Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method
[Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-t...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 262; S. 114490 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.03.2020
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-temperature lifespan estimates.•Prediction accuracy is verified and a time savings of nearly 60% is achieved.
Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products. |
|---|---|
| AbstractList | Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products. [Display omitted] •Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in high-temperature testing.•The transfer learning method is based on a stacked denoising autoencoder.•A modified Arrhenius model is used for standard-temperature lifespan estimates.•Prediction accuracy is verified and a time savings of nearly 60% is achieved. Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test optimization approach for different Li-ion power battery formulations is designed based on a hybrid remaining-useful-life prediction method to reduce the high cost of constant temperature–stress testing. The test life is replaced by an accurately predicted lifespan to end the testing early and shorten the cycle number. Batteries having the same formulation and tested at different temperatures are integrally optimized for more test savings. Firstly, high-temperature stress testing is stopped early at a preset threshold, and an instance-based transfer learning method is used to predict the battery lifespan by transferring similar historical test samples of different battery formulations to train a highly robust deep learning prediction model. Standard-temperature testing is completely eliminated by utilizing a modified Arrhenius model to estimate the battery lifespan. The model improvements include replacing the high-temperature stress test lifespan with the abovementioned prediction and introducing a prediction error correction coefficient to increase prediction accuracy. The accuracy of the prediction is verified using actual test data from a battery company, resulting in a time savings of nearly 60%. The optimization strategy has extensive application prospects for other constant-stress tests for batteries and other products. |
| ArticleNumber | 114490 |
| Author | Shang, Pengchao Lu, Chen Ma, Jian ding, Yu Cheng, Yujie Jin, Haizu Xu, Shu Qin, Weili Lin, Yongshou Su, Yuzhuan Chong, Jin |
| Author_xml | – sequence: 1 givenname: Jian surname: Ma fullname: Ma, Jian organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 2 givenname: Shu surname: Xu fullname: Xu, Shu organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 3 givenname: Pengchao surname: Shang fullname: Shang, Pengchao organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 4 givenname: Yu surname: ding fullname: ding, Yu organization: National Key Laboratory of Science and Technology on Reliability and Environmental Engineering, China – sequence: 5 givenname: Weili surname: Qin fullname: Qin, Weili organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 6 givenname: Yujie surname: Cheng fullname: Cheng, Yujie organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 7 givenname: Chen orcidid: 0000-0003-1927-2391 surname: Lu fullname: Lu, Chen email: luchen@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, China – sequence: 8 givenname: Yuzhuan surname: Su fullname: Su, Yuzhuan organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China – sequence: 9 givenname: Jin surname: Chong fullname: Chong, Jin email: Chongjin@catlbattery.com organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China – sequence: 10 givenname: Haizu surname: Jin fullname: Jin, Haizu organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China – sequence: 11 givenname: Yongshou surname: Lin fullname: Lin, Yongshou organization: Contemporary Amperex Technology Co., Limited, Ningde, Fujian Province 352100, China |
| BookMark | eNqFkEFv1DAUhC1UJLaFv4B85JLl2etkHYkD1apApZW4wNly7OfWq8QOttMqvfLHye6WSy89PWk0M0_zXZKLEAMS8pHBmgFrPh_WesSA6W5ec-CLyIRo4Q1ZMbnlVcuYvCAr2EBT8Ya178hlzgcA4IzDivzdzaZH2nuHtGAuNI7FD_5JFx8DdTFR653DhKHQva-O4hgfMdFOl4JpPlqGqT_ZM52yD3dU0_u5S97ShIP2YZGqKaOb-ur0ZkxovTn1D1juo31P3jrdZ_zwfK_I7283v3Y_qv3P77e7631lNqIulRDGOGsk1p0EqzVokNtam7oTUqJE0THRtC3IDtF2G-t0V3OOumnstnXCbK7Ip3PvmOKfaRmrBp8N9r0OGKesuAAQUjRbvli_nK0mxZwTOmV8OY0sSfteMVBH9uqg_rNXR_bqzH6JNy_iY_KDTvPrwa_nIC4cHjwmlY3HYBZiCU1RNvrXKv4BBRapag |
| CitedBy_id | crossref_primary_10_1016_j_renene_2024_120280 crossref_primary_10_1109_ACCESS_2024_3461802 crossref_primary_10_1016_j_apenergy_2020_115127 crossref_primary_10_1016_j_ress_2024_110166 crossref_primary_10_1039_D2EE01676A crossref_primary_10_1016_j_rser_2023_114262 crossref_primary_10_1016_j_engappai_2023_107698 crossref_primary_10_1109_TII_2022_3178375 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1016_j_apenergy_2023_121991 crossref_primary_10_1039_D2SE01209J crossref_primary_10_3390_en16124540 crossref_primary_10_1016_j_apenergy_2022_119663 crossref_primary_10_3390_batteries11060223 crossref_primary_10_1016_j_est_2023_108038 crossref_primary_10_3390_s22239522 crossref_primary_10_1016_j_est_2020_102118 crossref_primary_10_1049_cim2_12059 crossref_primary_10_1016_j_est_2020_101566 crossref_primary_10_1016_j_apenergy_2020_115164 crossref_primary_10_1109_TII_2022_3206776 crossref_primary_10_1002_adts_202300579 crossref_primary_10_1155_2021_9937846 crossref_primary_10_3390_electronics10243126 crossref_primary_10_1016_j_est_2025_118253 crossref_primary_10_1186_s10033_021_00577_0 crossref_primary_10_1007_s10489_023_04777_0 crossref_primary_10_1016_j_est_2024_114702 crossref_primary_10_3390_en17205132 crossref_primary_10_3390_batteries9020131 crossref_primary_10_1007_s43236_023_00605_3 crossref_primary_10_1016_j_etran_2025_100451 crossref_primary_10_1016_j_neucom_2022_02_032 crossref_primary_10_1109_TIM_2023_3291798 crossref_primary_10_1016_j_est_2023_108842 crossref_primary_10_1016_j_egyr_2022_02_120 crossref_primary_10_1016_j_energy_2021_122716 crossref_primary_10_1016_j_est_2023_107513 crossref_primary_10_1109_TIM_2025_3538072 |
| Cites_doi | 10.1016/j.jpowsour.2017.05.110 10.1016/j.jpowsour.2013.01.068 10.1016/j.jpowsour.2018.08.073 10.1109/SPEEDAM.2016.7525919 10.1186/s40537-016-0043-6 10.1109/TVT.2015.2473841 10.1016/j.apenergy.2018.01.008 10.1109/TIE.2017.2782224 10.1016/j.jpowsour.2013.11.029 10.1109/TIA.2014.2365152 10.1002/qre.1961 10.1016/j.apenergy.2016.03.119 10.1109/SKIMA.2016.7916238 10.1016/j.apenergy.2017.05.018 10.1109/TMI.2015.2458702 10.1016/j.jpowsour.2014.05.103 10.1016/j.jpowsour.2018.01.004 10.1016/j.jpowsour.2012.11.146 10.1038/nature14539 10.1089/ees.2011.0292 10.1063/1.4968632 10.1016/j.jpowsour.2011.03.101 10.1149/2.1181714jes 10.1109/MCI.2018.2840738 10.1109/ICPES.2016.7584003 10.1016/j.apenergy.2019.113327 10.1109/JBHI.2015.2461671 10.23919/ACC.2017.7963578 10.1007/s10916-019-1397-z 10.1016/j.cej.2006.08.003 10.1109/ISIE.2016.7744902 10.1016/j.apenergy.2013.09.003 10.1002/bies.201900004 10.1016/j.jpowsour.2013.08.108 10.1007/978-3-030-03000-1_15 10.1155/2017/6458954 10.1515/zpch-1889-0408 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.114490 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_114490 S0306261920300027 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-44ccfdc8e5b80daa0a0875ac5b488e8e4b1469908beedb3dfab522ea66d79f4c3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517398200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 17:22:34 EDT 2025 Tue Nov 18 21:30:45 EST 2025 Sat Nov 29 07:19:56 EST 2025 Fri Feb 23 02:49:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Remaining useful life prediction Cycle life test optimization Li-ion power battery Transfer learning Arrhenius model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-44ccfdc8e5b80daa0a0875ac5b488e8e4b1469908beedb3dfab522ea66d79f4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1927-2391 |
| PQID | 2400484672 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2400484672 crossref_citationtrail_10_1016_j_apenergy_2020_114490 crossref_primary_10_1016_j_apenergy_2020_114490 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114490 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-15 |
| PublicationDateYYYYMMDD | 2020-03-15 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Dou, Ju, Xu, Zhang (b0235) 2017; 20 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0160) 2010; 11 Xu, Xiang, Liu, Gilmore, Madabhushi (b0250) 2016; 35 Saha (b0120) 2016 Wang, Hsu (b0195) 2012; 29 Baumhoefer, Bruehl, Rothgang, Sauer (b0060) 2014; 247 Schimpe, von Kuepach, Naumann, Hesse, Smith, Jossen (b0090) 2018; 165 Kadam, Jadhav, Vijayakumar (b0255) 2019; 43 Perlman, Herz, Zaiss, Cohen, Farrar (b0155) 2019 Chen, Wang, Qin, Ma (b0245) 2016; 130 Ng A, Ngiam J, Foo CY, Mai Y, Suen C. UFLDL Tutorial (2013). URL Diao, Xing, Saxena, Pecht (b0040) 2018; 8 González, Evans (b0225) 2019; 41 Luu, Forestier, Weber, Bourgeois, Muller (b0205) 2019; 2 Paul, Diegelmann, Kabza, Tillmetz (b0045) 2013; 239 Reniers, Mulder, Ober-Blobaum, Howey (b0085) 2018; 379 Weiss, Khoshgoftaar, Wang (b0145) 2016; 3 Han, Ouyang, Lu, Li, Zheng, Li (b0070) 2014; 251 Severson, Attia, Jin, Perkins, Jiang, Yang (b0010) 2019; 1 Reniers, Howey, Mulder (b0140) 2019; 28 Hussein (b0115) 2015; 51 . Ma L. Lithium-ion battery life evaluation method based on fuzzy nonlinear accelerated degradation process. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA). IEEE; 2016. doi: 10.1109/SKIMA.2016.7916238. Omar, Monem, Firouz, Salminen, Smekens, Hegazy (b0050) 2014; 113 LeCun, Bengio, Hinton (b0210) 2015; 521 Accelerated life testing. Wikipedia. Zhang, Lee (b0135) 2011; 196 Wang, Xi (b0170) 2016 Petit, Prada, Sauvant-Moynot (b0080) 2016; 172 Wei, Dong, Chen (b0110) 2018; 65 Casey T, Najm H. Inference of missing data and chemical model parameters using experimental statistics. Aps Division of Fluid Dynamics Meeting. APS Division of Fluid Dynamics Meeting Abstracts; 2017. Chiodo E, Lauria D, Andrenacci N, Pede G. Accelerated life tests of complete lithium-ion battery systems for battery life statistics assessment. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE; 2016. doi: 10.1109/SPEEDAM.2016.7525919. Jaguemont, Boulon, Venet, Dubé, Sari (b0015) 2016; 65 Wang, Mamo (b0130) 2018; 401 Sun, Lu, Wang, Yuan, Qi (b0200) 2017 Bengio, Lamblin, Popovici, Larochelle (b0230) 2007 Junmeng, Fang, Weiming, Fusheng (b0190) 2006; 124 Li, Pischinger, He, Liang, Stapelbroek (b0035) 2018; 212 Huang CS, Chow MY. Accurate Thevenin's circuit-based battery model parameter identification. In: IEEE International Symposium on Industrial Electronics. IEEE; 2016. doi: 10.1109/ISIE.2016.7744902. Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A. Life prediction model for grid-connected Li-ion battery energy storage system. In: 2017 American Control Conference; 2017. p. 4062–68. Arrhenius (b0260) 1889; 4 Palacín (b0005) 2018; 1 Carvalho-Silva VH, Coutinho ND, Aquilanti V. Description of deviations from Arrhenius behavior in chemical kinetics and materials science. AIP Conference Proceedings. AIP Publishing; 2016. 1790:1. doi: 10.1063/1.4968632. 2015. Gu, Sun, Wei, Dai (b0030) 2014; 267 Sibi Krishnan K, Prasanth Pathiyil, Sunitha R. Generic Battery model covering self-discharge and internal resistance variation. In: 2016 IEEE 6th International Conference on Power Systems (ICPS). IEEE; 2016. doi: 10.1109/ICPES.2016.7584003. Nikhil Damodaran, Sowmya, Govind, Soman (b0150) 2019 Ogunfunmi, Ramachandran, Togneri, Zhao, Xia (b0215) 2019; 10 De Hoog, Timmermans, Ioan-Stroe, Swierczynski, Jaguemont, Goutam (b0075) 2017; 200 Zheng, Qin, Lai, Han, Xie (b0165) 2019; 251 Tom, Devamanyu, Soujanya, Erik (b0220) 2018; 13 Schuster, Bach, Fleder, Müller, Brand, Sextl (b0055) 2015; 1 Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (b0125) 2013; 239 Yang, Leng, Zhang, Ge, Wang (b0065) 2017; 360 Severson (10.1016/j.apenergy.2020.114490_b0010) 2019; 1 10.1016/j.apenergy.2020.114490_b0020 10.1016/j.apenergy.2020.114490_b0185 Perlman (10.1016/j.apenergy.2020.114490_b0155) 2019 Schuster (10.1016/j.apenergy.2020.114490_b0055) 2015; 1 10.1016/j.apenergy.2020.114490_b0100 Chen (10.1016/j.apenergy.2020.114490_b0245) 2016; 130 10.1016/j.apenergy.2020.114490_b0105 10.1016/j.apenergy.2020.114490_b0025 Nikhil Damodaran (10.1016/j.apenergy.2020.114490_b0150) 2019 Sun (10.1016/j.apenergy.2020.114490_b0200) 2017 Bengio (10.1016/j.apenergy.2020.114490_b0230) 2007 Omar (10.1016/j.apenergy.2020.114490_b0050) 2014; 113 Junmeng (10.1016/j.apenergy.2020.114490_b0190) 2006; 124 Zhang (10.1016/j.apenergy.2020.114490_b0235) 2017; 20 Diao (10.1016/j.apenergy.2020.114490_b0040) 2018; 8 Nuhic (10.1016/j.apenergy.2020.114490_b0125) 2013; 239 Tom (10.1016/j.apenergy.2020.114490_b0220) 2018; 13 10.1016/j.apenergy.2020.114490_b0180 10.1016/j.apenergy.2020.114490_b0095 10.1016/j.apenergy.2020.114490_b0175 Kadam (10.1016/j.apenergy.2020.114490_b0255) 2019; 43 Reniers (10.1016/j.apenergy.2020.114490_b0085) 2018; 379 Wang (10.1016/j.apenergy.2020.114490_b0195) 2012; 29 LeCun (10.1016/j.apenergy.2020.114490_b0210) 2015; 521 Xu (10.1016/j.apenergy.2020.114490_b0250) 2016; 35 González (10.1016/j.apenergy.2020.114490_b0225) 2019; 41 Zheng (10.1016/j.apenergy.2020.114490_b0165) 2019; 251 Vincent (10.1016/j.apenergy.2020.114490_b0160) 2010; 11 10.1016/j.apenergy.2020.114490_b0240 Reniers (10.1016/j.apenergy.2020.114490_b0140) 2019; 28 Yang (10.1016/j.apenergy.2020.114490_b0065) 2017; 360 Han (10.1016/j.apenergy.2020.114490_b0070) 2014; 251 Saha (10.1016/j.apenergy.2020.114490_b0120) 2016 Wang (10.1016/j.apenergy.2020.114490_b0170) 2016 Li (10.1016/j.apenergy.2020.114490_b0035) 2018; 212 De Hoog (10.1016/j.apenergy.2020.114490_b0075) 2017; 200 Paul (10.1016/j.apenergy.2020.114490_b0045) 2013; 239 Petit (10.1016/j.apenergy.2020.114490_b0080) 2016; 172 Arrhenius (10.1016/j.apenergy.2020.114490_b0260) 1889; 4 Luu (10.1016/j.apenergy.2020.114490_b0205) 2019; 2 Ogunfunmi (10.1016/j.apenergy.2020.114490_b0215) 2019; 10 Wang (10.1016/j.apenergy.2020.114490_b0130) 2018; 401 Schimpe (10.1016/j.apenergy.2020.114490_b0090) 2018; 165 Weiss (10.1016/j.apenergy.2020.114490_b0145) 2016; 3 Baumhoefer (10.1016/j.apenergy.2020.114490_b0060) 2014; 247 Gu (10.1016/j.apenergy.2020.114490_b0030) 2014; 267 Palacín (10.1016/j.apenergy.2020.114490_b0005) 2018; 1 Jaguemont (10.1016/j.apenergy.2020.114490_b0015) 2016; 65 Wei (10.1016/j.apenergy.2020.114490_b0110) 2018; 65 Hussein (10.1016/j.apenergy.2020.114490_b0115) 2015; 51 Zhang (10.1016/j.apenergy.2020.114490_b0135) 2011; 196 |
| References_xml | – volume: 360 start-page: 28 year: 2017 end-page: 40 ident: b0065 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging publication-title: J Power Sources – reference: Huang CS, Chow MY. Accurate Thevenin's circuit-based battery model parameter identification. In: IEEE International Symposium on Industrial Electronics. IEEE; 2016. doi: 10.1109/ISIE.2016.7744902. – volume: 10 year: 2019 ident: b0215 article-title: A primer on deep learning architectures and applications in speech processing publication-title: Circuits Syst Sig Process – volume: 51 start-page: 2321 year: 2015 end-page: 2330 ident: b0115 article-title: Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks publication-title: IEEE Trans Ind Appl – volume: 130 start-page: 377 year: 2016 end-page: 388 ident: b0245 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process – volume: 1 start-page: 44 year: 2015 end-page: 53 ident: b0055 article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions publication-title: J Storage Mater – volume: 401 start-page: 49 year: 2018 end-page: 54 ident: b0130 article-title: A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries publication-title: J Power Sources – reference: ; 2015. – volume: 8 year: 2018 ident: b0040 article-title: Evaluation of present accelerated temperature testing and modeling of batteries publication-title: Appl Sci-Basel – volume: 28 year: 2019 ident: b0140 article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries publication-title: ECSarXiv May – year: 2019 ident: b0155 article-title: Cest mr⊥ingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction publication-title: Magn Reson Med – volume: 251 start-page: 38 year: 2014 end-page: 54 ident: b0070 article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification publication-title: J Power Sources – volume: 1 year: 2019 ident: b0010 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat Energy – volume: 251 year: 2019 ident: b0165 article-title: A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model publication-title: Appl Energy – volume: 29 start-page: 964 year: 2012 end-page: 971 ident: b0195 article-title: New nonisothermal arrhenius temperature integral approximate formula publication-title: Environ Eng Sci – volume: 379 start-page: 91 year: 2018 end-page: 102 ident: b0085 article-title: Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling publication-title: J Power Sources – volume: 43 year: 2019 ident: b0255 article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression publication-title: J Med Syst – volume: 239 start-page: 680 year: 2013 end-page: 688 ident: b0125 article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods publication-title: J Power Sources – reference: Chiodo E, Lauria D, Andrenacci N, Pede G. Accelerated life tests of complete lithium-ion battery systems for battery life statistics assessment. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE; 2016. doi: 10.1109/SPEEDAM.2016.7525919. – year: 2016 ident: b0120 article-title: A bayesian approach to battery prognostics and health management publication-title: Advances in Battery Manufacturing, Service, and Management Systems – volume: 35 start-page: 119 year: 2016 ident: b0250 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans Med Imaging – volume: 2 year: 2019 ident: b0205 article-title: A review of alignment based similarity measures for web usage mining publication-title: Artif Intell Rev – reference: Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A. Life prediction model for grid-connected Li-ion battery energy storage system. In: 2017 American Control Conference; 2017. p. 4062–68. – volume: 267 start-page: 366 year: 2014 end-page: 379 ident: b0030 article-title: A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system publication-title: J Power Sources – volume: 20 start-page: 1377 year: 2017 end-page: 1383 ident: b0235 article-title: Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis publication-title: IEEE J Biomed Health Inf – reference: Carvalho-Silva VH, Coutinho ND, Aquilanti V. Description of deviations from Arrhenius behavior in chemical kinetics and materials science. AIP Conference Proceedings. AIP Publishing; 2016. 1790:1. doi: 10.1063/1.4968632. – volume: 196 start-page: 6007 year: 2011 end-page: 6014 ident: b0135 article-title: A review on prognostics and health monitoring of Li-ion battery publication-title: J Power Sources – volume: 239 start-page: 642 year: 2013 end-page: 650 ident: b0045 article-title: Analysis of ageing inhomogeneities in lithium-ion battery systems publication-title: J Power Sources – volume: 65 start-page: 4328 year: 2016 end-page: 4343 ident: b0015 article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation publication-title: IEEE Trans Veh Technol – reference: Ma L. Lithium-ion battery life evaluation method based on fuzzy nonlinear accelerated degradation process. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA). IEEE; 2016. doi: 10.1109/SKIMA.2016.7916238. – volume: 65 start-page: 5634 year: 2018 end-page: 5643 ident: b0110 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans Ind Electron – volume: 113 start-page: 1575 year: 2014 end-page: 1585 ident: b0050 article-title: Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model publication-title: Appl Energy – volume: 3 start-page: 9 year: 2016 ident: b0145 article-title: A survey of transfer learning publication-title: J Big Data – year: 2016 ident: b0170 article-title: Acceleration factor constant principle and the application under adt publication-title: Qual Reliab Eng Int – year: 2019 ident: b0150 article-title: Scene classification using transfer learning: theories and applications publication-title: Recent Adv Comput Vision – volume: 41 year: 2019 ident: b0225 article-title: Biomedical image processing with containers and deep learning: an automated analysis pipeline publication-title: BioEssays – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b0160 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – year: 2017 ident: b0200 article-title: Performance assessment and prediction for superheterodyne receivers based on Mahalanobis distance and time sequence analysis publication-title: Int J Antennas Propagat – volume: 4 start-page: 96 year: 1889 end-page: 116 ident: b0260 article-title: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte publication-title: Z Phys Chem – start-page: 153 year: 2007 end-page: 160 ident: b0230 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inform Process Syst – volume: 124 start-page: 15 year: 2006 end-page: 18 ident: b0190 article-title: A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics publication-title: Chem Eng J – volume: 13 start-page: 55 year: 2018 end-page: 75 ident: b0220 article-title: Recent trends in deep learning based natural language processing [review article] publication-title: IEEE Comput Intell Mag – reference: Sibi Krishnan K, Prasanth Pathiyil, Sunitha R. Generic Battery model covering self-discharge and internal resistance variation. In: 2016 IEEE 6th International Conference on Power Systems (ICPS). IEEE; 2016. doi: 10.1109/ICPES.2016.7584003. – volume: 212 start-page: 1522 year: 2018 end-page: 1536 ident: b0035 article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test publication-title: Appl Energy – volume: 247 start-page: 332 year: 2014 end-page: 338 ident: b0060 article-title: Production caused variation in capacity aging trend and correlation to initial cell performance publication-title: J Power Sources – volume: 172 start-page: 398 year: 2016 end-page: 407 ident: b0080 article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime publication-title: Appl Energy – volume: 165 start-page: A181 year: 2018 end-page: A193 ident: b0090 article-title: Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries publication-title: J Electrochem Soc – reference: . – volume: 521 start-page: 436 year: 2015 ident: b0210 article-title: Deep learning publication-title: Nature – reference: Casey T, Najm H. Inference of missing data and chemical model parameters using experimental statistics. Aps Division of Fluid Dynamics Meeting. APS Division of Fluid Dynamics Meeting Abstracts; 2017. – reference: Ng A, Ngiam J, Foo CY, Mai Y, Suen C. UFLDL Tutorial (2013). URL – volume: 1 year: 2018 ident: b0005 article-title: Understanding ageing in li-ion batteries: a chemical issue publication-title: Chem Soc Rev – reference: Accelerated life testing. Wikipedia. – volume: 200 start-page: 47 year: 2017 end-page: 61 ident: b0075 article-title: Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation publication-title: Appl Energy – ident: 10.1016/j.apenergy.2020.114490_b0185 – year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0120 article-title: A bayesian approach to battery prognostics and health management – volume: 1 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0010 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat Energy – volume: 28 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0140 article-title: Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries publication-title: ECSarXiv May – volume: 360 start-page: 28 year: 2017 ident: 10.1016/j.apenergy.2020.114490_b0065 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.110 – volume: 239 start-page: 642 year: 2013 ident: 10.1016/j.apenergy.2020.114490_b0045 article-title: Analysis of ageing inhomogeneities in lithium-ion battery systems publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.01.068 – volume: 401 start-page: 49 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0130 article-title: A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.08.073 – ident: 10.1016/j.apenergy.2020.114490_b0025 doi: 10.1109/SPEEDAM.2016.7525919 – volume: 3 start-page: 9 year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0145 article-title: A survey of transfer learning publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – ident: 10.1016/j.apenergy.2020.114490_b0175 – volume: 65 start-page: 4328 year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0015 article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2015.2473841 – volume: 2 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0205 article-title: A review of alignment based similarity measures for web usage mining publication-title: Artif Intell Rev – volume: 212 start-page: 1522 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0035 article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.01.008 – volume: 65 start-page: 5634 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0110 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2782224 – volume: 251 start-page: 38 year: 2014 ident: 10.1016/j.apenergy.2020.114490_b0070 article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.029 – volume: 130 start-page: 377 year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0245 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process – volume: 51 start-page: 2321 year: 2015 ident: 10.1016/j.apenergy.2020.114490_b0115 article-title: Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2014.2365152 – year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0170 article-title: Acceleration factor constant principle and the application under adt publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1961 – volume: 172 start-page: 398 year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0080 article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.119 – ident: 10.1016/j.apenergy.2020.114490_b0020 doi: 10.1109/SKIMA.2016.7916238 – volume: 200 start-page: 47 year: 2017 ident: 10.1016/j.apenergy.2020.114490_b0075 article-title: Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.018 – volume: 35 start-page: 119 year: 2016 ident: 10.1016/j.apenergy.2020.114490_b0250 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2458702 – volume: 267 start-page: 366 year: 2014 ident: 10.1016/j.apenergy.2020.114490_b0030 article-title: A new method of accelerated life testing based on the Grey System Theory for a model-based lithium-ion battery life evaluation system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.05.103 – volume: 379 start-page: 91 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0085 article-title: Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.01.004 – volume: 10 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0215 article-title: A primer on deep learning architectures and applications in speech processing publication-title: Circuits Syst Sig Process – volume: 239 start-page: 680 year: 2013 ident: 10.1016/j.apenergy.2020.114490_b0125 article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.11.146 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.apenergy.2020.114490_b0210 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 29 start-page: 964 year: 2012 ident: 10.1016/j.apenergy.2020.114490_b0195 article-title: New nonisothermal arrhenius temperature integral approximate formula publication-title: Environ Eng Sci doi: 10.1089/ees.2011.0292 – volume: 1 start-page: 44 year: 2015 ident: 10.1016/j.apenergy.2020.114490_b0055 article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions publication-title: J Storage Mater – ident: 10.1016/j.apenergy.2020.114490_b0180 doi: 10.1063/1.4968632 – volume: 196 start-page: 6007 year: 2011 ident: 10.1016/j.apenergy.2020.114490_b0135 article-title: A review on prognostics and health monitoring of Li-ion battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.03.101 – volume: 8 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0040 article-title: Evaluation of present accelerated temperature testing and modeling of batteries publication-title: Appl Sci-Basel – volume: 165 start-page: A181 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0090 article-title: Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries publication-title: J Electrochem Soc doi: 10.1149/2.1181714jes – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0220 article-title: Recent trends in deep learning based natural language processing [review article] publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2018.2840738 – volume: 1 issue: 1–5 year: 2018 ident: 10.1016/j.apenergy.2020.114490_b0005 article-title: Understanding ageing in li-ion batteries: a chemical issue publication-title: Chem Soc Rev – ident: 10.1016/j.apenergy.2020.114490_b0100 doi: 10.1109/ICPES.2016.7584003 – volume: 251 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0165 article-title: A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113327 – volume: 20 start-page: 1377 year: 2017 ident: 10.1016/j.apenergy.2020.114490_b0235 article-title: Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2015.2461671 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.apenergy.2020.114490_b0160 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: 10.1016/j.apenergy.2020.114490_b0095 doi: 10.23919/ACC.2017.7963578 – volume: 43 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0255 article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression publication-title: J Med Syst doi: 10.1007/s10916-019-1397-z – ident: 10.1016/j.apenergy.2020.114490_b0240 – volume: 124 start-page: 15 year: 2006 ident: 10.1016/j.apenergy.2020.114490_b0190 article-title: A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics publication-title: Chem Eng J doi: 10.1016/j.cej.2006.08.003 – ident: 10.1016/j.apenergy.2020.114490_b0105 doi: 10.1109/ISIE.2016.7744902 – volume: 113 start-page: 1575 year: 2014 ident: 10.1016/j.apenergy.2020.114490_b0050 article-title: Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.003 – volume: 41 year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0225 article-title: Biomedical image processing with containers and deep learning: an automated analysis pipeline publication-title: BioEssays doi: 10.1002/bies.201900004 – volume: 247 start-page: 332 year: 2014 ident: 10.1016/j.apenergy.2020.114490_b0060 article-title: Production caused variation in capacity aging trend and correlation to initial cell performance publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.108 – year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0150 article-title: Scene classification using transfer learning: theories and applications publication-title: Recent Adv Comput Vision doi: 10.1007/978-3-030-03000-1_15 – year: 2019 ident: 10.1016/j.apenergy.2020.114490_b0155 article-title: Cest mr⊥ingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction publication-title: Magn Reson Med – year: 2017 ident: 10.1016/j.apenergy.2020.114490_b0200 article-title: Performance assessment and prediction for superheterodyne receivers based on Mahalanobis distance and time sequence analysis publication-title: Int J Antennas Propagat doi: 10.1155/2017/6458954 – start-page: 153 year: 2007 ident: 10.1016/j.apenergy.2020.114490_b0230 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inform Process Syst – volume: 4 start-page: 96 year: 1889 ident: 10.1016/j.apenergy.2020.114490_b0260 article-title: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte publication-title: Z Phys Chem doi: 10.1515/zpch-1889-0408 |
| SSID | ssj0002120 |
| Score | 2.5158417 |
| Snippet | [Display omitted]
•Test optimization for Li-ion battery formulations reduces the cost of testing.•Deep learning is used to predict battery lifespan in... Cycle life testing in battery development is crucial for the selection of a formulation, but it is time-consuming and costly for battery enterprises. A test... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114490 |
| SubjectTerms | Arrhenius model batteries business enterprises Cycle life test optimization Deep learning heat stress Li-ion power battery lithium prediction Remaining useful life prediction temperature Transfer learning |
| Title | Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.114490 https://www.proquest.com/docview/2400484672 |
| Volume | 262 |
| WOSCitedRecordID | wos000517398200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqykuLxM3a4Djr2D5WVRBwqHooUjhZs-sNaZU4VmJX7ZkfwF9m9mWbUig9cLGsdXa9znyel-dByDvOQUYSJAMp0ECBScpEmCVMFjBSSZFCGINpNpEcH6ezWXYyGPzwuTAXy6Qs08vLrPqvpMYxJLZOnb0DudtFcQDPkeh4RLLj8Z8If3SFA8HybK4CVCPrYI1MYeWyLU1Qoe-JUqNBzvRgpTulBcJU2jTxm6vGR8g1xpUAweJKZ3YFG7WyHSVYs1XzZsnMbaqN_tpj1rcNqfsar1dzlUky7BzgBj49bM4a44hdNK3Px7uyT1T5TS5g7S8Urg3L16bvskD7VMe_xT3OhnYK06Zbnw1HjitbRopmGrd9RH_j8dbdcD6Eyu58qG8x7Cb8WlT7mrBrQxB9dNt57tfJ9Tq5Xece2Y2SOENOv3v4aTr73Ar3yFX69E_QSzq_eUd_0neuSX6jzpw-Jo-cHUIPLX6ekIEq98jDXnXKPbI_7ZIg8adOCmyfku8GYlTTnmqI0T7EKOKHthCjFmLUQIw6iNE-xKiBGAVqIUZvhBjtIEYtxJ6RLx-mp0cfmWvmweSYxzXjXMp5IVMVizQsAELQvRRAxgJFiEoVFyizUTVKBWptYlzMQaBpoGAyKZJszuV4n-yU61I9JzRReH2UoWYqCp4lKkOeEko0tVNejGQCByT2f3kuXaV73XBlmf-d6AfkfTuvsrVebp2ReYrmTmO1mmiOYL117lsPgRxZuv5OB6VaN9s8MnIVNZjoxZ139JI86N64V2Sn3jTqNbkvL-qz7eaNQ_NPHz_PfQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cycle+life+test+optimization+for+different+Li-ion+power+battery+formulations+using+a+hybrid+remaining-useful-life+prediction+method&rft.jtitle=Applied+energy&rft.au=Ma%2C+Jian&rft.au=Xu%2C+Shu&rft.au=Shang%2C+Pengchao&rft.au=ding%2C+Yu&rft.date=2020-03-15&rft.issn=0306-2619&rft.volume=262&rft.spage=114490&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114490&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114490 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |