Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints

Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 317; s. 119107
Hlavní autoři: Zhu, Dafeng, Yang, Bo, Ma, Chengbin, Wang, Zhaojian, Zhu, Shanying, Ma, Kai, Guan, Xinping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2022
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage and minimize energy cost is a key issue. Since energy management is hardly to be implemented offline without knowing statistical information of random variables, this paper presents a systematic online energy cost minimization framework to fulfill the complementary utilization of multi-energy with time-varying generation, demand and price. Specifically to achieve charging/discharging constraints due to storage and short-term energy balancing, a fast distributed algorithm based on stochastic gradient with two-timescale implementation is proposed to ensure online implementation. To reduce the peak loads, an incentive mechanism is implemented by estimating users’ willingness to shift. Analytical results on parameter setting are also given to guarantee feasibility and optimality of the proposed design. Numerical results show that when the bid–ask spread of electricity is small enough, the proposed algorithm can achieve the close-to-optimal cost asymptotically. •A systematic online optimization framework ensuring provable performance for multi-energy system management is presented.•A method is proposed for estimating users’ willingness to shift inelastic loads via public data.•The energy storage balance and real-time supply–demand balance can be achieved by two-timescale optimization.•Fast distributed method is proposed to deal with temporally-coupled constraints.
AbstractList Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage and minimize energy cost is a key issue. Since energy management is hardly to be implemented offline without knowing statistical information of random variables, this paper presents a systematic online energy cost minimization framework to fulfill the complementary utilization of multi-energy with time-varying generation, demand and price. Specifically to achieve charging/discharging constraints due to storage and short-term energy balancing, a fast distributed algorithm based on stochastic gradient with two-timescale implementation is proposed to ensure online implementation. To reduce the peak loads, an incentive mechanism is implemented by estimating users’ willingness to shift. Analytical results on parameter setting are also given to guarantee feasibility and optimality of the proposed design. Numerical results show that when the bid–ask spread of electricity is small enough, the proposed algorithm can achieve the close-to-optimal cost asymptotically. •A systematic online optimization framework ensuring provable performance for multi-energy system management is presented.•A method is proposed for estimating users’ willingness to shift inelastic loads via public data.•The energy storage balance and real-time supply–demand balance can be achieved by two-timescale optimization.•Fast distributed method is proposed to deal with temporally-coupled constraints.
Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain supply/demand, how to mobilize delay-tolerant elastic loads and compensate real-time inelastic loads to match multi-energy generation/storage and minimize energy cost is a key issue. Since energy management is hardly to be implemented offline without knowing statistical information of random variables, this paper presents a systematic online energy cost minimization framework to fulfill the complementary utilization of multi-energy with time-varying generation, demand and price. Specifically to achieve charging/discharging constraints due to storage and short-term energy balancing, a fast distributed algorithm based on stochastic gradient with two-timescale implementation is proposed to ensure online implementation. To reduce the peak loads, an incentive mechanism is implemented by estimating users’ willingness to shift. Analytical results on parameter setting are also given to guarantee feasibility and optimality of the proposed design. Numerical results show that when the bid–ask spread of electricity is small enough, the proposed algorithm can achieve the close-to-optimal cost asymptotically.
ArticleNumber 119107
Author Zhu, Shanying
Ma, Chengbin
Yang, Bo
Ma, Kai
Guan, Xinping
Zhu, Dafeng
Wang, Zhaojian
Author_xml – sequence: 1
  givenname: Dafeng
  surname: Zhu
  fullname: Zhu, Dafeng
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0001-9268-8436
  surname: Yang
  fullname: Yang, Bo
  email: bo.yang@sjtu.edu.cn
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Chengbin
  surname: Ma
  fullname: Ma, Chengbin
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Zhaojian
  surname: Wang
  fullname: Wang, Zhaojian
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 5
  givenname: Shanying
  surname: Zhu
  fullname: Zhu, Shanying
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 6
  givenname: Kai
  surname: Ma
  fullname: Ma, Kai
  organization: Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China
– sequence: 7
  givenname: Xinping
  surname: Guan
  fullname: Guan, Xinping
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNqFkUFvFCEYholpE7fVv2A4epktMO7MkHjQNGpNmnioPZNv4GPLysAIjM0e-t_LZvTipSfIl-d9yfdwQc5CDEjIO862nPHu6rCFGQOm_XErmBBbziVn_Suy4UMvGsn5cEY2rGVdIzouX5OLnA-MMcEF25CnuxL1A-TiNN0nMA5DaUbIaKitU2pcLsmNS6mDafHFNetTdIIAe5wqTm1MFAJ1wSwnGDydIf2ij6480ILTHBN4f2x0XGZfa3QMFQMXSn5Dzi34jG__npfk_uuXn9c3ze2Pb9-vP982uv2wK01rh1GOA9qdHgRntt6sZAb6tsfBjj0Xtt31YjQcYJAIreaj7qADa-yu19hekvdr75zi7wVzUZPLGr2HgHHJSnQdk4OQklW0W1GdYs4JrZqTmyAdFWfq5Fsd1D_f6uRbrb5r8ON_Qe0KFBfDaVn_cvzTGsfq4Y_DpLKun6HRuIS6KBPdSxXPqWaoIQ
CitedBy_id crossref_primary_10_1016_j_jobe_2024_109138
crossref_primary_10_1016_j_segan_2023_101202
crossref_primary_10_1109_TEC_2023_3311460
crossref_primary_10_1109_TSG_2023_3326928
crossref_primary_10_1109_TNSE_2024_3507956
crossref_primary_10_1109_TASE_2025_3595443
crossref_primary_10_1109_TSG_2025_3549723
crossref_primary_10_3390_en18071569
crossref_primary_10_1016_j_ijepes_2023_109113
crossref_primary_10_1016_j_apenergy_2023_120835
crossref_primary_10_1016_j_renene_2023_05_067
crossref_primary_10_1016_j_epsr_2025_111541
Cites_doi 10.1109/TII.2020.2973740
10.1109/TCNS.2014.2309751
10.1109/90.811451
10.1016/j.energy.2020.119092
10.1109/JSAC.2012.120706
10.1016/j.apenergy.2018.12.013
10.1016/j.apenergy.2019.113976
10.1016/j.apenergy.2020.115225
10.1016/j.energy.2021.121517
10.1137/080716542
10.1109/TSTE.2021.3068630
10.1109/TSG.2020.2968747
10.1016/j.energy.2021.120890
10.1109/TII.2017.2714199
10.1016/j.energy.2020.117589
10.1016/j.renene.2018.10.054
10.1016/j.jclepro.2021.128364
10.1109/TPWRS.2014.2311127
10.1109/MELE.2021.3093602
10.1016/j.apenergy.2021.116516
10.1109/TPDS.2012.25
10.1109/TSG.2016.2614988
10.1016/j.apenergy.2020.115407
10.1109/CAMSAP.2011.6135900
10.1109/TPWRS.2020.3017684
10.1016/j.energy.2020.118139
10.1016/j.apenergy.2018.03.010
10.1016/j.apenergy.2022.118636
10.1109/TII.2020.2971227
10.1016/j.energy.2021.121133
10.1016/j.apenergy.2021.117596
10.1109/TII.2020.3014599
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.119107
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_119107
S0306261922004901
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB1702300
  funderid: http://dx.doi.org/10.13039/501100013290
– fundername: NSF of China
  grantid: 61731012; 62122065; 61973264; 62103265; 92167205
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-3f8b9b8ef5c8210f8eff90da737e8fb712f3572bd1aa89ea3c1bc6a6afdf57ce3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799979200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 12:51:44 EDT 2025
Sat Nov 29 07:24:21 EST 2025
Tue Nov 18 21:33:18 EST 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peak loads shifting
Multi-energy industrial park
Two-timescale optimization
Stochastic gradient
Fast distributed algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-3f8b9b8ef5c8210f8eff90da737e8fb712f3572bd1aa89ea3c1bc6a6afdf57ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9268-8436
PQID 2660982990
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2660982990
crossref_primary_10_1016_j_apenergy_2022_119107
crossref_citationtrail_10_1016_j_apenergy_2022_119107
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119107
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Le, Huang, Wilson, Shah, Hewitt (b12) 2020; 257
Daryabari, Keypour, Golmohamadi (b16) 2020; 297
Lohr, Wolf, Pollerberg, Horsting, Monnigmann (b19) 2021; 290
Jia L, Yu Z, Murphy-Hoye MC, Pratt A, Piccioli EG, Tong L. Multi-scale stochastic optimization for home energy management. In: 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing. 2011, p. 113–6.
Deng, Yang, Chen, Chow (b33) 2014; 29
Wang, Yang, Wei, Zhu, Guan, Sun (b35) 2021; 9
Wu, Wei, Li, Wang, Li, Sauer (b2) 2021; 17
Joe-Wong, Sen, Ha, Chiang (b22) 2012; 30
Guo, Pan, Fang (b25) 2012; 23
Zhu, Yang, Pan, Li, Rao (b9) 2020; 201
Beck, Nedic, Ozdaglar, Teboulle (b29) 2014; 1
Guo, Nojavan, Lei, Liang (b10) 2021; 317
Wu, Bai, Wei, Chen, Mei (b7) 2021; 233
Kalantar-Neyestanaki, Cherkaoui (b21) 2021; 12
Bertsekas (b27) 2009
Zhang, Zhu, He, Yang, Guan (b4) 2019; 236
Beck, Teboulle (b26) 2009; 2
Low, Lapsley (b28) 1999; 7
Neely (b23) 2010; 3
The electricity price of jiangsu electric power company
Li, Sheng, Duan, Li, Zhu, Zhang (b6) 2020; 11
Wang, Huang (b31) 2018; 9
The data of photovoltaic systems provided by renewables.ninja
Li, Xu, Feng, Wu (b38) 2021; 17
Lak, Rastegar, Mohammadi, Shafiee, Zareipour (b17) 2021; 215
Liu, Xu, Botterud, Zhang, Kang (b1) 2021; 36
Zhu, Yang, Liu, Ma, Zhu, Ma (b30) 2020; 272
Gronier, Fito, Franquet, Gibout, Ramousse (b14) 2022; 238
Xu, Zhou, Huang, Lou, Liu (b8) 2020; 275
.
Zhang, Wu, Zhou, Cheng, Long (b3) 2018; 220
Zhu, Yang, Liu, Wang, Ma, Guan (b5) 2022; 311
Li, He, Zhao (b20) 2021; 230
Yan, Zhang, Liang, Jin (b13) 2020; 207
Gomes, Melicio, Mendes, Pousinho (b18) 2019; 133
Wang, Yu, Mu, Jia, Jiang, Wang (b11) 2021; 303
Zhou, Yu, Zhu, Yang, He (b37) 2021; 286
Zhang, Li, Gao, Zhou (b24) 2017; 13
Daneshvar, Mohammadi-Ivatloo, Zare, Asadi (b15) 2020; 16
Bertsekas (10.1016/j.apenergy.2022.119107_b27) 2009
Gronier (10.1016/j.apenergy.2022.119107_b14) 2022; 238
Li (10.1016/j.apenergy.2022.119107_b38) 2021; 17
Low (10.1016/j.apenergy.2022.119107_b28) 1999; 7
Le (10.1016/j.apenergy.2022.119107_b12) 2020; 257
10.1016/j.apenergy.2022.119107_b34
Beck (10.1016/j.apenergy.2022.119107_b29) 2014; 1
10.1016/j.apenergy.2022.119107_b36
Neely (10.1016/j.apenergy.2022.119107_b23) 2010; 3
Xu (10.1016/j.apenergy.2022.119107_b8) 2020; 275
Daryabari (10.1016/j.apenergy.2022.119107_b16) 2020; 297
10.1016/j.apenergy.2022.119107_b32
Guo (10.1016/j.apenergy.2022.119107_b10) 2021; 317
Wu (10.1016/j.apenergy.2022.119107_b2) 2021; 17
Deng (10.1016/j.apenergy.2022.119107_b33) 2014; 29
Zhu (10.1016/j.apenergy.2022.119107_b9) 2020; 201
Zhu (10.1016/j.apenergy.2022.119107_b5) 2022; 311
Kalantar-Neyestanaki (10.1016/j.apenergy.2022.119107_b21) 2021; 12
Zhu (10.1016/j.apenergy.2022.119107_b30) 2020; 272
Wang (10.1016/j.apenergy.2022.119107_b35) 2021; 9
Guo (10.1016/j.apenergy.2022.119107_b25) 2012; 23
Gomes (10.1016/j.apenergy.2022.119107_b18) 2019; 133
Zhang (10.1016/j.apenergy.2022.119107_b24) 2017; 13
Li (10.1016/j.apenergy.2022.119107_b20) 2021; 230
Daneshvar (10.1016/j.apenergy.2022.119107_b15) 2020; 16
Lohr (10.1016/j.apenergy.2022.119107_b19) 2021; 290
Wu (10.1016/j.apenergy.2022.119107_b7) 2021; 233
Zhou (10.1016/j.apenergy.2022.119107_b37) 2021; 286
Liu (10.1016/j.apenergy.2022.119107_b1) 2021; 36
Wang (10.1016/j.apenergy.2022.119107_b11) 2021; 303
Joe-Wong (10.1016/j.apenergy.2022.119107_b22) 2012; 30
Zhang (10.1016/j.apenergy.2022.119107_b4) 2019; 236
Lak (10.1016/j.apenergy.2022.119107_b17) 2021; 215
Beck (10.1016/j.apenergy.2022.119107_b26) 2009; 2
Li (10.1016/j.apenergy.2022.119107_b6) 2020; 11
Zhang (10.1016/j.apenergy.2022.119107_b3) 2018; 220
Wang (10.1016/j.apenergy.2022.119107_b31) 2018; 9
Yan (10.1016/j.apenergy.2022.119107_b13) 2020; 207
References_xml – volume: 290
  year: 2021
  ident: b19
  article-title: Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages
  publication-title: IEEE Trans Power Syst
– volume: 317
  year: 2021
  ident: b10
  article-title: Economic-environmental evaluation of industrial energy parks integrated with CCHP units under a hybrid IGDT-stochastic optimization approach
  publication-title: J Cleaner Prod
– volume: 3
  start-page: 1
  year: 2010
  end-page: 211
  ident: b23
  article-title: Stochastic network optimization with application to communication and queueing systems
  publication-title: Synth Lect Commun Netw
– volume: 207
  year: 2020
  ident: b13
  article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning
  publication-title: Energy
– volume: 30
  start-page: 1075
  year: 2012
  end-page: 1085
  ident: b22
  article-title: Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility
  publication-title: IEEE J Sel Areas Commun
– volume: 311
  year: 2022
  ident: b5
  article-title: Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park
  publication-title: Appl Energy
– volume: 16
  start-page: 6857
  year: 2020
  end-page: 6867
  ident: b15
  article-title: Two-stage robust stochastic model scheduling for transactive energy based renewable microgrids
  publication-title: IEEE Trans Ind Inf
– volume: 17
  start-page: 3751
  year: 2021
  end-page: 3761
  ident: b2
  article-title: Battery thermal- and health-constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm
  publication-title: IEEE Trans Ind Inf
– year: 2009
  ident: b27
  article-title: Convex optimization theory
– volume: 1
  start-page: 64
  year: 2014
  end-page: 73
  ident: b29
  article-title: An O(1/k) gradient method for network resource allocation problems
  publication-title: IEEE Trans Control Netw Syst
– volume: 201
  year: 2020
  ident: b9
  article-title: Regional integrated energy system energy management in an industrial park considering energy stepped utilization
  publication-title: Energy
– volume: 303
  year: 2021
  ident: b11
  article-title: Peer-to-peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid
  publication-title: Appl Energy
– volume: 13
  start-page: 3081
  year: 2017
  end-page: 3097
  ident: b24
  article-title: Distributed optimal energy management for energy internet
  publication-title: IEEE Trans Ind Inf
– reference: Jia L, Yu Z, Murphy-Hoye MC, Pratt A, Piccioli EG, Tong L. Multi-scale stochastic optimization for home energy management. In: 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing. 2011, p. 113–6.
– volume: 23
  start-page: 1593
  year: 2012
  end-page: 1606
  ident: b25
  article-title: Optimal power management of residential customers in the smart grid
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 29
  start-page: 2823
  year: 2014
  end-page: 2834
  ident: b33
  article-title: Load scheduling with price uncertainty and temporally-coupled constraints in smart grids
  publication-title: IEEE Trans Power Syst
– reference: The electricity price of jiangsu electric power company,
– volume: 257
  year: 2020
  ident: b12
  article-title: Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment
  publication-title: Appl Energy
– volume: 272
  year: 2020
  ident: b30
  article-title: Energy trading in microgrids for synergies among electricity, hydrogen and heat networks
  publication-title: Appl Energy
– volume: 238
  year: 2022
  ident: b14
  article-title: Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management
  publication-title: Energy
– volume: 36
  start-page: 1023
  year: 2021
  end-page: 1033
  ident: b1
  article-title: Bounding regression errors in data-driven power grid steady-state models
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 861
  year: 1999
  end-page: 874
  ident: b28
  article-title: Optimization flow control-I: Basic algorithm and convergence
  publication-title: IEEE/ACM Trans Netw
– volume: 236
  start-page: 985
  year: 2019
  end-page: 996
  ident: b4
  article-title: Credit rating based real-time energy trading in microgrids
  publication-title: Appl Energy
– reference: The data of photovoltaic systems provided by renewables.ninja,
– volume: 220
  start-page: 1
  year: 2018
  end-page: 12
  ident: b3
  article-title: Peer-to-peer energy trading in a microgrid
  publication-title: Appl Energy
– volume: 297
  year: 2020
  ident: b16
  article-title: Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators
  publication-title: Appl Energy
– volume: 12
  start-page: 1853
  year: 2021
  end-page: 1863
  ident: b21
  article-title: Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty
  publication-title: IEEE Trans Sustain Energy
– volume: 230
  year: 2021
  ident: b20
  article-title: Energy management for hybrid energy storage system in electric vehicle: A cyber–physical system perspective
  publication-title: Energy
– reference: .
– volume: 9
  start-page: 75
  year: 2021
  end-page: 82
  ident: b35
  article-title: Multi-energy microgrids: Designing, operation under new business models, and engineering practices in China
  publication-title: IEEE Electrif Mag
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b26
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
– volume: 11
  start-page: 4860
  year: 2020
  end-page: 4870
  ident: b6
  article-title: A Lyapunov optimization-based energy management strategy for energy hub with energy router
  publication-title: IEEE Trans Smart Grid
– volume: 215
  year: 2021
  ident: b17
  article-title: Risk-constrained stochastic market operation strategies for wind power producers and energy storage systems
  publication-title: Energy
– volume: 233
  year: 2021
  ident: b7
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
– volume: 133
  start-page: 692
  year: 2019
  end-page: 702
  ident: b18
  article-title: Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk
  publication-title: Renew Energy
– volume: 9
  start-page: 2647
  year: 2018
  end-page: 2657
  ident: b31
  article-title: Incentivizing energy trading for interconnected microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 17
  start-page: 991
  year: 2021
  end-page: 1004
  ident: b38
  article-title: Optimal stochastic deployment of heterogeneous energy storage in a residential multi-energy microgrid with demand-side management
  publication-title: IEEE Trans Ind Inf
– volume: 275
  year: 2020
  ident: b8
  article-title: Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response
  publication-title: Appl Energy
– volume: 286
  year: 2021
  ident: b37
  article-title: Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market
  publication-title: Appl Energy
– volume: 16
  start-page: 6857
  issue: 11
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b15
  article-title: Two-stage robust stochastic model scheduling for transactive energy based renewable microgrids
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2973740
– volume: 1
  start-page: 64
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2022.119107_b29
  article-title: An O(1/k) gradient method for network resource allocation problems
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2014.2309751
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.apenergy.2022.119107_b23
  article-title: Stochastic network optimization with application to communication and queueing systems
  publication-title: Synth Lect Commun Netw
– volume: 7
  start-page: 861
  issue: 6
  year: 1999
  ident: 10.1016/j.apenergy.2022.119107_b28
  article-title: Optimization flow control-I: Basic algorithm and convergence
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/90.811451
– volume: 215
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b17
  article-title: Risk-constrained stochastic market operation strategies for wind power producers and energy storage systems
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119092
– volume: 30
  start-page: 1075
  issue: 6
  year: 2012
  ident: 10.1016/j.apenergy.2022.119107_b22
  article-title: Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2012.120706
– ident: 10.1016/j.apenergy.2022.119107_b34
– volume: 236
  start-page: 985
  year: 2019
  ident: 10.1016/j.apenergy.2022.119107_b4
  article-title: Credit rating based real-time energy trading in microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.013
– volume: 257
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b12
  article-title: Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113976
– volume: 272
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b30
  article-title: Energy trading in microgrids for synergies among electricity, hydrogen and heat networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115225
– volume: 238
  year: 2022
  ident: 10.1016/j.apenergy.2022.119107_b14
  article-title: Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121517
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2022.119107_b26
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080716542
– volume: 290
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b19
  article-title: Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages
  publication-title: IEEE Trans Power Syst
– volume: 12
  start-page: 1853
  issue: 4
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b21
  article-title: Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2021.3068630
– ident: 10.1016/j.apenergy.2022.119107_b36
– volume: 11
  start-page: 4860
  issue: 6
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b6
  article-title: A Lyapunov optimization-based energy management strategy for energy hub with energy router
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2968747
– volume: 230
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b20
  article-title: Energy management for hybrid energy storage system in electric vehicle: A cyber–physical system perspective
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120890
– volume: 13
  start-page: 3081
  issue: 6
  year: 2017
  ident: 10.1016/j.apenergy.2022.119107_b24
  article-title: Distributed optimal energy management for energy internet
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2714199
– volume: 201
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b9
  article-title: Regional integrated energy system energy management in an industrial park considering energy stepped utilization
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117589
– year: 2009
  ident: 10.1016/j.apenergy.2022.119107_b27
– volume: 133
  start-page: 692
  year: 2019
  ident: 10.1016/j.apenergy.2022.119107_b18
  article-title: Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.054
– volume: 317
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b10
  article-title: Economic-environmental evaluation of industrial energy parks integrated with CCHP units under a hybrid IGDT-stochastic optimization approach
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2021.128364
– volume: 29
  start-page: 2823
  issue: 6
  year: 2014
  ident: 10.1016/j.apenergy.2022.119107_b33
  article-title: Load scheduling with price uncertainty and temporally-coupled constraints in smart grids
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2311127
– volume: 9
  start-page: 75
  issue: 3
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b35
  article-title: Multi-energy microgrids: Designing, operation under new business models, and engineering practices in China
  publication-title: IEEE Electrif Mag
  doi: 10.1109/MELE.2021.3093602
– volume: 286
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b37
  article-title: Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116516
– volume: 23
  start-page: 1593
  issue: 9
  year: 2012
  ident: 10.1016/j.apenergy.2022.119107_b25
  article-title: Optimal power management of residential customers in the smart grid
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.25
– volume: 9
  start-page: 2647
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2022.119107_b31
  article-title: Incentivizing energy trading for interconnected microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2614988
– volume: 275
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b8
  article-title: Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115407
– ident: 10.1016/j.apenergy.2022.119107_b32
  doi: 10.1109/CAMSAP.2011.6135900
– volume: 36
  start-page: 1023
  issue: 2
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b1
  article-title: Bounding regression errors in data-driven power grid steady-state models
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2020.3017684
– volume: 207
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b13
  article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118139
– volume: 220
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2022.119107_b3
  article-title: Peer-to-peer energy trading in a microgrid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.010
– volume: 297
  year: 2020
  ident: 10.1016/j.apenergy.2022.119107_b16
  article-title: Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators
  publication-title: Appl Energy
– volume: 311
  year: 2022
  ident: 10.1016/j.apenergy.2022.119107_b5
  article-title: Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118636
– volume: 17
  start-page: 991
  issue: 2
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b38
  article-title: Optimal stochastic deployment of heterogeneous energy storage in a residential multi-energy microgrid with demand-side management
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2971227
– volume: 233
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b7
  article-title: Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121133
– volume: 303
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b11
  article-title: Peer-to-peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117596
– volume: 17
  start-page: 3751
  issue: 6
  year: 2021
  ident: 10.1016/j.apenergy.2022.119107_b2
  article-title: Battery thermal- and health-constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3014599
SSID ssj0002120
Score 2.465825
Snippet Contemporary industrial parks are challenged by the growing concerns about high cost and low efficiency of energy supply. Moreover, in the case of uncertain...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119107
SubjectTerms algorithms
electricity
energy
energy costs
Fast distributed algorithm
Multi-energy industrial park
Peak loads shifting
prices
Stochastic gradient
Two-timescale optimization
Title Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints
URI https://dx.doi.org/10.1016/j.apenergy.2022.119107
https://www.proquest.com/docview/2660982990
Volume 317
WOSCitedRecordID wos000799979200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLaqjgMcEAwmxgAZiVuVkjhN4hwHKgKEJqQNUXGJbMdmLSGJ2nTaDtz44TzHThw20ECISxRZsZP0-_r8_PLeZ4SeSV8wGavcY4Ll3iwWFOxgmHqwiCOCBUJw1urMvkuOjuhikb4fjb53tTBnRVKW9Pw8rf8r1NAGYOvS2b-Aux8UGuAcQIcjwA7HPwL-uKnEKdPyy5PP6zahq_H0XJVPFLTqLzJmkytoaLMJPWnK_772iTA2s3KydNt61Gz9xcZsjZZVUVx4otrWhdRlcVqGli2tKlQvamsdXDO-i1BvTS69knbS1DbHRq1fVC5CbpIB4CK-7An80V736ZRVq47YNmZBXH6rDaR1xTQuc6kt4PJjTy_ozNRk7DFNiLbHdGiwQ1PtecX4mzjEaspq82JTfeupVrAzG-teEtY-1jdsF5Ck_f4Ja-gdkkQpHaOdwzfzxdt-RidW3rN7wEGl-a_v9jsn59J03_owJ3fQbbv4wIeGNHfRSJa76NZAknIX7c1d5SNcak3_5h765niFf-YV1rzCA17hIa-w4xUGXmFWYscrrHmFNa_wVV7hAa_uow-v5icvX3t27w5PhLOo8UJFecqpVJGgJPAVnKnUz1kSJpIqngREhVFCeB4wRlPJQhFwEbOYqVxFiZDhHhqXVSkfIBwHUibgRhPK2UwSQbmQPPL9HNDL1Uzto6j7sTNhhe31wxVZl8G4yjqQMg1SZkDaR8_7frWRdrm2R9phmVkH1TieGVDw2r5PO_AzsOD6sxwrZbXdZOAi-ynVbuHDfxj_AN10_7RHaNyst_IxuiHOmuVm_cQy-geM0s9Z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+gradient-based+fast+distributed+multi-energy+management+for+an+industrial+park+with+temporally-coupled+constraints&rft.jtitle=Applied+energy&rft.au=Zhu%2C+Dafeng&rft.au=Yang%2C+Bo&rft.au=Ma%2C+Chengbin&rft.au=Wang%2C+Zhaojian&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=317&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119107&rft.externalDocID=S0306261922004901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon