A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem

•Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over t...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 338; p. 120605
Main Authors: Abdoli, B., Hooshmand, F., MirHassani, S.A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.05.2023
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over two case studies are provided.•The results confirm that incorporating uncertainty may cause significant cost-saving. Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO2 emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO2 in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO2 emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO2 to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average.
AbstractList Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO₂ emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO₂ in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO₂ emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO₂ to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average.
•Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over two case studies are provided.•The results confirm that incorporating uncertainty may cause significant cost-saving. Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO2 emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO2 in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO2 emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO2 to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average.
ArticleNumber 120605
Author MirHassani, S.A.
Abdoli, B.
Hooshmand, F.
Author_xml – sequence: 1
  givenname: B.
  surname: Abdoli
  fullname: Abdoli, B.
  email: b-abdoli@araku.ac.ir
  organization: Faculty of Science, Arak University, Arak, Iran
– sequence: 2
  givenname: F.
  surname: Hooshmand
  fullname: Hooshmand, F.
  email: f.hooshmand.khaligh@aut.ac.ir
  organization: Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
– sequence: 3
  givenname: S.A.
  surname: MirHassani
  fullname: MirHassani, S.A.
  email: a_mirhassani@aut.ac.ir
  organization: Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
BookMark eNqFkE1L7DAUhoMoOHr9C5Klm44naZs24EIZ_LgwIHh1HdL0dMzQJmOSEebfm2F0czeuAifv857Dc0aOnXdIyCWDOQMmrtdzvUGHYbWbc-B8zjgIqI_IjLUNLyRj7TGZQQmi4ILJU3IW4xoAeM7NSHdHnf_EkcbkzbuOyRq6CX4V9DRZt6KT7_Pn1vUYKLrer9D5bcwDgyFp69KODj7Q9I50sfhX3D-_0M2onduzuacbcfpDTgY9Rrz4fs_J28P96-KpWD4__l3cLQtTVnUqSqxBN7yrh0ZgO-hWSkRZsdrofqh7qWsmEcpegmxQDG0F2MpGdJ1pQFTMlOfk6tCb935sMSY12WhwzOdgvlnxtqx4A7Iuc_TmEDXBxxhwUMYmnax3KWg7KgZqr1at1Y9atVerDmozLv7DN8FOOux-B28PIGYPnxaDisZidtnbgCap3tvfKr4Ambia3g
CitedBy_id crossref_primary_10_1016_j_sftr_2025_100642
crossref_primary_10_1108_IMDS_12_2024_1192
crossref_primary_10_3390_su16072621
Cites_doi 10.1007/s12182-014-0362-1
10.1016/j.envres.2022.112986
10.1016/j.apenergy.2018.03.166
10.1016/j.enpol.2008.09.049
10.1002/ep.11630
10.1016/j.petrol.2019.106720
10.1260/0144-5987.32.2.281
10.1080/10556788.2015.1088850
10.1016/j.compchemeng.2003.10.005
10.1016/j.compchemeng.2014.12.014
10.1016/j.petrol.2021.109257
10.1016/j.psep.2016.09.013
10.1016/j.psep.2014.04.012
10.1016/j.orhc.2018.02.002
10.1080/00207543.2015.1057625
10.1002/er.2993
10.1016/j.apenergy.2016.09.093
10.1021/ie402866d
10.1016/j.ejor.2020.08.057
10.1007/s11750-007-0005-4
10.1016/j.apenergy.2020.115695
10.1002/cjce.23393
10.1021/ie8013549
10.1002/aic.11835
10.1016/j.ijggc.2012.01.013
10.1016/j.apenergy.2018.09.129
10.1016/j.jclepro.2020.120866
10.1016/j.ejor.2009.07.022
10.1007/s10107-006-0715-7
10.1016/j.ejor.2019.01.055
10.1016/j.compenvurbsys.2011.08.002
10.1021/ie202821r
10.1016/j.egyr.2019.04.011
10.1016/j.apenergy.2019.04.025
10.1016/j.apenergy.2017.03.017
10.1002/ghg.1382
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.120605
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_120605
S0306261922018621
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-3e50a72b5f76e8fa899ee9415cadf5d9a519e03d9097e6f840e8976bbc70641c3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955602000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 14:08:37 EDT 2025
Tue Nov 18 21:17:03 EST 2025
Sat Nov 29 07:25:08 EST 2025
Fri Feb 23 02:36:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-stage stochastic programming
Value of stochastic solution
Carbon-capture-and-storage
Decision-dependent uncertainty
Non-anticipativity constraints
Enhanced-oil-recovery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-3e50a72b5f76e8fa899ee9415cadf5d9a519e03d9097e6f840e8976bbc70641c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834270953
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834270953
crossref_citationtrail_10_1016_j_apenergy_2022_120605
crossref_primary_10_1016_j_apenergy_2022_120605
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120605
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang (b0180) 2018; 222
You, Ampomah, Sun (b0185) 2020; 279
Jiang, Rui, Hazlett, Lu (b0090) 2019; 247
Hooshmand, MirHassani, Akhavein (b0080) 2018; 19
Adu, Jhang, Liu (b0005) 2019; 97
Kamali, Cinar (b0105) 2014; 32
Ettehad (b0040) 2014; 4
Khojastehmehr, Madani, Daryasafar (b0115) 2019; 5
Middleton (b0125) 2013; 37
Sha, Zhang, Cao (b0145) 2021; 290
Herzog (b0060) 2009
Kashkooli, Gandomkar, Riazi, Tavallali (b0110) 2022; 208
Goel, Grossmann (b0050) 2006; 108
Jonsbraten T. Optimization models for petroleum field exploitation. s.l.:PhD thesis. Norwegian School of Economics and Business Administration; 1998.
Jahangiri, Zhang (b0085) 2012; 8
Jiang (b0095) 2022; 210
Tarhan, Grossmann, Goel (b0175) 2009; 48
Middleton, Bielicki (b0130) 2009; 37
Tapia, Tan (b0165) 2014; 92
You (b0190) 2020; 260
Tan, Aviso, Bandyopadhyay, Ng (b0150) 2012; 51
Tapia (b0170) 2016; 104
Tan, Aviso, Bandyopadhyay, Ng (b0155) 2013; 32
Goel, Grossmann (b0045) 2004; 28
Hooshmand, MirHassani (b0075) 2016; 54
Zhang (b0195) 2018; 231
Escudero, Garín, Merino, Pérez (b0035) 2007; 15
Elkamel, Hashim, Douglas, Croiset (b0030) 2009; 55
Tapia (b0160) 2016; 184
Guo, Huang, Wang, Meng (b0055) 2020; 186
Mayer, Pflug, Polak (b0120) 2020; 285
Christian, Cremaschi (b0020) 2015; 74
He (b0065) 2014; 53
Safarzadeh, Motahhari (b0140) 2014; 11
Hooshmand, MirHassani (b0070) 2016; 31
Ampomah (b0010) 2017; 195
Colvin, Maravelias (b0025) 2010; 203
Middleton, Kuby, Bielicki (b0135) 2012; 36
Birge, Louveaux (b0015) 2011
Birge (10.1016/j.apenergy.2022.120605_b0015) 2011
Tapia (10.1016/j.apenergy.2022.120605_b0170) 2016; 104
Safarzadeh (10.1016/j.apenergy.2022.120605_b0140) 2014; 11
Tan (10.1016/j.apenergy.2022.120605_b0155) 2013; 32
Jahangiri (10.1016/j.apenergy.2022.120605_b0085) 2012; 8
Tan (10.1016/j.apenergy.2022.120605_b0150) 2012; 51
Adu (10.1016/j.apenergy.2022.120605_b0005) 2019; 97
Jiang (10.1016/j.apenergy.2022.120605_b0090) 2019; 247
Goel (10.1016/j.apenergy.2022.120605_b0050) 2006; 108
Zhang (10.1016/j.apenergy.2022.120605_b0195) 2018; 231
Ampomah (10.1016/j.apenergy.2022.120605_b0010) 2017; 195
Tapia (10.1016/j.apenergy.2022.120605_b0160) 2016; 184
Hooshmand (10.1016/j.apenergy.2022.120605_b0070) 2016; 31
Goel (10.1016/j.apenergy.2022.120605_b0045) 2004; 28
Sha (10.1016/j.apenergy.2022.120605_b0145) 2021; 290
Hooshmand (10.1016/j.apenergy.2022.120605_b0080) 2018; 19
Kashkooli (10.1016/j.apenergy.2022.120605_b0110) 2022; 208
Hooshmand (10.1016/j.apenergy.2022.120605_b0075) 2016; 54
Middleton (10.1016/j.apenergy.2022.120605_b0130) 2009; 37
You (10.1016/j.apenergy.2022.120605_b0190) 2020; 260
Khojastehmehr (10.1016/j.apenergy.2022.120605_b0115) 2019; 5
10.1016/j.apenergy.2022.120605_b0100
Elkamel (10.1016/j.apenergy.2022.120605_b0030) 2009; 55
Tapia (10.1016/j.apenergy.2022.120605_b0165) 2014; 92
Christian (10.1016/j.apenergy.2022.120605_b0020) 2015; 74
Middleton (10.1016/j.apenergy.2022.120605_b0125) 2013; 37
Ettehad (10.1016/j.apenergy.2022.120605_b0040) 2014; 4
Tarhan (10.1016/j.apenergy.2022.120605_b0175) 2009; 48
Herzog (10.1016/j.apenergy.2022.120605_b0060) 2009
You (10.1016/j.apenergy.2022.120605_b0185) 2020; 279
Guo (10.1016/j.apenergy.2022.120605_b0055) 2020; 186
Wang (10.1016/j.apenergy.2022.120605_b0180) 2018; 222
Kamali (10.1016/j.apenergy.2022.120605_b0105) 2014; 32
Mayer (10.1016/j.apenergy.2022.120605_b0120) 2020; 285
Middleton (10.1016/j.apenergy.2022.120605_b0135) 2012; 36
Jiang (10.1016/j.apenergy.2022.120605_b0095) 2022; 210
Escudero (10.1016/j.apenergy.2022.120605_b0035) 2007; 15
Colvin (10.1016/j.apenergy.2022.120605_b0025) 2010; 203
He (10.1016/j.apenergy.2022.120605_b0065) 2014; 53
References_xml – volume: 15
  start-page: 48
  year: 2007
  end-page: 64
  ident: b0035
  article-title: The value of the stochastic solution in multistage problems
  publication-title: TOP
– volume: 4
  start-page: 66
  year: 2014
  end-page: 80
  ident: b0040
  article-title: Storage compliance in coupled CO
  publication-title: Greenhouse Gases Sci Technol
– volume: 97
  start-page: 1048
  year: 2019
  end-page: 1076
  ident: b0005
  article-title: Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry
  publication-title: Can J Chem Eng
– volume: 186
  year: 2020
  ident: b0055
  article-title: Integrated operation for the planning of CO
  publication-title: J Pet Sci Eng
– volume: 37
  start-page: 1052
  year: 2009
  end-page: 1060
  ident: b0130
  article-title: A scalable infrastructure model for carbon capture and storage: SimCCS
  publication-title: Energy Policy
– volume: 53
  start-page: 778
  year: 2014
  end-page: 785
  ident: b0065
  article-title: Optimal source–sink matching in carbon capture and storage systems under uncertainty
  publication-title: Ind Eng Chem Res
– reference: Jonsbraten T. Optimization models for petroleum field exploitation. s.l.:PhD thesis. Norwegian School of Economics and Business Administration; 1998.
– volume: 260
  year: 2020
  ident: b0190
  article-title: Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO
  publication-title: J Clean Prod
– volume: 28
  start-page: 1409
  year: 2004
  end-page: 1429
  ident: b0045
  article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves
  publication-title: Comput Chem Eng
– volume: 54
  start-page: 579
  year: 2016
  end-page: 590
  ident: b0075
  article-title: A mathematical model for vehicle routing problem under endogenous uncertainty
  publication-title: Int J Prod Res
– volume: 279
  year: 2020
  ident: b0185
  article-title: Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework
  publication-title: Appl Energy
– volume: 231
  start-page: 194
  year: 2018
  end-page: 206
  ident: b0195
  article-title: An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China
  publication-title: Appl Energy
– volume: 210
  year: 2022
  ident: b0095
  article-title: A state-of-the-art review of CO
  publication-title: Environ Res
– year: 2011
  ident: b0015
  article-title: Introduction to stochastic programming
– volume: 48
  start-page: 3078
  year: 2009
  end-page: 3097
  ident: b0175
  article-title: Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty
  publication-title: Ind Eng Chem Res
– volume: 222
  start-page: 132
  year: 2018
  end-page: 147
  ident: b0180
  article-title: Economic co-optimization of oil recovery and CO
  publication-title: Appl Energy
– volume: 208
  year: 2022
  ident: b0110
  article-title: Coupled optimization of carbon dioxide sequestration and CO
  publication-title: J Pet Sci Eng
– volume: 55
  start-page: 3168
  year: 2009
  end-page: 3190
  ident: b0030
  article-title: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options
  publication-title: AIChE J
– volume: 11
  start-page: 460
  year: 2014
  end-page: 468
  ident: b0140
  article-title: Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II)
  publication-title: Pet Sci
– volume: 290
  start-page: 886
  year: 2021
  end-page: 900
  ident: b0145
  article-title: Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties
  publication-title: Eur J Oper Res
– volume: 36
  start-page: 18
  year: 2012
  end-page: 29
  ident: b0135
  article-title: Generating candidate networks for optimization: the CO
  publication-title: Comput Environ Urban Syst
– volume: 195
  start-page: 80
  year: 2017
  end-page: 92
  ident: b0010
  article-title: Optimum design of CO
  publication-title: Appl Energy
– volume: 247
  start-page: 190
  year: 2019
  end-page: 211
  ident: b0090
  article-title: An integrated technical-economic model for evaluating CO
  publication-title: Appl Energy
– volume: 32
  start-page: 411
  year: 2013
  end-page: 416
  ident: b0155
  article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints
  publication-title: Environ Prog Sustain Energy
– volume: 203
  start-page: 205
  year: 2010
  end-page: 215
  ident: b0025
  article-title: Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming
  publication-title: Eur J Oper Res
– volume: 19
  start-page: 26
  year: 2018
  end-page: 43
  ident: b0080
  article-title: Adapting GA to solve a novel model for operating room scheduling problem with endogenous uncertainty
  publication-title: Operations Res Health Care
– volume: 5
  start-page: 529
  year: 2019
  end-page: 544
  ident: b0115
  article-title: Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm
  publication-title: Energy Rep
– volume: 74
  start-page: 34
  year: 2015
  end-page: 47
  ident: b0020
  article-title: Heuristic solution approaches to the pharmaceutical R&D pipeline management problem
  publication-title: Comput Chem Eng
– volume: 184
  start-page: 337
  year: 2016
  end-page: 345
  ident: b0160
  article-title: Optimal CO
  publication-title: Appl Energy
– volume: 285
  start-page: 133
  year: 2020
  end-page: 147
  ident: b0120
  article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties
  publication-title: Eur J Oper Res
– volume: 92
  start-page: 545
  year: 2014
  end-page: 554
  ident: b0165
  article-title: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties
  publication-title: Process Saf Environ Prot
– volume: 32
  start-page: 281
  year: 2014
  end-page: 300
  ident: b0105
  article-title: Co-optimizing enhanced oil recovery and CO2 storage by simultaneous water and CO
  publication-title: Energy Explor Exploit
– volume: 104
  start-page: 358
  year: 2016
  end-page: 372
  ident: b0170
  article-title: Planning and scheduling of CO
  publication-title: Process Saf Environ Prot
– volume: 8
  start-page: 22
  year: 2012
  end-page: 33
  ident: b0085
  article-title: Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery
  publication-title: Int J Greenhouse Gas Control
– volume: 51
  start-page: 10015
  year: 2012
  end-page: 10020
  ident: b0150
  article-title: Continuous-time optimization model for source–sink matching in carbon capture and storage systems
  publication-title: Ind Eng Chem Res
– volume: 108
  start-page: 355
  year: 2006
  end-page: 394
  ident: b0050
  article-title: A class of stochastic programs with decision dependent uncertainty
  publication-title: Mathematical Programming, Ser B
– volume: 37
  start-page: 1794
  year: 2013
  end-page: 1810
  ident: b0125
  article-title: A new optimization approach to energy network modeling: anthropogenic CO
  publication-title: Int J Energy Res
– year: 2009
  ident: b0060
  article-title: Dioxide Capture and Storage
– volume: 31
  start-page: 359
  year: 2016
  end-page: 376
  ident: b0070
  article-title: Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty
  publication-title: Optim Methods Softw
– volume: 11
  start-page: 460
  year: 2014
  ident: 10.1016/j.apenergy.2022.120605_b0140
  article-title: Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II)
  publication-title: Pet Sci
  doi: 10.1007/s12182-014-0362-1
– volume: 210
  year: 2022
  ident: 10.1016/j.apenergy.2022.120605_b0095
  article-title: A state-of-the-art review of CO2 enhanced oil recovery as a promising technology to achieve carbon neutrality in China
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.112986
– volume: 222
  start-page: 132
  year: 2018
  ident: 10.1016/j.apenergy.2022.120605_b0180
  article-title: Economic co-optimization of oil recovery and CO2 sequestration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.166
– volume: 37
  start-page: 1052
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2022.120605_b0130
  article-title: A scalable infrastructure model for carbon capture and storage: SimCCS
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.09.049
– volume: 32
  start-page: 411
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2022.120605_b0155
  article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.11630
– volume: 186
  year: 2020
  ident: 10.1016/j.apenergy.2022.120605_b0055
  article-title: Integrated operation for the planning of CO2 capture path in CCS–EOR project
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2019.106720
– volume: 32
  start-page: 281
  year: 2014
  ident: 10.1016/j.apenergy.2022.120605_b0105
  article-title: Co-optimizing enhanced oil recovery and CO2 storage by simultaneous water and CO2 injection
  publication-title: Energy Explor Exploit
  doi: 10.1260/0144-5987.32.2.281
– volume: 31
  start-page: 359
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2022.120605_b0070
  article-title: Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty
  publication-title: Optim Methods Softw
  doi: 10.1080/10556788.2015.1088850
– volume: 28
  start-page: 1409
  issue: 8
  year: 2004
  ident: 10.1016/j.apenergy.2022.120605_b0045
  article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2003.10.005
– volume: 74
  start-page: 34
  year: 2015
  ident: 10.1016/j.apenergy.2022.120605_b0020
  article-title: Heuristic solution approaches to the pharmaceutical R&D pipeline management problem
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.12.014
– volume: 208
  year: 2022
  ident: 10.1016/j.apenergy.2022.120605_b0110
  article-title: Coupled optimization of carbon dioxide sequestration and CO2 enhanced oil recovery
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2021.109257
– volume: 104
  start-page: 358
  year: 2016
  ident: 10.1016/j.apenergy.2022.120605_b0170
  article-title: Planning and scheduling of CO2 capture, utilization and storage (CCUS) operations as a strip packing problem
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.09.013
– volume: 92
  start-page: 545
  issue: 6
  year: 2014
  ident: 10.1016/j.apenergy.2022.120605_b0165
  article-title: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2014.04.012
– volume: 19
  start-page: 26
  year: 2018
  ident: 10.1016/j.apenergy.2022.120605_b0080
  article-title: Adapting GA to solve a novel model for operating room scheduling problem with endogenous uncertainty
  publication-title: Operations Res Health Care
  doi: 10.1016/j.orhc.2018.02.002
– volume: 54
  start-page: 579
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2022.120605_b0075
  article-title: A mathematical model for vehicle routing problem under endogenous uncertainty
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2015.1057625
– volume: 37
  start-page: 1794
  issue: 14
  year: 2013
  ident: 10.1016/j.apenergy.2022.120605_b0125
  article-title: A new optimization approach to energy network modeling: anthropogenic CO2 capture coupled with enhanced oil recovery
  publication-title: Int J Energy Res
  doi: 10.1002/er.2993
– volume: 184
  start-page: 337
  year: 2016
  ident: 10.1016/j.apenergy.2022.120605_b0160
  article-title: Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.093
– volume: 53
  start-page: 778
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2022.120605_b0065
  article-title: Optimal source–sink matching in carbon capture and storage systems under uncertainty
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie402866d
– volume: 290
  start-page: 886
  issue: 3
  year: 2021
  ident: 10.1016/j.apenergy.2022.120605_b0145
  article-title: Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.08.057
– volume: 15
  start-page: 48
  year: 2007
  ident: 10.1016/j.apenergy.2022.120605_b0035
  article-title: The value of the stochastic solution in multistage problems
  publication-title: TOP
  doi: 10.1007/s11750-007-0005-4
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2022.120605_b0185
  article-title: Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115695
– volume: 97
  start-page: 1048
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2022.120605_b0005
  article-title: Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23393
– volume: 48
  start-page: 3078
  issue: 6
  year: 2009
  ident: 10.1016/j.apenergy.2022.120605_b0175
  article-title: Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie8013549
– volume: 55
  start-page: 3168
  issue: 12
  year: 2009
  ident: 10.1016/j.apenergy.2022.120605_b0030
  article-title: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options
  publication-title: AIChE J
  doi: 10.1002/aic.11835
– volume: 8
  start-page: 22
  year: 2012
  ident: 10.1016/j.apenergy.2022.120605_b0085
  article-title: Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery
  publication-title: Int J Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.01.013
– year: 2009
  ident: 10.1016/j.apenergy.2022.120605_b0060
– volume: 231
  start-page: 194
  year: 2018
  ident: 10.1016/j.apenergy.2022.120605_b0195
  article-title: An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.129
– volume: 260
  year: 2020
  ident: 10.1016/j.apenergy.2022.120605_b0190
  article-title: Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120866
– volume: 203
  start-page: 205
  issue: 1
  year: 2010
  ident: 10.1016/j.apenergy.2022.120605_b0025
  article-title: Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2009.07.022
– volume: 108
  start-page: 355
  issue: 2–3
  year: 2006
  ident: 10.1016/j.apenergy.2022.120605_b0050
  article-title: A class of stochastic programs with decision dependent uncertainty
  publication-title: Mathematical Programming, Ser B
  doi: 10.1007/s10107-006-0715-7
– ident: 10.1016/j.apenergy.2022.120605_b0100
– volume: 285
  start-page: 133
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2022.120605_b0120
  article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.01.055
– volume: 36
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2022.120605_b0135
  article-title: Generating candidate networks for optimization: the CO2 capture and storage optimization problem
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2011.08.002
– volume: 51
  start-page: 10015
  issue: 30
  year: 2012
  ident: 10.1016/j.apenergy.2022.120605_b0150
  article-title: Continuous-time optimization model for source–sink matching in carbon capture and storage systems
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie202821r
– volume: 5
  start-page: 529
  year: 2019
  ident: 10.1016/j.apenergy.2022.120605_b0115
  article-title: Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.04.011
– volume: 247
  start-page: 190
  year: 2019
  ident: 10.1016/j.apenergy.2022.120605_b0090
  article-title: An integrated technical-economic model for evaluating CO2 enhanced oil recovery development
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.025
– volume: 195
  start-page: 80
  year: 2017
  ident: 10.1016/j.apenergy.2022.120605_b0010
  article-title: Optimum design of CO2 storage and oil recovery under geological uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.017
– volume: 4
  start-page: 66
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2022.120605_b0040
  article-title: Storage compliance in coupled CO2-EOR and storage
  publication-title: Greenhouse Gases Sci Technol
  doi: 10.1002/ghg.1382
– year: 2011
  ident: 10.1016/j.apenergy.2022.120605_b0015
SSID ssj0002120
Score 2.4246554
Snippet •Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by...
Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO₂ emissions. A commercial way to deploy CCS on a large scale is to sequestrate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120605
SubjectTerms carbon dioxide
Carbon-capture-and-storage
case studies
cost effectiveness
Decision-dependent uncertainty
deterministic models
energy
Enhanced-oil-recovery
Multi-stage stochastic programming
Non-anticipativity constraints
oils
stochastic processes
uncertainty
Value of stochastic solution
Title A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem
URI https://dx.doi.org/10.1016/j.apenergy.2022.120605
https://www.proquest.com/docview/2834270953
Volume 338
WOSCitedRecordID wos000955602000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZQxwM8IBhMjJuMxFuVkDpxbD-GqtNAMBAdUt8iO3G0TSyp2jLt53N8SyIuGgjxElVWnaT5vvp8xzkXhF5VXCsFMj9iiTZFtQmNOJidSAkpwZzmKpUW6ffs5ISvVuKTD2Lf2nYCrG359bVY_1eoYQzANqmzfwF3f1IYgM8AOhwBdjj-EfDFtO2utMkC6aozacowhyCsS7MtYFvf2O63m6lu684XaQXz5oIDfASn0aPz-TJafPxsOk3bxkZT331mLGiDitU2h3B4mVR3Lu_6TdwTp-u2Z5c-jvKoH_5wvjkGAe9aS02XcRGPNyKIDftzqZhudyxkyAzhSDYrK8kj46U5e-MWWc6IWWT5eBVOXZGXn1Z0t7lwEcu1-yHg0hMSz0iSJ3SwYX1k4dJc0HqFoGzAWwPHeI8wKvgE7RVvF6t3vZkmvmZnuMFR-vivr_Y75fKDDbfC5PQ-uuc9Clw4JjxAt3S7j-6O6kzuo4PFkM4IX_Xr-fYhUgW2ZMEDWfCILNiSBVuy4IEseEQWDGTBQBbsyYIDWbAnyyP05WhxOj-OfNeNqEozuotSTRPJiKINyzVvJDjkWgvQeZWsG1oLCZpfJ2ktEsF03vAs0Rw0rVIVA3k7q9IDNGm7Vj9GmGvaiCRl9WwmslqBMwfuOJiQvBFNBlMOEQ1PtKx8SXrTGeVrGWIPL8qARGmQKB0Sh-h1P2_tirLcOEMEwEovLZ1kLIFnN859GRAuYe01L9Rkq-FplyDNM8JMxcYn_3D-p-jO8Hd6hia7zTf9HN2urnbn280LT9vvh5atkg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+stochastic+programming+model+under+endogenous+uncertainty+for+the+CCS-EOR+planning+problem&rft.jtitle=Applied+energy&rft.au=Abdoli%2C+B.&rft.au=Hooshmand%2C+F.&rft.au=MirHassani%2C+S.A.&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=338&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120605&rft.externalDocID=S0306261922018621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon