 58-6
  start-page: 500
  year: 2008
  ident: 10.1016/j.ijmecsci.2014.06.001_bib31
  article-title: Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2007.10.049
– volume: 80-81
  start-page: 635
  year: 1998
  ident: 10.1016/j.ijmecsci.2014.06.001_bib2
  article-title: Improvement of optimum process design system by numerical simulation
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00170-8
– volume: 143–144
  start-page: 667
  year: 2003
  ident: 10.1016/j.ijmecsci.2014.06.001_bib3
  article-title: Development of optimum process design system for sheet fabrication using response surface method
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00314-5
– volume: 52
  start-page: 146
  year: 2010
  ident: 10.1016/j.ijmecsci.2014.06.001_bib5
  article-title: Process metallurgy design of aluminum alloy sheet rolling by using two-scale finite element analysis and optimization algorithm
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2009.08.009
– volume: 43-9
  start-page: 1997
  year: 2001
  ident: 10.1016/j.ijmecsci.2014.06.001_bib9
  article-title: Analysis of deformation textures of asymmetrically rolled steel sheets
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(01)00025-X
– volume: 564
  start-page: 116
  year: 2013
  ident: 10.1016/j.ijmecsci.2014.06.001_bib34
  article-title: Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2012.11.037
– volume: 23
  start-page: 244
  year: 2007
  ident: 10.1016/j.ijmecsci.2014.06.001_bib11
  article-title: Effects of texture on shear band formation in plane strain tension/compression and bending
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2006.03.014
– volume: 50
  start-page: 921
  year: 1983
  ident: 10.1016/j.ijmecsci.2014.06.001_bib37
  article-title: Crystal plasticity
  publication-title: J App Mech Trans, ASME
  doi: 10.1115/1.3167205
– volume: 9
  start-page: 961
  year: 1993
  ident: 10.1016/j.ijmecsci.2014.06.001_bib40
  article-title: A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals
  publication-title: Int J Plasticity
  doi: 10.1016/0749-6419(93)90061-T
– volume: 177
  start-page: 49
  year: 1994
  ident: 10.1016/j.ijmecsci.2014.06.001_bib42
  article-title: Application of polycrystal plasticity to sheet forming
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/0045-7825(94)90076-0
– volume: 19
  start-page: 973
  year: 1983
  ident: 10.1016/j.ijmecsci.2014.06.001_bib39
  article-title: Rate sensitivity of plastic flow and implications for yield-surface vertices
  publication-title: Int J Solid Struct
  doi: 10.1016/0020-7683(83)90023-9
– year: 1982
  ident: 10.1016/j.ijmecsci.2014.06.001_bib23
– volume: 38
  start-page: 1575
  year: 2007
  ident: 10.1016/j.ijmecsci.2014.06.001_bib19
  article-title: Recovering grain-boundary inclination parameters through oblique double sectioning
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-007-9218-2
– volume: 18-12
  start-page: 1683
  year: 2002
  ident: 10.1016/j.ijmecsci.2014.06.001_bib18
  article-title: On the r-value of textured sheet metals
  publication-title: Int J Plasticity
  doi: 10.1016/S0749-6419(01)00064-X
– volume: 43-10
  start-page: 3799
  year: 1995
  ident: 10.1016/j.ijmecsci.2014.06.001_bib15
  article-title: Formation of Cu-type shear bands and their influence on deformation and texture of rolled f.c.c. {112}〈111〉 single crystals
  publication-title: Acta Metall Mater
  doi: 10.1016/0956-7151(95)90164-7
– volume: 25
  start-page: 1
  year: 2009
  ident: 10.1016/j.ijmecsci.2014.06.001_bib20
  article-title: Prediction of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2008.01.005
– ident: 10.1016/j.ijmecsci.2014.06.001_bib36
– volume: 50
  start-page: 1011
  year: 2004
  ident: 10.1016/j.ijmecsci.2014.06.001_bib17
  article-title: Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2003.12.031
– volume: 52-2
  start-page: 183
  year: 2010
  ident: 10.1016/j.ijmecsci.2014.06.001_bib27
  article-title: Two-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2009.09.007
– volume: 26
  start-page: 1183
  year: 2010
  ident: 10.1016/j.ijmecsci.2014.06.001_bib33
  article-title: Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2010.03.010
– volume: 60
  start-page: 543
  year: 1996
  ident: 10.1016/j.ijmecsci.2014.06.001_bib1
  article-title: Development of optimum process design system by numerical simulation
  publication-title: J Mater Process Technol
  doi: 10.1016/0924-0136(96)02384-9
– volume: 16
  start-page: 1419
  year: 2000
  ident: 10.1016/j.ijmecsci.2014.06.001_bib26
  article-title: Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification
  publication-title: Int J Plasticity
  doi: 10.1016/S0749-6419(99)00092-3
SSID ssj0017053
Score 2.0911164
Snippet In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design to generate an ideal aluminum alloy sheet...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Annealing
Bendability
Crystallographic homogenization method
Finite element method
Formability
Heat treatment
Mathematical models
Process metallurgy
Springback
Surface layer
Texture
Texture evolution
Two-scale finite element method
Title Process metallurgy analyses to design a high-bendability and high-springback property sheet by using two-scale finite element method
URI https://dx.doi.org/10.1016/j.ijmecsci.2014.06.001
https://www.proquest.com/docview/1651412942
Volume 87
WOSCitedRecordID wos000342477100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2162
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017053
  issn: 0020-7403
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-15aFF4ma5-JldHytUVEBEHIqUm7WvqE5SO4rt0t77C_lFzD5spwFUEOJiReusbXk-z347-80sQm9CQjIOxNWnCRN-Qsc60BQyPxIx2ISxNBozs9kEmUzodJp9GY2-d7kwF0tSlvTyMlv9V1NDGxhbp87-hbn7i0ID_AajwxHMDsc_MryT_uu9odly2a5NhSVdecQWc5BGsuExTxcq9rmCKbnRx9o6TKbRrtVyJhZavrXS1Xe9-kwvXgNXbU1woflW-TWYV3mzQrNWT1kZutuRepPy3ow5blSqOFc663hIyxSDnHHCFuxcyzyNqy7mRY--Cp7XYIwtVH3Wt39q19DBBGdPinV11S76U58rHf8wQ01btwu1GecIk14x54JvXQLOoHayyQiBT5LA-khlfTglmR-FN528G9Wtl7abFrnxPrQ3-WkosVGN-WExh9cBr0HLAJNDu3Y1DJ69pFGvegf6SWDGqnlTegftRiTNwNPuHn04nn7s17ZI4GqjukffyFv_9d1-R5m2yINhRKcP0QM3lcFHFoKP0EiVj9H9jQKXT9C1AyMewIg7MOKmwhaMmOFtMMK_JN4CI-7AiA0YMb_CBoy4ByO2YMQOjNiC8Sn6-v749N2J7_b98EWcpI2fRlTwIJIwFVCZCuQMaCyRCib2dJYGIkgVo4QLQoGLChlyFssg5FEkgTvzOM7iZ2inrEq1h7DiNEzZmPM4nSVSBpTRcKzgYhGXVCq1j9Lu1ebCFcXXe7Ms8079OM87k-TaJLmVge6jt32_lS0Lc2uPrLNc7j4qS1pzANytfV93ps7B--slPVaqqq3zcAwTHqDsSXTwD9d_ju4NX9wLtNOsW_US3RUXTVGvXzn8_gA2OuF_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+metallurgy+analyses+to+design+a+high-bendability+and+high-springback+property+sheet+by+using+two-scale+finite+element+method&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Nakamachi%2C+Eiji&rft.au=Honda%2C+Takeshi&rft.au=Kuramae%2C+Hiroyuki&rft.au=Morita%2C+Yusuke&rft.date=2014-10-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=87&rft.spage=89&rft.epage=101&rft_id=info:doi/10.1016%2Fj.ijmecsci.2014.06.001&rft.externalDocID=S0020740314002185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon