Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics

Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Food control Ročník 145; s. 109496
Hlavní autori: Huang, Wentao, Wang, Xuepei, Zhang, Junchang, Xia, Jie, Zhang, Xiaoshuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2023
Predmet:
ISSN:0956-7135, 1873-7129
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O2, CO2, and C2H4) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics. •A WSN-based environmental monitoring platform for blueberry cold chain was developed.•A model was developed to predict blueberry freshness at three different temperatures.•Non-destructive prediction of blueberry freshness using gas sensed information.•Gas information has a strong correlation with blueberry quality index.•The model proposed in this paper can be applied in cold chain logistics.
AbstractList Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O₂, CO₂, and C₂H₄) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics.
Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O2, CO2, and C2H4) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics. •A WSN-based environmental monitoring platform for blueberry cold chain was developed.•A model was developed to predict blueberry freshness at three different temperatures.•Non-destructive prediction of blueberry freshness using gas sensed information.•Gas information has a strong correlation with blueberry quality index.•The model proposed in this paper can be applied in cold chain logistics.
ArticleNumber 109496
Author Zhang, Junchang
Zhang, Xiaoshuan
Xia, Jie
Huang, Wentao
Wang, Xuepei
Author_xml – sequence: 1
  givenname: Wentao
  surname: Huang
  fullname: Huang, Wentao
  organization: Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing, 100083, PR China
– sequence: 2
  givenname: Xuepei
  orcidid: 0000-0003-2558-4367
  surname: Wang
  fullname: Wang, Xuepei
  organization: Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing, 100083, PR China
– sequence: 3
  givenname: Junchang
  surname: Zhang
  fullname: Zhang, Junchang
  organization: Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing, 100083, PR China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-3879-1317
  surname: Xia
  fullname: Xia, Jie
  organization: Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing, 100083, PR China
– sequence: 5
  givenname: Xiaoshuan
  surname: Zhang
  fullname: Zhang, Xiaoshuan
  email: zhxshuan@cau.edu.cn
  organization: Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing, 100083, PR China
BookMark eNqFkMtqHDEQRUVwIGMnvxC0zKbHenSrNeBFgsnDYMgmWQt1dcmjQS1NJLXBkI-PhrE32XhVz3uLOpfkIqaIhHzkbMsZV9eHrUtphhTrVjAhWnPX79QbsuF6lN3Ixe6CbNhuUC2XwztyWcqBMT4yzjbk791yzOkRF4yVJkensOKEOT9Rl7HsI5ZCjxlnD9WnSCdbcKYtWSzsfUQa0Obo4wO1cabLGqrvSlozIC0Yy2ngI617pJDCTGFvWxnSgy_VQ3lP3jobCn54jlfk97evv25_dPc_v9_dfrnvQPZD7XqFTstx0sj03NvBOg3OuVFoEL0YJBsFQK-sVVrasc1RCzGriXE78l6BvCKfzr7t1T8rlmoWXwBDsBHTWozkg9TtlOjb6s15FXIqJaMz4Ks9_V6z9cFwZk7QzcG8QDcn6OYMvcnVf_Jj9ovNT68LP5-F2Dg8esymgMcIjXxGqGZO_jWLf4q4pY0
CitedBy_id crossref_primary_10_1007_s11694_023_02234_7
crossref_primary_10_1016_j_plaphy_2024_109002
crossref_primary_10_1016_j_snb_2024_136733
crossref_primary_10_1007_s11356_024_34285_8
crossref_primary_10_1016_j_fbio_2025_106928
crossref_primary_10_1016_j_foodcont_2024_110495
crossref_primary_10_3390_systems12070264
crossref_primary_10_3390_foods14030447
crossref_primary_10_1007_s11694_023_02199_7
crossref_primary_10_3390_agronomy13092409
crossref_primary_10_1016_j_tifs_2024_104730
crossref_primary_10_1016_j_rhisph_2023_100792
crossref_primary_10_1108_BFJ_12_2023_1089
crossref_primary_10_1111_jfpe_14631
crossref_primary_10_1016_j_postharvbio_2025_113783
crossref_primary_10_3390_foods14111972
crossref_primary_10_3390_foods14111973
crossref_primary_10_3390_horticulturae11060600
crossref_primary_10_1016_j_sna_2023_114589
crossref_primary_10_3390_pr11030776
crossref_primary_10_1038_s41598_024_72723_2
crossref_primary_10_3390_agriculture13091784
crossref_primary_10_1007_s11694_024_02413_0
crossref_primary_10_1016_j_foodcont_2024_110684
crossref_primary_10_3389_fsufs_2024_1310042
crossref_primary_10_1016_j_foodchem_2023_137387
crossref_primary_10_1016_j_foodchem_2023_137981
crossref_primary_10_1093_fqsafe_fyae007
crossref_primary_10_1007_s11694_023_02302_y
crossref_primary_10_3390_foods12163121
crossref_primary_10_1016_j_jafr_2025_102175
crossref_primary_10_1007_s11356_023_29645_9
crossref_primary_10_1007_s11694_023_02335_3
crossref_primary_10_3390_agriculture13112125
crossref_primary_10_1016_j_foodchem_2025_145249
crossref_primary_10_1016_j_afres_2025_100853
crossref_primary_10_1186_s12870_023_04528_w
crossref_primary_10_3390_app13042674
crossref_primary_10_3390_foods13193025
crossref_primary_10_1016_j_jfoodeng_2024_112053
crossref_primary_10_1016_j_jclepro_2025_145270
crossref_primary_10_1016_j_snb_2025_138686
crossref_primary_10_1016_j_tifs_2025_105056
crossref_primary_10_1016_j_tifs_2025_105254
crossref_primary_10_1111_jfpe_70016
crossref_primary_10_1016_j_foodres_2025_117175
crossref_primary_10_1016_j_heliyon_2024_e30255
crossref_primary_10_1016_j_foodchem_2025_144431
crossref_primary_10_1016_j_snb_2025_137633
crossref_primary_10_1093_ijlct_ctad121
crossref_primary_10_1016_j_foodcont_2025_111720
crossref_primary_10_1016_j_fpsl_2024_101323
crossref_primary_10_1016_j_scienta_2025_113958
crossref_primary_10_1016_j_foodcont_2023_109963
crossref_primary_10_1016_j_ijbiomac_2023_127516
crossref_primary_10_1016_j_engappai_2024_109019
crossref_primary_10_3390_su152115490
crossref_primary_10_1080_87559129_2025_2541856
crossref_primary_10_1016_j_biosystemseng_2025_104218
crossref_primary_10_1016_j_jspr_2023_102170
crossref_primary_10_1016_j_biosystemseng_2023_09_007
crossref_primary_10_1016_j_foodres_2025_117406
crossref_primary_10_1080_10408398_2023_2195939
crossref_primary_10_1016_j_postharvbio_2025_113521
crossref_primary_10_2478_agriceng_2025_0007
crossref_primary_10_1007_s11694_023_02054_9
crossref_primary_10_1016_j_ijbiomac_2023_126394
crossref_primary_10_1016_j_postharvbio_2025_113520
crossref_primary_10_1016_j_fbio_2023_102898
crossref_primary_10_3390_agriculture12122089
crossref_primary_10_1038_s41598_024_59167_4
crossref_primary_10_1002_fpf2_70019
crossref_primary_10_1007_s11694_023_02287_8
crossref_primary_10_1007_s11694_023_02289_6
crossref_primary_10_1515_zpch_2023_0360
crossref_primary_10_1016_j_jclepro_2024_144538
crossref_primary_10_1016_j_foodcont_2025_111692
crossref_primary_10_1016_j_foodcont_2023_109976
crossref_primary_10_1111_exsy_13601
crossref_primary_10_3390_ijms241612554
crossref_primary_10_1007_s11694_024_02815_0
crossref_primary_10_1016_j_jfoodeng_2023_111888
crossref_primary_10_1007_s11947_023_03132_y
crossref_primary_10_1016_j_matchemphys_2023_127986
crossref_primary_10_1186_s40538_023_00453_0
crossref_primary_10_1016_j_compag_2024_109382
crossref_primary_10_1016_j_tifs_2025_104989
crossref_primary_10_1016_j_asoc_2023_110664
crossref_primary_10_1016_j_tifs_2024_104646
crossref_primary_10_1016_j_foodres_2024_115635
crossref_primary_10_1007_s00500_023_09591_x
crossref_primary_10_3390_agronomy14102296
crossref_primary_10_1016_j_cej_2025_162159
crossref_primary_10_1016_j_fpsl_2023_101126
crossref_primary_10_1016_j_foodcont_2023_110129
Cites_doi 10.1007/s10068-017-0173-4
10.1016/j.scienta.2020.109778
10.1016/j.foodres.2021.110229
10.1002/jsfa.11142
10.1016/j.foodcont.2012.12.010
10.1108/IMDS-09-2017-0384
10.1016/j.jfoodeng.2021.110643
10.1016/j.foodcont.2022.109018
10.1016/j.foodchem.2017.11.004
10.1016/j.postharvbio.2021.111590
10.1016/S0260-8774(01)00106-6
10.1016/j.foodres.2019.108633
10.1016/S0924-2244(00)00036-4
10.1016/j.tifs.2021.01.025
10.1016/j.foodres.2019.03.063
10.1007/s11135-018-0689-6
10.1016/j.foodchem.2019.125665
10.1006/fstl.2000.0732
10.1016/j.tifs.2021.02.044
10.1080/15538362.2021.1911746
10.1007/s13197-017-2873-4
10.1016/j.foodres.2021.110749
10.1016/j.foodres.2020.109215
10.1016/j.tifs.2019.06.010
10.1016/j.foodres.2018.01.051
10.1021/ed059p279
10.1016/j.foodchem.2021.131448
10.1007/s42853-020-00066-7
10.1093/fqsafe/fyab021
10.1177/1082013219826825
10.1007/s11694-018-9893-2
10.1016/j.fpsl.2017.12.006
10.1016/j.foodchem.2020.128757
10.1016/j.postharvbio.2020.111398
10.1016/j.foodcont.2012.04.025
10.1016/j.tifs.2021.01.066
10.1016/j.foodchem.2021.131268
10.1016/j.afres.2022.100123
10.1016/S0925-5214(98)00091-X
10.1007/s12161-022-02241-2
10.1016/j.jfoodeng.2022.111099
10.1016/j.foodchem.2022.133526
10.1371/journal.pone.0170478
10.1016/j.tifs.2018.12.002
10.1016/j.ifset.2022.102948
10.1016/j.jfoodeng.2021.110867
10.1007/s11694-021-01062-x
10.1016/j.fbio.2020.100840
10.1016/j.foodcont.2021.108418
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodcont.2022.109496
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7129
ExternalDocumentID 10_1016_j_foodcont_2022_109496
S0956713522006892
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
3EH
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
WH7
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-46ef837b8e08d4a5af8cfff728c24253072cc46aa683a7a5ae822d6b01a7146c3
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891007800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-7135
IngestDate Sat Sep 27 21:52:00 EDT 2025
Sat Nov 29 07:05:07 EST 2025
Tue Nov 18 22:29:46 EST 2025
Fri Feb 23 02:40:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Freshness prediction
Wireless sensor network (WSN)
HACCP methods
Blueberry
Machine learning algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-46ef837b8e08d4a5af8cfff728c24253072cc46aa683a7a5ae822d6b01a7146c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2558-4367
0000-0002-3879-1317
PQID 3153834524
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153834524
crossref_citationtrail_10_1016_j_foodcont_2022_109496
crossref_primary_10_1016_j_foodcont_2022_109496
elsevier_sciencedirect_doi_10_1016_j_foodcont_2022_109496
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Food control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Xie, Zielinska, Pan, Deng, Zhang (bib27) 2022; 77
Yang, Tian, Gu, Li, Cai, Sun (bib53) 2020; 308
Kim, Cho, Oh, Kim (bib23) 2020; 45
Jia, Shi, Zhang, Ji (bib20) 2021; 101
Srivastava, Sadistap (bib45) 2018; 12
Ni, Yu, Shao, Yu, Chen, Gao (bib36) 2021; 345
Salehi (bib42) 2021; 21
Ye, Chen, Ye, Zhang, Yang, Yu (bib54) 2022; 373
Han, Zuo, Zhu, Zuo, Lü, Yang (bib17) 2021; 109
Merlo, Contreras-Castillo, Saldana, Barancelli, Dargelio, Yoshida (bib33) 2019; 125
Ruiz, Roux, Courtois, Bonazzi (bib41) 2018; 106
Fang, Guan, Su, Zhang, Zhu, Zheng (bib10) 2022; 138
Joshi, Pahariya, Al-Ani, Choudhary (bib22) 2022
Özdoğan, Lin, Sun (bib37) 2021; 111
Zhang, Zhu, Ren, Shen, Cao, Liu (bib56) 2022; 394
Medeiros, Almeida, Filho (bib32) 2021; Vol. 8
Wang, Lv, Li, Wang, Wang, Zhao (bib48) 2021
Zhao, Zhu, Hou, Pan, Shi, Li (bib58) 2021; 277
Choi, Lee, Cho, Lee, Woo, Moon (bib7) 2017; 26
Liu, Niu (bib26) 2010; 26
Tsang, Choy, Wu, Ho, Lam, Koo (bib47) 2018; 118
de Almeida Teixeira, Santos, Cunha Júnior, Durigan (bib1) 2018; 55
Alwazeer, Özkan (bib2) 2022
Guohua, Yuling, Dandan, Wenwen, Linshan, Lvye (bib16) 2012; 28
Ray (bib39) 2019
Tang, Sun, Wu, Xie, Pan, Zhao (bib46) 2013; 32
Ktenioudaki, O'Donnell, Emond, do Nascimento Nunes (bib24) 2021; 179
Anggrainingsih, Aprianto, Sihwi (bib3) 2015
Logan (bib28) 1982; 59
An, Lee, Lee (bib4) 2018; 15
Hu, Sun, Pu, Wei (bib19) 2019; 91
Saltveit (bib43) 1999; 15
Zhang, Lv, Shi, Xu, Zhang (bib55) 2021; 173
Wang, Zheng, Shi, Wang (bib49) 2022; 372
Ropkins, Beck (bib40) 2000; 11
Sierra, Londoño, Gómez, Herrera, Castellanos (bib44) 2019; 25
Quan, Xi, Shi, Han, Du, Forghani (bib38) 2021; 5
Yang, Luo, Zhang, Hopkins, Liang, Dong (bib52) 2020; 134
Zhao, Han, Liu, Wang, Guan, Wu (bib57) 2022; 317
Defraeye, Shrivastava, Berry, Verboven, Onwude, Schudel (bib9) 2021; 109
de Matos Fonseca, dos Santos Alves, Soares, Moreira, Valencia, Monteiro (bib30) 2021; 144
Henseler (bib18) 2018; 52
Jiménez-Carvelo, González-Casado, Bagur-González, Cuadros-Rodríguez (bib21) 2019; 122
Forkuor, Hounkpatin, Welp, Thiel (bib14) 2017; 12
Brasil, Cruz-Tirado, Barbin (bib5) 2022; 131
Wu, Pu, Sun (bib51) 2019; 83
Li, Ding, Wang (bib25) 2022; 330
Wang, Zhou, Zhou, Wei, Ji (bib50) 2018; 246
Mesías, Martín, Hernández (bib34) 2021; 150
Firouz, Mohi-Alden, Omid (bib12) 2021; 141
Fonseca, Oliveira, Brecht (bib13) 2002; 52
Matrose, Obikeze, Belay, Caleb (bib31) 2021; 41
Fan, Jin, Liu, Chen, Konno, Zhu (bib11) 2021; 143
Gao, Hu, Jiang, Zhou, Guan, Feng (bib15) 2021; 15
Cardelli, Labuza (bib6) 2001; 34
Martinez-Romero, Serrano, Carbonell, Castillo, Riquelme, Valero (bib29) 2004
Cruz-Tirado, da Silva Medeiros, Barbin (bib8) 2021; 306
Mukherjee, Sarkar, Chatterjee, Lahiri, Nag, Rebezov (bib35) 2022; 15
Henseler (10.1016/j.foodcont.2022.109496_bib18) 2018; 52
Zhao (10.1016/j.foodcont.2022.109496_bib57) 2022; 317
Yang (10.1016/j.foodcont.2022.109496_bib53) 2020; 308
Han (10.1016/j.foodcont.2022.109496_bib17) 2021; 109
Jia (10.1016/j.foodcont.2022.109496_bib20) 2021; 101
Choi (10.1016/j.foodcont.2022.109496_bib7) 2017; 26
Salehi (10.1016/j.foodcont.2022.109496_bib42) 2021; 21
Wang (10.1016/j.foodcont.2022.109496_bib48) 2021
Martinez-Romero (10.1016/j.foodcont.2022.109496_bib29) 2004
Cruz-Tirado (10.1016/j.foodcont.2022.109496_bib8) 2021; 306
Ye (10.1016/j.foodcont.2022.109496_bib54) 2022; 373
Fan (10.1016/j.foodcont.2022.109496_bib11) 2021; 143
Forkuor (10.1016/j.foodcont.2022.109496_bib14) 2017; 12
Mesías (10.1016/j.foodcont.2022.109496_bib34) 2021; 150
Özdoğan (10.1016/j.foodcont.2022.109496_bib37) 2021; 111
Fonseca (10.1016/j.foodcont.2022.109496_bib13) 2002; 52
Liu (10.1016/j.foodcont.2022.109496_bib27) 2022; 77
Ropkins (10.1016/j.foodcont.2022.109496_bib40) 2000; 11
Tsang (10.1016/j.foodcont.2022.109496_bib47) 2018; 118
Tang (10.1016/j.foodcont.2022.109496_bib46) 2013; 32
Quan (10.1016/j.foodcont.2022.109496_bib38) 2021; 5
Wang (10.1016/j.foodcont.2022.109496_bib50) 2018; 246
Hu (10.1016/j.foodcont.2022.109496_bib19) 2019; 91
Sierra (10.1016/j.foodcont.2022.109496_bib44) 2019; 25
Guohua (10.1016/j.foodcont.2022.109496_bib16) 2012; 28
Matrose (10.1016/j.foodcont.2022.109496_bib31) 2021; 41
Gao (10.1016/j.foodcont.2022.109496_bib15) 2021; 15
Zhang (10.1016/j.foodcont.2022.109496_bib56) 2022; 394
Alwazeer (10.1016/j.foodcont.2022.109496_bib2) 2022
Firouz (10.1016/j.foodcont.2022.109496_bib12) 2021; 141
Ni (10.1016/j.foodcont.2022.109496_bib36) 2021; 345
Anggrainingsih (10.1016/j.foodcont.2022.109496_bib3) 2015
Saltveit (10.1016/j.foodcont.2022.109496_bib43) 1999; 15
Ruiz (10.1016/j.foodcont.2022.109496_bib41) 2018; 106
de Matos Fonseca (10.1016/j.foodcont.2022.109496_bib30) 2021; 144
Zhao (10.1016/j.foodcont.2022.109496_bib58) 2021; 277
Jiménez-Carvelo (10.1016/j.foodcont.2022.109496_bib21) 2019; 122
Joshi (10.1016/j.foodcont.2022.109496_bib22) 2022
Yang (10.1016/j.foodcont.2022.109496_bib52) 2020; 134
Cardelli (10.1016/j.foodcont.2022.109496_bib6) 2001; 34
Merlo (10.1016/j.foodcont.2022.109496_bib33) 2019; 125
Mukherjee (10.1016/j.foodcont.2022.109496_bib35) 2022; 15
Wang (10.1016/j.foodcont.2022.109496_bib49) 2022; 372
Brasil (10.1016/j.foodcont.2022.109496_bib5) 2022; 131
Zhang (10.1016/j.foodcont.2022.109496_bib55) 2021; 173
Defraeye (10.1016/j.foodcont.2022.109496_bib9) 2021; 109
Li (10.1016/j.foodcont.2022.109496_bib25) 2022; 330
Srivastava (10.1016/j.foodcont.2022.109496_bib45) 2018; 12
Fang (10.1016/j.foodcont.2022.109496_bib10) 2022; 138
Wu (10.1016/j.foodcont.2022.109496_bib51) 2019; 83
Ktenioudaki (10.1016/j.foodcont.2022.109496_bib24) 2021; 179
Logan (10.1016/j.foodcont.2022.109496_bib28) 1982; 59
Liu (10.1016/j.foodcont.2022.109496_bib26) 2010; 26
An (10.1016/j.foodcont.2022.109496_bib4) 2018; 15
Kim (10.1016/j.foodcont.2022.109496_bib23) 2020; 45
Ray (10.1016/j.foodcont.2022.109496_bib39) 2019
Medeiros (10.1016/j.foodcont.2022.109496_bib32) 2021; Vol. 8
de Almeida Teixeira (10.1016/j.foodcont.2022.109496_bib1) 2018; 55
References_xml – volume: 59
  start-page: 279
  year: 1982
  ident: bib28
  article-title: The origin and status of the Arrhenius equation
  publication-title: Journal of Chemical Education
– volume: 373
  year: 2022
  ident: bib54
  article-title: Development of a time–temperature indicator based on Maillard reaction for visually monitoring the freshness of mackerel
  publication-title: Food Chemistry
– volume: 15
  start-page: 279
  year: 1999
  end-page: 292
  ident: bib43
  article-title: Effect of ethylene on quality of fresh fruits and vegetables
  publication-title: Postharvest Biology and Technology
– volume: 28
  start-page: 25
  year: 2012
  end-page: 32
  ident: bib16
  article-title: Study of peach freshness predictive method based on electronic nose
  publication-title: Food Control
– volume: 15
  start-page: 1663
  year: 2022
  end-page: 1676
  ident: bib35
  article-title: Development of artificial vision system for quality assessment of oyster mushrooms
  publication-title: Food Analytical Methods
– volume: Vol. 8
  start-page: 70
  year: 2021
  ident: bib32
  article-title: Computer vision and machine learning for tuna and salmon meat classification
  publication-title: Informatics
– volume: 134
  year: 2020
  ident: bib52
  article-title: Effects of microbiota dynamics on the color stability of chilled beef steaks stored in high oxygen and carbon monoxide packaging
  publication-title: Food Research International
– volume: 330
  year: 2022
  ident: bib25
  article-title: Shelf life predictive model for postharvest shiitake mushrooms
  publication-title: Journal of Food Engineering
– volume: 55
  start-page: 145
  year: 2018
  end-page: 156
  ident: bib1
  article-title: Effect of carbon dioxide (CO2) and oxygen (O2) levels on quality of ‘Palmer’mangoes under controlled atmosphere storage
  publication-title: Journal of Food Science & Technology
– volume: 12
  start-page: 2758
  year: 2018
  end-page: 2794
  ident: bib45
  article-title: Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: A review
  publication-title: Journal of Food Measurement and Characterization
– volume: 15
  start-page: 130
  year: 2018
  end-page: 133
  ident: bib4
  article-title: Shelf life model of powdered infant formula as function of temperature and oxygen concentration
  publication-title: Food Packaging and Shelf Life
– volume: 345
  year: 2021
  ident: bib36
  article-title: Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper
  publication-title: Food Chemistry
– volume: 32
  start-page: 334
  year: 2013
  end-page: 340
  ident: bib46
  article-title: Predicting shelf-life of chilled pork sold in China
  publication-title: Food Control
– start-page: 1
  year: 2022
  end-page: 14
  ident: bib2
  article-title: Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life
  publication-title: Journal of Food Science & Technology
– volume: 12
  year: 2017
  ident: bib14
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models
  publication-title: PLoS One
– volume: 11
  start-page: 10
  year: 2000
  end-page: 21
  ident: bib40
  article-title: Evaluation of worldwide approaches to the use of HACCP to control food safety
  publication-title: Trends in Food Science & Technology
– volume: 150
  year: 2021
  ident: bib34
  article-title: Consumers' growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit
  publication-title: Food Research International
– volume: 83
  start-page: 259
  year: 2019
  end-page: 273
  ident: bib51
  article-title: Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments
  publication-title: Trends in Food Science & Technology
– volume: 26
  start-page: 322
  year: 2010
  end-page: 326
  ident: bib26
  article-title: Comparison of total volatile basic nitrogen detection models in fishmeal based on electronic nose
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 306
  year: 2021
  ident: bib8
  article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning
  publication-title: Journal of Food Engineering
– volume: 91
  start-page: 66
  year: 2019
  end-page: 82
  ident: bib19
  article-title: Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review
  publication-title: Trends in Food Science & Technology
– volume: 179
  year: 2021
  ident: bib24
  article-title: Blueberry supply chain: Critical steps impacting fruit quality and application of a boosted regression tree model to predict weight loss
  publication-title: Postharvest Biology and Technology
– volume: 138
  year: 2022
  ident: bib10
  article-title: Accurate fish-freshness prediction label based on red cabbage anthocyanins
  publication-title: Food Control
– volume: 26
  start-page: 1255
  year: 2017
  end-page: 1262
  ident: bib7
  article-title: Prediction of shelf-life and changes in the quality characteristics of semidried persimmons stored at different temperatures
  publication-title: Food Science and Biotechnology
– volume: 122
  start-page: 25
  year: 2019
  end-page: 39
  ident: bib21
  article-title: Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity–A review
  publication-title: Food Research International
– volume: 118
  start-page: 1432
  year: 2018
  end-page: 1462
  ident: bib47
  article-title: An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks
  publication-title: Industrial Management & Data Systems
– start-page: 14
  year: 2015
  end-page: 19
  ident: bib3
  article-title: Time series forecasting using exponential smoothing to predict the number of website visitor of Sebelas Maret University
  publication-title: 2015 2nd international conference on information technology, computer, and electrical engineering (ICITACEE)
– volume: 101
  start-page: 4987
  year: 2021
  end-page: 4994
  ident: bib20
  article-title: Comparison of freshness prediction method for salmon fillet during different storage temperatures
  publication-title: Journal of the Science of Food and Agriculture
– volume: 372
  year: 2022
  ident: bib49
  article-title: Comparison of Arrhenius model and artificial neuronal network for predicting quality changes of frozen tilapia (Oreochromis niloticus)
  publication-title: Food Chemistry
– volume: 173
  year: 2021
  ident: bib55
  article-title: Evaluation of quality changes and elasticity index of kiwifruit in shelf life by a nondestructive acoustic vibration method
  publication-title: Postharvest Biology and Technology
– volume: 45
  start-page: 261
  year: 2020
  end-page: 271
  ident: bib23
  article-title: Feasibility study for the evaluation of chicken meat storage time using surface acoustic wave sensor
  publication-title: Journal of Biosystems Engineering
– start-page: 35
  year: 2019
  end-page: 39
  ident: bib39
  article-title: A quick review of machine learning algorithms
  publication-title: 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon)
– volume: 34
  start-page: 273
  year: 2001
  end-page: 278
  ident: bib6
  article-title: Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee
  publication-title: LWT--Food Science and Technology
– volume: 15
  start-page: 5735
  year: 2021
  end-page: 5743
  ident: bib15
  article-title: Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.)
  publication-title: Journal of Food Measurement and Characterization
– volume: 5
  year: 2021
  ident: bib38
  article-title: Development of predictive models for egg freshness and shelf-life under different storage temperatures
  publication-title: Food Quality and Safety
– volume: 109
  start-page: 536
  year: 2021
  end-page: 551
  ident: bib17
  article-title: A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends
  publication-title: Trends in Food Science & Technology
– volume: 52
  start-page: 99
  year: 2002
  end-page: 119
  ident: bib13
  article-title: Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review
  publication-title: Journal of Food Engineering
– volume: 308
  year: 2020
  ident: bib53
  article-title: Analysis of factors related to browning of Dangshan pear (Pyrus spp.) wine
  publication-title: Food Chemistry
– volume: 21
  start-page: 546
  year: 2021
  end-page: 555
  ident: bib42
  article-title: Recent applications of heat pump dryer for drying of fruit crops: A review
  publication-title: International Journal of Fruit Science
– volume: 246
  start-page: 286
  year: 2018
  end-page: 294
  ident: bib50
  article-title: The effect of ethylene absorbent treatment on the softening of blueberry fruit
  publication-title: Food Chemistry
– volume: 131
  year: 2022
  ident: bib5
  article-title: Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning
  publication-title: Food Control
– volume: 41
  year: 2021
  ident: bib31
  article-title: Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review
  publication-title: Food Bioscience
– start-page: 216
  year: 2021
  end-page: 220
  ident: bib48
  article-title: Design and implementation of pork freshness grading based on deep learning
  publication-title: 2021 2nd international conference on artificial intelligence and computer engineering (ICAICE)
– volume: 77
  year: 2022
  ident: bib27
  article-title: Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD)
  publication-title: Innovative Food Science & Emerging Technologies
– start-page: 233
  year: 2004
  end-page: 252
  ident: bib29
  article-title: Mechanical damage during fruit post-harvest handling: Technical and physiological implications
  publication-title: Production practices and quality assessment of food crops
– volume: 317
  year: 2022
  ident: bib57
  article-title: Shelf-life prediction model of fresh-cut potato at different storage temperatures
  publication-title: Journal of Food Engineering
– volume: 143
  year: 2021
  ident: bib11
  article-title: Effects of super-chilling storage on shelf-life and quality indicators of Coregonus peled based on proteomics analysis
  publication-title: Food Research International
– volume: 52
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib18
  article-title: Partial least squares path modeling: Quo vadis?
  publication-title: Quality and Quantity
– volume: 144
  year: 2021
  ident: bib30
  article-title: A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives
  publication-title: Food Research International
– volume: 394
  year: 2022
  ident: bib56
  article-title: Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis
  publication-title: Food Chemistry
– volume: 111
  start-page: 151
  year: 2021
  end-page: 165
  ident: bib37
  article-title: Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments
  publication-title: Trends in Food Science & Technology
– volume: 125
  year: 2019
  ident: bib33
  article-title: Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets
  publication-title: Food Research International
– year: 2022
  ident: bib22
  article-title: NNB Monitoring and prediction of sensory shelf-life in strawberry with ultraviolet–visible–near-infrared (UV-VIS-NIR) spectroscopy
  publication-title: Applied Food Research
– volume: 109
  start-page: 245
  year: 2021
  end-page: 258
  ident: bib9
  article-title: Digital twins are coming: Will we need them in supply chains of fresh horticultural produce?
  publication-title: Trends in Food Science & Technology
– volume: 277
  year: 2021
  ident: bib58
  article-title: Effects of harvest maturity stage on postharvest quality of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage
  publication-title: Scientia Horticulturae
– volume: 106
  start-page: 901
  year: 2018
  end-page: 908
  ident: bib41
  article-title: Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents
  publication-title: Food Research International
– volume: 141
  year: 2021
  ident: bib12
  article-title: A critical review on intelligent and active packaging in the food industry: Research and development
  publication-title: Food Research International
– volume: 25
  start-page: 370
  year: 2019
  end-page: 384
  ident: bib44
  article-title: Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature
  publication-title: Food Science and Technology International
– volume: 26
  start-page: 1255
  issue: 5
  year: 2017
  ident: 10.1016/j.foodcont.2022.109496_bib7
  article-title: Prediction of shelf-life and changes in the quality characteristics of semidried persimmons stored at different temperatures
  publication-title: Food Science and Biotechnology
  doi: 10.1007/s10068-017-0173-4
– volume: 277
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib58
  article-title: Effects of harvest maturity stage on postharvest quality of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2020.109778
– volume: 143
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib11
  article-title: Effects of super-chilling storage on shelf-life and quality indicators of Coregonus peled based on proteomics analysis
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2021.110229
– volume: 101
  start-page: 4987
  issue: 12
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib20
  article-title: Comparison of freshness prediction method for salmon fillet during different storage temperatures
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.11142
– volume: 32
  start-page: 334
  issue: 1
  year: 2013
  ident: 10.1016/j.foodcont.2022.109496_bib46
  article-title: Predicting shelf-life of chilled pork sold in China
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2012.12.010
– volume: 118
  start-page: 1432
  issue: 7
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib47
  article-title: An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/IMDS-09-2017-0384
– volume: 306
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib8
  article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2021.110643
– volume: 138
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib10
  article-title: Accurate fish-freshness prediction label based on red cabbage anthocyanins
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109018
– start-page: 1
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib2
  article-title: Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life
  publication-title: Journal of Food Science & Technology
– start-page: 233
  year: 2004
  ident: 10.1016/j.foodcont.2022.109496_bib29
  article-title: Mechanical damage during fruit post-harvest handling: Technical and physiological implications
– volume: 246
  start-page: 286
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib50
  article-title: The effect of ethylene absorbent treatment on the softening of blueberry fruit
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.11.004
– volume: 179
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib24
  article-title: Blueberry supply chain: Critical steps impacting fruit quality and application of a boosted regression tree model to predict weight loss
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2021.111590
– volume: 52
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.foodcont.2022.109496_bib13
  article-title: Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review
  publication-title: Journal of Food Engineering
  doi: 10.1016/S0260-8774(01)00106-6
– volume: 125
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib33
  article-title: Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2019.108633
– volume: 11
  start-page: 10
  issue: 1
  year: 2000
  ident: 10.1016/j.foodcont.2022.109496_bib40
  article-title: Evaluation of worldwide approaches to the use of HACCP to control food safety
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(00)00036-4
– volume: 109
  start-page: 245
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib9
  article-title: Digital twins are coming: Will we need them in supply chains of fresh horticultural produce?
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.01.025
– volume: 122
  start-page: 25
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib21
  article-title: Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity–A review
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2019.03.063
– volume: 52
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib18
  article-title: Partial least squares path modeling: Quo vadis?
  publication-title: Quality and Quantity
  doi: 10.1007/s11135-018-0689-6
– volume: 308
  year: 2020
  ident: 10.1016/j.foodcont.2022.109496_bib53
  article-title: Analysis of factors related to browning of Dangshan pear (Pyrus spp.) wine
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.125665
– volume: 34
  start-page: 273
  issue: 5
  year: 2001
  ident: 10.1016/j.foodcont.2022.109496_bib6
  article-title: Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee
  publication-title: LWT--Food Science and Technology
  doi: 10.1006/fstl.2000.0732
– volume: Vol. 8
  start-page: 70
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib32
  article-title: Computer vision and machine learning for tuna and salmon meat classification
– volume: 111
  start-page: 151
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib37
  article-title: Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.02.044
– volume: 21
  start-page: 546
  issue: 1
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib42
  article-title: Recent applications of heat pump dryer for drying of fruit crops: A review
  publication-title: International Journal of Fruit Science
  doi: 10.1080/15538362.2021.1911746
– start-page: 216
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib48
  article-title: Design and implementation of pork freshness grading based on deep learning
– volume: 55
  start-page: 145
  issue: 1
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib1
  article-title: Effect of carbon dioxide (CO2) and oxygen (O2) levels on quality of ‘Palmer’mangoes under controlled atmosphere storage
  publication-title: Journal of Food Science & Technology
  doi: 10.1007/s13197-017-2873-4
– volume: 150
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib34
  article-title: Consumers' growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2021.110749
– volume: 134
  year: 2020
  ident: 10.1016/j.foodcont.2022.109496_bib52
  article-title: Effects of microbiota dynamics on the color stability of chilled beef steaks stored in high oxygen and carbon monoxide packaging
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2020.109215
– volume: 91
  start-page: 66
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib19
  article-title: Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2019.06.010
– volume: 26
  start-page: 322
  issue: 4
  year: 2010
  ident: 10.1016/j.foodcont.2022.109496_bib26
  article-title: Comparison of total volatile basic nitrogen detection models in fishmeal based on electronic nose
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 106
  start-page: 901
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib41
  article-title: Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2018.01.051
– volume: 59
  start-page: 279
  issue: 4
  year: 1982
  ident: 10.1016/j.foodcont.2022.109496_bib28
  article-title: The origin and status of the Arrhenius equation
  publication-title: Journal of Chemical Education
  doi: 10.1021/ed059p279
– start-page: 35
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib39
  article-title: A quick review of machine learning algorithms
– volume: 373
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib54
  article-title: Development of a time–temperature indicator based on Maillard reaction for visually monitoring the freshness of mackerel
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.131448
– volume: 45
  start-page: 261
  issue: 4
  year: 2020
  ident: 10.1016/j.foodcont.2022.109496_bib23
  article-title: Feasibility study for the evaluation of chicken meat storage time using surface acoustic wave sensor
  publication-title: Journal of Biosystems Engineering
  doi: 10.1007/s42853-020-00066-7
– volume: 5
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib38
  article-title: Development of predictive models for egg freshness and shelf-life under different storage temperatures
  publication-title: Food Quality and Safety
  doi: 10.1093/fqsafe/fyab021
– volume: 25
  start-page: 370
  issue: 5
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib44
  article-title: Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature
  publication-title: Food Science and Technology International
  doi: 10.1177/1082013219826825
– volume: 12
  start-page: 2758
  issue: 4
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib45
  article-title: Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: A review
  publication-title: Journal of Food Measurement and Characterization
  doi: 10.1007/s11694-018-9893-2
– volume: 15
  start-page: 130
  year: 2018
  ident: 10.1016/j.foodcont.2022.109496_bib4
  article-title: Shelf life model of powdered infant formula as function of temperature and oxygen concentration
  publication-title: Food Packaging and Shelf Life
  doi: 10.1016/j.fpsl.2017.12.006
– volume: 345
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib36
  article-title: Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.128757
– volume: 173
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib55
  article-title: Evaluation of quality changes and elasticity index of kiwifruit in shelf life by a nondestructive acoustic vibration method
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2020.111398
– volume: 28
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.foodcont.2022.109496_bib16
  article-title: Study of peach freshness predictive method based on electronic nose
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2012.04.025
– volume: 109
  start-page: 536
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib17
  article-title: A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.01.066
– volume: 372
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib49
  article-title: Comparison of Arrhenius model and artificial neuronal network for predicting quality changes of frozen tilapia (Oreochromis niloticus)
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.131268
– year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib22
  article-title: NNB Monitoring and prediction of sensory shelf-life in strawberry with ultraviolet–visible–near-infrared (UV-VIS-NIR) spectroscopy
  publication-title: Applied Food Research
  doi: 10.1016/j.afres.2022.100123
– volume: 15
  start-page: 279
  issue: 3
  year: 1999
  ident: 10.1016/j.foodcont.2022.109496_bib43
  article-title: Effect of ethylene on quality of fresh fruits and vegetables
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/S0925-5214(98)00091-X
– volume: 15
  start-page: 1663
  issue: 6
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib35
  article-title: Development of artificial vision system for quality assessment of oyster mushrooms
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-022-02241-2
– volume: 330
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib25
  article-title: Shelf life predictive model for postharvest shiitake mushrooms
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2022.111099
– start-page: 14
  year: 2015
  ident: 10.1016/j.foodcont.2022.109496_bib3
  article-title: Time series forecasting using exponential smoothing to predict the number of website visitor of Sebelas Maret University
– volume: 394
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib56
  article-title: Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.133526
– volume: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.foodcont.2022.109496_bib14
  article-title: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0170478
– volume: 83
  start-page: 259
  year: 2019
  ident: 10.1016/j.foodcont.2022.109496_bib51
  article-title: Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.12.002
– volume: 77
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib27
  article-title: Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD)
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2022.102948
– volume: 317
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib57
  article-title: Shelf-life prediction model of fresh-cut potato at different storage temperatures
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2021.110867
– volume: 141
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib12
  article-title: A critical review on intelligent and active packaging in the food industry: Research and development
  publication-title: Food Research International
– volume: 15
  start-page: 5735
  issue: 6
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib15
  article-title: Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.)
  publication-title: Journal of Food Measurement and Characterization
  doi: 10.1007/s11694-021-01062-x
– volume: 144
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib30
  article-title: A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives
  publication-title: Food Research International
– volume: 41
  year: 2021
  ident: 10.1016/j.foodcont.2022.109496_bib31
  article-title: Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review
  publication-title: Food Bioscience
  doi: 10.1016/j.fbio.2020.100840
– volume: 131
  year: 2022
  ident: 10.1016/j.foodcont.2022.109496_bib5
  article-title: Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108418
SSID ssj0017010
Score 2.6290293
Snippet Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109496
SubjectTerms algorithms
automation
blueberries
Blueberry
carbon dioxide
cold chain
equations
food quality
freshness
Freshness prediction
fruits
HACCP
HACCP methods
Machine learning algorithm
prediction
temperature
Wireless sensor network (WSN)
Title Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics
URI https://dx.doi.org/10.1016/j.foodcont.2022.109496
https://www.proquest.com/docview/3153834524
Volume 145
WOSCitedRecordID wos000891007800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7129
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017010
  issn: 0956-7135
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFO0PGQkxGUVCI4TJ8cKbQXVauGwhdwsr2OLrUoS9lEViR_PTGwnCxS1HLhEXmedzeb74hnPw0PIi5wpZat5FTExZxHXDF6pIuURZ8KAlpRnSVcO6NNETKd5WRYfvbtg1ZUTEHWdn58X7X-FGvoAbEyd_Qe4-4tCB7QBdDgC7HC8EvDOTGCCk39-uoEnuFx-H1lYWX_pZrZ2ie6ZDnmUYhV6DL52UZUmlJFwmYtduGHkDPyjFca6uwwY1FaBQRXmDcNHl0YU4ub7op9NFSLhB_J48_RnDFlvBmu-6y03pjWLP2zZRyB7sR1OlD7Ad2G2bRYsGYK2euNjFmFxwF_mYZ6OWtzeihdZdOHs7gwNJ68s_AG8f1jeM-ZHDPIs-PCnH-Th8WQiZ-Ny9rL9FmGlMfTI-7Ir18kuE2kBM-HuwftxedT7nkTc7WHR3-NWXvnFP_03leY34d5pLLM75LZfatADR5G75Jqp75FbWxtQ3ic_tshCG0t7stCeLHQgC-3IQqHhyUIDWSiQhW6ThXqy0EVNgSwUyUI7stCeLA_I8eF49vZd5OtxRDrh6TrimbF5Iua5ifOKq1TZXFtrBcs1LlxBWjCteaZUlidKwHkD2meVzeM3SoBA1slDslM3tXlEaGzjKgHtHVbTmiudqkJluhKxrZhGkbBH0vBIpfab1WPNlFMZohJPZIBCIhTSQbFHXvfjWrddy6UjioCY9EqnUyYlsO7Ssc8DxBJmZXS1qdo0m5VMUJGAh8b4_hW-85jcHN6SJ2RnvdyYp-SGPlsvVstnnp8_AW3PtS8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+blueberry+freshness+prediction+based+on+machine+learning+and+multi-source+sensing+in+the+cold+chain+logistics&rft.jtitle=Food+control&rft.au=Huang%2C+Wentao&rft.au=Wang%2C+Xuepei&rft.au=Zhang%2C+Junchang&rft.au=Xia%2C+Jie&rft.date=2023-03-01&rft.issn=0956-7135&rft.volume=145+p.109496-&rft_id=info:doi/10.1016%2Fj.foodcont.2022.109496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7135&client=summon