Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method

[Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 262; S. 114490
Hauptverfasser: Ma, Jian, Xu, Shu, Shang, Pengchao, ding, Yu, Qin, Weili, Cheng, Yujie, Lu, Chen, Su, Yuzhuan, Chong, Jin, Jin, Haizu, Lin, Yongshou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2020
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-temperature lifespan estimates.•Prediction accuracy is verified and a time savings of nearly 60% is achieved. Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products.
AbstractList Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products.
[Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-temperature lifespan estimates.•Prediction accuracy is verified and a time savings of nearly 60% is achieved. Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products.
ArticleNumber 114490
Author Shang, Pengchao
Lu, Chen
Ma, Jian
ding, Yu
Cheng, Yujie
Jin, Haizu
Xu, Shu
Qin, Weili
Lin, Yongshou
Su, Yuzhuan
Chong, Jin
Author_xml – sequence: 1
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 2
  givenname: Shu
  surname: Xu
  fullname: Xu, Shu
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 3
  givenname: Pengchao
  surname: Shang
  fullname: Shang, Pengchao
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 4
  givenname: Yu
  surname: ding
  fullname: ding, Yu
  organization: National Key Laboratory of Science and Technology on Reliability and Environmental Engineering, China
– sequence: 5
  givenname: Weili
  surname: Qin
  fullname: Qin, Weili
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 6
  givenname: Yujie
  surname: Cheng
  fullname: Cheng, Yujie
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 7
  givenname: Chen
  orcidid: 0000-0003-1927-2391
  surname: Lu
  fullname: Lu, Chen
  email: luchen@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, China
– sequence: 8
  givenname: Yuzhuan
  surname: Su
  fullname: Su, Yuzhuan
  organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China
– sequence: 9
  givenname: Jin
  surname: Chong
  fullname: Chong, Jin
  email: Chongjin@catlbattery.com
  organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China
– sequence: 10
  givenname: Haizu
  surname: Jin
  fullname: Jin, Haizu
  organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China
– sequence: 11
  givenname: Yongshou
  surname: Lin
  fullname: Lin, Yongshou
  organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China
BookMark eNqFkEFv1DAUhC1UJLaFv4B85JLl2etkHYkD1apApZW4wNly7OfWq8QOttMqvfLHye6WSy89PWk0M0_zXZKLEAMS8pHBmgFrPh_WesSA6W5ec-CLyIRo4Q1ZMbnlVcuYvCAr2EBT8Ya178hlzgcA4IzDivzdzaZH2nuHtGAuNI7FD_5JFx8DdTFR653DhKHQva-O4hgfMdFOl4JpPlqGqT_ZM52yD3dU0_u5S97ShIP2YZGqKaOb-ur0ZkxovTn1D1juo31P3jrdZ_zwfK_I7283v3Y_qv3P77e7631lNqIulRDGOGsk1p0EqzVokNtam7oTUqJE0THRtC3IDtF2G-t0V3OOumnstnXCbK7Ip3PvmOKfaRmrBp8N9r0OGKesuAAQUjRbvli_nK0mxZwTOmV8OY0sSfteMVBH9uqg_rNXR_bqzH6JNy_iY_KDTvPrwa_nIC4cHjwmlY3HYBZiCU1RNvrXKv4BBRapag
CitedBy_id crossref_primary_10_1016_j_renene_2024_120280
crossref_primary_10_1109_ACCESS_2024_3461802
crossref_primary_10_1016_j_apenergy_2020_115127
crossref_primary_10_1016_j_ress_2024_110166
crossref_primary_10_1039_D2EE01676A
crossref_primary_10_1016_j_rser_2023_114262
crossref_primary_10_1016_j_engappai_2023_107698
crossref_primary_10_1109_TII_2022_3178375
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1016_j_apenergy_2023_121991
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_3390_en16124540
crossref_primary_10_1016_j_apenergy_2022_119663
crossref_primary_10_3390_batteries11060223
crossref_primary_10_1016_j_est_2023_108038
crossref_primary_10_3390_s22239522
crossref_primary_10_1016_j_est_2020_102118
crossref_primary_10_1049_cim2_12059
crossref_primary_10_1016_j_est_2020_101566
crossref_primary_10_1016_j_apenergy_2020_115164
crossref_primary_10_1109_TII_2022_3206776
crossref_primary_10_1002_adts_202300579
crossref_primary_10_1155_2021_9937846
crossref_primary_10_3390_electronics10243126
crossref_primary_10_1016_j_est_2025_118253
crossref_primary_10_1186_s10033_021_00577_0
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1016_j_est_2024_114702
crossref_primary_10_3390_en17205132
crossref_primary_10_3390_batteries9020131
crossref_primary_10_1007_s43236_023_00605_3
crossref_primary_10_1016_j_etran_2025_100451
crossref_primary_10_1016_j_neucom_2022_02_032
crossref_primary_10_1109_TIM_2023_3291798
crossref_primary_10_1016_j_est_2023_108842
crossref_primary_10_1016_j_egyr_2022_02_120
crossref_primary_10_1016_j_energy_2021_122716
crossref_primary_10_1016_j_est_2023_107513
crossref_primary_10_1109_TIM_2025_3538072
Cites_doi 10.1016/j.jpowsour.2017.05.110
10.1016/j.jpowsour.2013.01.068
10.1016/j.jpowsour.2018.08.073
10.1109/SPEEDAM.2016.7525919
10.1186/s40537-016-0043-6
10.1109/TVT.2015.2473841
10.1016/j.apenergy.2018.01.008
10.1109/TIE.2017.2782224
10.1016/j.jpowsour.2013.11.029
10.1109/TIA.2014.2365152
10.1002/qre.1961
10.1016/j.apenergy.2016.03.119
10.1109/SKIMA.2016.7916238
10.1016/j.apenergy.2017.05.018
10.1109/TMI.2015.2458702
10.1016/j.jpowsour.2014.05.103
10.1016/j.jpowsour.2018.01.004
10.1016/j.jpowsour.2012.11.146
10.1038/nature14539
10.1089/ees.2011.0292
10.1063/1.4968632
10.1016/j.jpowsour.2011.03.101
10.1149/2.1181714jes
10.1109/MCI.2018.2840738
10.1109/ICPES.2016.7584003
10.1016/j.apenergy.2019.113327
10.1109/JBHI.2015.2461671
10.23919/ACC.2017.7963578
10.1007/s10916-019-1397-z
10.1016/j.cej.2006.08.003
10.1109/ISIE.2016.7744902
10.1016/j.apenergy.2013.09.003
10.1002/bies.201900004
10.1016/j.jpowsour.2013.08.108
10.1007/978-3-030-03000-1_15
10.1155/2017/6458954
10.1515/zpch-1889-0408
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114490
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114490
S0306261920300027
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-44ccfdc8e5b80daa0a0875ac5b488e8e4b1469908beedb3dfab522ea66d79f4c3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517398200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 17:22:34 EDT 2025
Tue Nov 18 21:30:45 EST 2025
Sat Nov 29 07:19:56 EST 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Remaining useful life prediction
Cycle life test optimization
Li-ion power battery
Transfer learning
Arrhenius model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-44ccfdc8e5b80daa0a0875ac5b488e8e4b1469908beedb3dfab522ea66d79f4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1927-2391
PQID 2400484672
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400484672
crossref_citationtrail_10_1016_j_apenergy_2020_114490
crossref_primary_10_1016_j_apenergy_2020_114490
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114490
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Dou, Ju, Xu, Zhang (b0235) 2017; 20
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0160) 2010; 11
Xu, Xiang, Liu, Gilmore, Madabhushi (b0250) 2016; 35
Saha (b0120) 2016
Wang, Hsu (b0195) 2012; 29
Baumhoefer, Bruehl, Rothgang, Sauer (b0060) 2014; 247
Schimpe, von Kuepach, Naumann, Hesse, Smith, Jossen (b0090) 2018; 165
Kadam, Jadhav, Vijayakumar (b0255) 2019; 43
Perlman, Herz, Zaiss, Cohen, Farrar (b0155) 2019
Chen, Wang, Qin, Ma (b0245) 2016; 130
Ng A, Ngiam J, Foo CY, Mai Y, Suen C. UFLDL Tutorial (2013). URL
Diao, Xing, Saxena, Pecht (b0040) 2018; 8
González, Evans (b0225) 2019; 41
Luu, Forestier, Weber, Bourgeois, Muller (b0205) 2019; 2
Paul, Diegelmann, Kabza, Tillmetz (b0045) 2013; 239
Reniers, Mulder, Ober-Blobaum, Howey (b0085) 2018; 379
Weiss, Khoshgoftaar, Wang (b0145) 2016; 3
Han, Ouyang, Lu, Li, Zheng, Li (b0070) 2014; 251
Severson, Attia, Jin, Perkins, Jiang, Yang (b0010) 2019; 1
Reniers, Howey, Mulder (b0140) 2019; 28
Hussein (b0115) 2015; 51
.
Ma L. Lithium-ion battery life evaluation method based on fuzzy nonlinear accelerated degradation process. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA). IEEE; 2016. doi: 10.1109/SKIMA.2016.7916238.
Omar, Monem, Firouz, Salminen, Smekens, Hegazy (b0050) 2014; 113
LeCun, Bengio, Hinton (b0210) 2015; 521
Accelerated life testing. Wikipedia.
Zhang, Lee (b0135) 2011; 196
Wang, Xi (b0170) 2016
Petit, Prada, Sauvant-Moynot (b0080) 2016; 172
Wei, Dong, Chen (b0110) 2018; 65
Casey T, Najm H. Inference of missing data and chemical model parameters using experimental statistics. Aps Division of Fluid Dynamics Meeting. APS Division of Fluid Dynamics Meeting Abstracts; 2017.
Chiodo E, Lauria D, Andrenacci N, Pede G. Accelerated life tests of complete lithium-ion battery systems for battery life statistics assessment. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE; 2016. doi: 10.1109/SPEEDAM.2016.7525919.
Jaguemont, Boulon, Venet, Dubé, Sari (b0015) 2016; 65
Wang, Mamo (b0130) 2018; 401
Sun, Lu, Wang, Yuan, Qi (b0200) 2017
Bengio, Lamblin, Popovici, Larochelle (b0230) 2007
Junmeng, Fang, Weiming, Fusheng (b0190) 2006; 124
Li, Pischinger, He, Liang, Stapelbroek (b0035) 2018; 212
Huang CS, Chow MY. Accurate Thevenin's circuit-based battery model parameter identification. In: IEEE International Symposium on Industrial Electronics. IEEE; 2016. doi: 10.1109/ISIE.2016.7744902.
Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A. Life prediction model for grid-connected Li-ion battery energy storage system. In: 2017 American Control Conference; 2017. p. 4062–68.
Arrhenius (b0260) 1889; 4
Palacín (b0005) 2018; 1
Carvalho-Silva VH, Coutinho ND, Aquilanti V. Description of deviations from Arrhenius behavior in chemical kinetics and materials science. AIP Conference Proceedings. AIP Publishing; 2016. 1790:1. doi: 10.1063/1.4968632.
2015.
Gu, Sun, Wei, Dai (b0030) 2014; 267
Sibi Krishnan K, Prasanth Pathiyil, Sunitha R. Generic Battery model covering self-discharge and internal resistance variation. In: 2016 IEEE 6th International Conference on Power Systems (ICPS). IEEE; 2016. doi: 10.1109/ICPES.2016.7584003.
Nikhil Damodaran, Sowmya, Govind, Soman (b0150) 2019
Ogunfunmi, Ramachandran, Togneri, Zhao, Xia (b0215) 2019; 10
De Hoog, Timmermans, Ioan-Stroe, Swierczynski, Jaguemont, Goutam (b0075) 2017; 200
Zheng, Qin, Lai, Han, Xie (b0165) 2019; 251
Tom, Devamanyu, Soujanya, Erik (b0220) 2018; 13
Schuster, Bach, Fleder, Müller, Brand, Sextl (b0055) 2015; 1
Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (b0125) 2013; 239
Yang, Leng, Zhang, Ge, Wang (b0065) 2017; 360
Severson (10.1016/j.apenergy.2020.114490_b0010) 2019; 1
10.1016/j.apenergy.2020.114490_b0020
10.1016/j.apenergy.2020.114490_b0185
Perlman (10.1016/j.apenergy.2020.114490_b0155) 2019
Schuster (10.1016/j.apenergy.2020.114490_b0055) 2015; 1
10.1016/j.apenergy.2020.114490_b0100
Chen (10.1016/j.apenergy.2020.114490_b0245) 2016; 130
10.1016/j.apenergy.2020.114490_b0105
10.1016/j.apenergy.2020.114490_b0025
Nikhil Damodaran (10.1016/j.apenergy.2020.114490_b0150) 2019
Sun (10.1016/j.apenergy.2020.114490_b0200) 2017
Bengio (10.1016/j.apenergy.2020.114490_b0230) 2007
Omar (10.1016/j.apenergy.2020.114490_b0050) 2014; 113
Junmeng (10.1016/j.apenergy.2020.114490_b0190) 2006; 124
Zhang (10.1016/j.apenergy.2020.114490_b0235) 2017; 20
Diao (10.1016/j.apenergy.2020.114490_b0040) 2018; 8
Nuhic (10.1016/j.apenergy.2020.114490_b0125) 2013; 239
Tom (10.1016/j.apenergy.2020.114490_b0220) 2018; 13
10.1016/j.apenergy.2020.114490_b0180
10.1016/j.apenergy.2020.114490_b0095
10.1016/j.apenergy.2020.114490_b0175
Kadam (10.1016/j.apenergy.2020.114490_b0255) 2019; 43
Reniers (10.1016/j.apenergy.2020.114490_b0085) 2018; 379
Wang (10.1016/j.apenergy.2020.114490_b0195) 2012; 29
LeCun (10.1016/j.apenergy.2020.114490_b0210) 2015; 521
Xu (10.1016/j.apenergy.2020.114490_b0250) 2016; 35
González (10.1016/j.apenergy.2020.114490_b0225) 2019; 41
Zheng (10.1016/j.apenergy.2020.114490_b0165) 2019; 251
Vincent (10.1016/j.apenergy.2020.114490_b0160) 2010; 11
10.1016/j.apenergy.2020.114490_b0240
Reniers (10.1016/j.apenergy.2020.114490_b0140) 2019; 28
Yang (10.1016/j.apenergy.2020.114490_b0065) 2017; 360
Han (10.1016/j.apenergy.2020.114490_b0070) 2014; 251
Saha (10.1016/j.apenergy.2020.114490_b0120) 2016
Wang (10.1016/j.apenergy.2020.114490_b0170) 2016
Li (10.1016/j.apenergy.2020.114490_b0035) 2018; 212
De Hoog (10.1016/j.apenergy.2020.114490_b0075) 2017; 200
Paul (10.1016/j.apenergy.2020.114490_b0045) 2013; 239
Petit (10.1016/j.apenergy.2020.114490_b0080) 2016; 172
Arrhenius (10.1016/j.apenergy.2020.114490_b0260) 1889; 4
Luu (10.1016/j.apenergy.2020.114490_b0205) 2019; 2
Ogunfunmi (10.1016/j.apenergy.2020.114490_b0215) 2019; 10
Wang (10.1016/j.apenergy.2020.114490_b0130) 2018; 401
Schimpe (10.1016/j.apenergy.2020.114490_b0090) 2018; 165
Weiss (10.1016/j.apenergy.2020.114490_b0145) 2016; 3
Baumhoefer (10.1016/j.apenergy.2020.114490_b0060) 2014; 247
Gu (10.1016/j.apenergy.2020.114490_b0030) 2014; 267
Palacín (10.1016/j.apenergy.2020.114490_b0005) 2018; 1
Jaguemont (10.1016/j.apenergy.2020.114490_b0015) 2016; 65
Wei (10.1016/j.apenergy.2020.114490_b0110) 2018; 65
Hussein (10.1016/j.apenergy.2020.114490_b0115) 2015; 51
Zhang (10.1016/j.apenergy.2020.114490_b0135) 2011; 196
References_xml – volume: 360
  start-page: 28
  year: 2017
  end-page: 40
  ident: b0065
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging
  publication-title: J Power Sources
– reference: Huang CS, Chow MY. Accurate Thevenin's circuit-based battery model parameter identification. In: IEEE International Symposium on Industrial Electronics. IEEE; 2016. doi: 10.1109/ISIE.2016.7744902.
– volume: 10
  year: 2019
  ident: b0215
  article-title: A primer on deep learning architectures and applications in speech processing
  publication-title: Circuits Syst Sig Process
– volume: 51
  start-page: 2321
  year: 2015
  end-page: 2330
  ident: b0115
  article-title: Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks
  publication-title: IEEE Trans Ind Appl
– volume: 130
  start-page: 377
  year: 2016
  end-page: 388
  ident: b0245
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process
– volume: 1
  start-page: 44
  year: 2015
  end-page: 53
  ident: b0055
  article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions
  publication-title: J Storage Mater
– volume: 401
  start-page: 49
  year: 2018
  end-page: 54
  ident: b0130
  article-title: A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries
  publication-title: J Power Sources
– reference: ; 2015.
– volume: 8
  year: 2018
  ident: b0040
  article-title: Evaluation of present accelerated temperature testing and modeling of batteries
  publication-title: Appl Sci-Basel
– volume: 28
  year: 2019
  ident: b0140
  article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries
  publication-title: ECSarXiv May
– year: 2019
  ident: b0155
  article-title: Cest mr⊥ingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction
  publication-title: Magn Reson Med
– volume: 251
  start-page: 38
  year: 2014
  end-page: 54
  ident: b0070
  article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification
  publication-title: J Power Sources
– volume: 1
  year: 2019
  ident: b0010
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
– volume: 251
  year: 2019
  ident: b0165
  article-title: A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model
  publication-title: Appl Energy
– volume: 29
  start-page: 964
  year: 2012
  end-page: 971
  ident: b0195
  article-title: New nonisothermal arrhenius temperature integral approximate formula
  publication-title: Environ Eng Sci
– volume: 379
  start-page: 91
  year: 2018
  end-page: 102
  ident: b0085
  article-title: Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling
  publication-title: J Power Sources
– volume: 43
  year: 2019
  ident: b0255
  article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression
  publication-title: J Med Syst
– volume: 239
  start-page: 680
  year: 2013
  end-page: 688
  ident: b0125
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
– reference: Chiodo E, Lauria D, Andrenacci N, Pede G. Accelerated life tests of complete lithium-ion battery systems for battery life statistics assessment. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE; 2016. doi: 10.1109/SPEEDAM.2016.7525919.
– year: 2016
  ident: b0120
  article-title: A bayesian approach to battery prognostics and health management
  publication-title: Advances in Battery Manufacturing, Service, and Management Systems
– volume: 35
  start-page: 119
  year: 2016
  ident: b0250
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
– volume: 2
  year: 2019
  ident: b0205
  article-title: A review of alignment based similarity measures for web usage mining
  publication-title: Artif Intell Rev
– reference: Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A. Life prediction model for grid-connected Li-ion battery energy storage system. In: 2017 American Control Conference; 2017. p. 4062–68.
– volume: 267
  start-page: 366
  year: 2014
  end-page: 379
  ident: b0030
  article-title: A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system
  publication-title: J Power Sources
– volume: 20
  start-page: 1377
  year: 2017
  end-page: 1383
  ident: b0235
  article-title: Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis
  publication-title: IEEE J Biomed Health Inf
– reference: Carvalho-Silva VH, Coutinho ND, Aquilanti V. Description of deviations from Arrhenius behavior in chemical kinetics and materials science. AIP Conference Proceedings. AIP Publishing; 2016. 1790:1. doi: 10.1063/1.4968632.
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: b0135
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– volume: 239
  start-page: 642
  year: 2013
  end-page: 650
  ident: b0045
  article-title: Analysis of ageing inhomogeneities in lithium-ion battery systems
  publication-title: J Power Sources
– volume: 65
  start-page: 4328
  year: 2016
  end-page: 4343
  ident: b0015
  article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation
  publication-title: IEEE Trans Veh Technol
– reference: Ma L. Lithium-ion battery life evaluation method based on fuzzy nonlinear accelerated degradation process. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA). IEEE; 2016. doi: 10.1109/SKIMA.2016.7916238.
– volume: 65
  start-page: 5634
  year: 2018
  end-page: 5643
  ident: b0110
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans Ind Electron
– volume: 113
  start-page: 1575
  year: 2014
  end-page: 1585
  ident: b0050
  article-title: Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model
  publication-title: Appl Energy
– volume: 3
  start-page: 9
  year: 2016
  ident: b0145
  article-title: A survey of transfer learning
  publication-title: J Big Data
– year: 2016
  ident: b0170
  article-title: Acceleration factor constant principle and the application under adt
  publication-title: Qual Reliab Eng Int
– year: 2019
  ident: b0150
  article-title: Scene classification using transfer learning: theories and applications
  publication-title: Recent Adv Comput Vision
– volume: 41
  year: 2019
  ident: b0225
  article-title: Biomedical image processing with containers and deep learning: an automated analysis pipeline
  publication-title: BioEssays
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b0160
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– year: 2017
  ident: b0200
  article-title: Performance assessment and prediction for superheterodyne receivers based on Mahalanobis distance and time sequence analysis
  publication-title: Int J Antennas Propagat
– volume: 4
  start-page: 96
  year: 1889
  end-page: 116
  ident: b0260
  article-title: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
  publication-title: Z Phys Chem
– start-page: 153
  year: 2007
  end-page: 160
  ident: b0230
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inform Process Syst
– volume: 124
  start-page: 15
  year: 2006
  end-page: 18
  ident: b0190
  article-title: A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics
  publication-title: Chem Eng J
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  ident: b0220
  article-title: Recent trends in deep learning based natural language processing [review article]
  publication-title: IEEE Comput Intell Mag
– reference: Sibi Krishnan K, Prasanth Pathiyil, Sunitha R. Generic Battery model covering self-discharge and internal resistance variation. In: 2016 IEEE 6th International Conference on Power Systems (ICPS). IEEE; 2016. doi: 10.1109/ICPES.2016.7584003.
– volume: 212
  start-page: 1522
  year: 2018
  end-page: 1536
  ident: b0035
  article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test
  publication-title: Appl Energy
– volume: 247
  start-page: 332
  year: 2014
  end-page: 338
  ident: b0060
  article-title: Production caused variation in capacity aging trend and correlation to initial cell performance
  publication-title: J Power Sources
– volume: 172
  start-page: 398
  year: 2016
  end-page: 407
  ident: b0080
  article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime
  publication-title: Appl Energy
– volume: 165
  start-page: A181
  year: 2018
  end-page: A193
  ident: b0090
  article-title: Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries
  publication-title: J Electrochem Soc
– reference: .
– volume: 521
  start-page: 436
  year: 2015
  ident: b0210
  article-title: Deep learning
  publication-title: Nature
– reference: Casey T, Najm H. Inference of missing data and chemical model parameters using experimental statistics. Aps Division of Fluid Dynamics Meeting. APS Division of Fluid Dynamics Meeting Abstracts; 2017.
– reference: Ng A, Ngiam J, Foo CY, Mai Y, Suen C. UFLDL Tutorial (2013). URL
– volume: 1
  year: 2018
  ident: b0005
  article-title: Understanding ageing in li-ion batteries: a chemical issue
  publication-title: Chem Soc Rev
– reference: Accelerated life testing. Wikipedia.
– volume: 200
  start-page: 47
  year: 2017
  end-page: 61
  ident: b0075
  article-title: Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation
  publication-title: Appl Energy
– ident: 10.1016/j.apenergy.2020.114490_b0185
– year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0120
  article-title: A bayesian approach to battery prognostics and health management
– volume: 1
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0010
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
– volume: 28
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0140
  article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries
  publication-title: ECSarXiv May
– volume: 360
  start-page: 28
  year: 2017
  ident: 10.1016/j.apenergy.2020.114490_b0065
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.110
– volume: 239
  start-page: 642
  year: 2013
  ident: 10.1016/j.apenergy.2020.114490_b0045
  article-title: Analysis of ageing inhomogeneities in lithium-ion battery systems
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.01.068
– volume: 401
  start-page: 49
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0130
  article-title: A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.08.073
– ident: 10.1016/j.apenergy.2020.114490_b0025
  doi: 10.1109/SPEEDAM.2016.7525919
– volume: 3
  start-page: 9
  year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0145
  article-title: A survey of transfer learning
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: 10.1016/j.apenergy.2020.114490_b0175
– volume: 65
  start-page: 4328
  year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0015
  article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2015.2473841
– volume: 2
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0205
  article-title: A review of alignment based similarity measures for web usage mining
  publication-title: Artif Intell Rev
– volume: 212
  start-page: 1522
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0035
  article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.01.008
– volume: 65
  start-page: 5634
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0110
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2782224
– volume: 251
  start-page: 38
  year: 2014
  ident: 10.1016/j.apenergy.2020.114490_b0070
  article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.11.029
– volume: 130
  start-page: 377
  year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0245
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process
– volume: 51
  start-page: 2321
  year: 2015
  ident: 10.1016/j.apenergy.2020.114490_b0115
  article-title: Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2014.2365152
– year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0170
  article-title: Acceleration factor constant principle and the application under adt
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1961
– volume: 172
  start-page: 398
  year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0080
  article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.119
– ident: 10.1016/j.apenergy.2020.114490_b0020
  doi: 10.1109/SKIMA.2016.7916238
– volume: 200
  start-page: 47
  year: 2017
  ident: 10.1016/j.apenergy.2020.114490_b0075
  article-title: Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.018
– volume: 35
  start-page: 119
  year: 2016
  ident: 10.1016/j.apenergy.2020.114490_b0250
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 267
  start-page: 366
  year: 2014
  ident: 10.1016/j.apenergy.2020.114490_b0030
  article-title: A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.05.103
– volume: 379
  start-page: 91
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0085
  article-title: Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.01.004
– volume: 10
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0215
  article-title: A primer on deep learning architectures and applications in speech processing
  publication-title: Circuits Syst Sig Process
– volume: 239
  start-page: 680
  year: 2013
  ident: 10.1016/j.apenergy.2020.114490_b0125
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.146
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.apenergy.2020.114490_b0210
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 29
  start-page: 964
  year: 2012
  ident: 10.1016/j.apenergy.2020.114490_b0195
  article-title: New nonisothermal arrhenius temperature integral approximate formula
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2011.0292
– volume: 1
  start-page: 44
  year: 2015
  ident: 10.1016/j.apenergy.2020.114490_b0055
  article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions
  publication-title: J Storage Mater
– ident: 10.1016/j.apenergy.2020.114490_b0180
  doi: 10.1063/1.4968632
– volume: 196
  start-page: 6007
  year: 2011
  ident: 10.1016/j.apenergy.2020.114490_b0135
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– volume: 8
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0040
  article-title: Evaluation of present accelerated temperature testing and modeling of batteries
  publication-title: Appl Sci-Basel
– volume: 165
  start-page: A181
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0090
  article-title: Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/2.1181714jes
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0220
  article-title: Recent trends in deep learning based natural language processing [review article]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2018.2840738
– volume: 1
  issue: 1–5
  year: 2018
  ident: 10.1016/j.apenergy.2020.114490_b0005
  article-title: Understanding ageing in li-ion batteries: a chemical issue
  publication-title: Chem Soc Rev
– ident: 10.1016/j.apenergy.2020.114490_b0100
  doi: 10.1109/ICPES.2016.7584003
– volume: 251
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0165
  article-title: A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113327
– volume: 20
  start-page: 1377
  year: 2017
  ident: 10.1016/j.apenergy.2020.114490_b0235
  article-title: Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2015.2461671
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.apenergy.2020.114490_b0160
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: 10.1016/j.apenergy.2020.114490_b0095
  doi: 10.23919/ACC.2017.7963578
– volume: 43
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0255
  article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1397-z
– ident: 10.1016/j.apenergy.2020.114490_b0240
– volume: 124
  start-page: 15
  year: 2006
  ident: 10.1016/j.apenergy.2020.114490_b0190
  article-title: A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2006.08.003
– ident: 10.1016/j.apenergy.2020.114490_b0105
  doi: 10.1109/ISIE.2016.7744902
– volume: 113
  start-page: 1575
  year: 2014
  ident: 10.1016/j.apenergy.2020.114490_b0050
  article-title: Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.003
– volume: 41
  year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0225
  article-title: Biomedical image processing with containers and deep learning: an automated analysis pipeline
  publication-title: BioEssays
  doi: 10.1002/bies.201900004
– volume: 247
  start-page: 332
  year: 2014
  ident: 10.1016/j.apenergy.2020.114490_b0060
  article-title: Production caused variation in capacity aging trend and correlation to initial cell performance
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.08.108
– year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0150
  article-title: Scene classification using transfer learning: theories and applications
  publication-title: Recent Adv Comput Vision
  doi: 10.1007/978-3-030-03000-1_15
– year: 2019
  ident: 10.1016/j.apenergy.2020.114490_b0155
  article-title: Cest mr⊥ingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction
  publication-title: Magn Reson Med
– year: 2017
  ident: 10.1016/j.apenergy.2020.114490_b0200
  article-title: Performance assessment and prediction for superheterodyne receivers based on Mahalanobis distance and time sequence analysis
  publication-title: Int J Antennas Propagat
  doi: 10.1155/2017/6458954
– start-page: 153
  year: 2007
  ident: 10.1016/j.apenergy.2020.114490_b0230
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inform Process Syst
– volume: 4
  start-page: 96
  year: 1889
  ident: 10.1016/j.apenergy.2020.114490_b0260
  article-title: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
  publication-title: Z Phys Chem
  doi: 10.1515/zpch-1889-0408
SSID ssj0002120
Score 2.5158417
Snippet [Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in...
Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114490
SubjectTerms Arrhenius model
batteries
business enterprises
Cycle life test optimization
Deep learning
heat stress
Li-ion power battery
lithium
prediction
Remaining useful life prediction
temperature
Transfer learning
Title Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method
URI https://dx.doi.org/10.1016/j.apenergy.2020.114490
https://www.proquest.com/docview/2400484672
Volume 262
WOSCitedRecordID wos000517398200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqykuLxM3a4Djr2D5WVRBwqHooUjhZs-sNaZU4VmJX7ZkfwF9m9mWbUig9cLGsdXa9znyel-dByDvOQUYSJAMp0ECBScpEmCVMFjBSSZFCGINpNpEcH6ezWXYyGPzwuTAXy6Qs08vLrPqvpMYxJLZOnb0DudtFcQDPkeh4RLLj8Z8If3SFA8HybK4CVCPrYI1MYeWyLU1Qoe-JUqNBzvRgpTulBcJU2jTxm6vGR8g1xpUAweJKZ3YFG7WyHSVYs1XzZsnMbaqN_tpj1rcNqfsar1dzlUky7BzgBj49bM4a44hdNK3Px7uyT1T5TS5g7S8Urg3L16bvskD7VMe_xT3OhnYK06Zbnw1HjitbRopmGrd9RH_j8dbdcD6Eyu58qG8x7Cb8WlT7mrBrQxB9dNt57tfJ9Tq5Xece2Y2SOENOv3v4aTr73Ar3yFX69E_QSzq_eUd_0neuSX6jzpw-Jo-cHUIPLX6ekIEq98jDXnXKPbI_7ZIg8adOCmyfku8GYlTTnmqI0T7EKOKHthCjFmLUQIw6iNE-xKiBGAVqIUZvhBjtIEYtxJ6RLx-mp0cfmWvmweSYxzXjXMp5IVMVizQsAELQvRRAxgJFiEoVFyizUTVKBWptYlzMQaBpoGAyKZJszuV4n-yU61I9JzRReH2UoWYqCp4lKkOeEko0tVNejGQCByT2f3kuXaV73XBlmf-d6AfkfTuvsrVebp2ReYrmTmO1mmiOYL117lsPgRxZuv5OB6VaN9s8MnIVNZjoxZ139JI86N64V2Sn3jTqNbkvL-qz7eaNQ_NPHz_PfQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cycle+life+test+optimization+for+different+Li-ion+power+battery+formulations+using+a+hybrid+remaining-useful-life+prediction+method&rft.jtitle=Applied+energy&rft.au=Ma%2C+Jian&rft.au=Xu%2C+Shu&rft.au=Shang%2C+Pengchao&rft.au=ding%2C+Yu&rft.date=2020-03-15&rft.issn=0306-2619&rft.volume=262&rft.spage=114490&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114490&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon