A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem
•Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over t...
Saved in:
| Published in: | Applied energy Vol. 338; p. 120605 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.05.2023
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over two case studies are provided.•The results confirm that incorporating uncertainty may cause significant cost-saving.
Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO2 emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO2 in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO2 emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO2 to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average. |
|---|---|
| AbstractList | Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO₂ emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO₂ in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO₂ emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO₂ to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average. •Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by reducing the binary variables.•The deterministic model is extended to stochastic with endogenous uncertainty. Computational experiments over two case studies are provided.•The results confirm that incorporating uncertainty may cause significant cost-saving. Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO2 emissions. A commercial way to deploy CCS on a large scale is to sequestrate CO2 in depleted oil reservoirs and to combine it with enhanced oil recovery (EOR) operations. In this manner, not only the CO2 emission is reduced, but also the oil production increases. The collaborative CCS-EOR planning problem determines the proper allocation of available CO2 to depleted reservoirs and the scheduling of the EOR operations. This problem is of great importance, especially when there are multiple oil reservoirs. This paper presents a deterministic mixed-integer linear programming model as an improvement of an existing model in the literature. Then, it is extended to a multistage stochastic model with endogenous uncertainty in which the parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs are uncertain, and the time of uncertainty realization is decision-dependent. Our deterministic model is computationally more efficient than the existing model in the literature, due to the reduction of binary variables to about one-third. Also, providing the possibility of selecting pipeline types among different options as well as incorporating uncertainty may lead to a significant cost-saving. The proposed models are examined over two case-studies taken from the literature. The results indicate that in comparison to the deterministic model, the cost-saving achieved by incorporating uncertainty is about 8.8%, on average. |
| ArticleNumber | 120605 |
| Author | MirHassani, S.A. Abdoli, B. Hooshmand, F. |
| Author_xml | – sequence: 1 givenname: B. surname: Abdoli fullname: Abdoli, B. email: b-abdoli@araku.ac.ir organization: Faculty of Science, Arak University, Arak, Iran – sequence: 2 givenname: F. surname: Hooshmand fullname: Hooshmand, F. email: f.hooshmand.khaligh@aut.ac.ir organization: Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran – sequence: 3 givenname: S.A. surname: MirHassani fullname: MirHassani, S.A. email: a_mirhassani@aut.ac.ir organization: Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran |
| BookMark | eNqFkE1L7DAUhoMoOHr9C5Klm44naZs24EIZ_LgwIHh1HdL0dMzQJmOSEebfm2F0czeuAifv857Dc0aOnXdIyCWDOQMmrtdzvUGHYbWbc-B8zjgIqI_IjLUNLyRj7TGZQQmi4ILJU3IW4xoAeM7NSHdHnf_EkcbkzbuOyRq6CX4V9DRZt6KT7_Pn1vUYKLrer9D5bcwDgyFp69KODj7Q9I50sfhX3D-_0M2onduzuacbcfpDTgY9Rrz4fs_J28P96-KpWD4__l3cLQtTVnUqSqxBN7yrh0ZgO-hWSkRZsdrofqh7qWsmEcpegmxQDG0F2MpGdJ1pQFTMlOfk6tCb935sMSY12WhwzOdgvlnxtqx4A7Iuc_TmEDXBxxhwUMYmnax3KWg7KgZqr1at1Y9atVerDmozLv7DN8FOOux-B28PIGYPnxaDisZidtnbgCap3tvfKr4Ambia3g |
| CitedBy_id | crossref_primary_10_1016_j_sftr_2025_100642 crossref_primary_10_1108_IMDS_12_2024_1192 crossref_primary_10_3390_su16072621 |
| Cites_doi | 10.1007/s12182-014-0362-1 10.1016/j.envres.2022.112986 10.1016/j.apenergy.2018.03.166 10.1016/j.enpol.2008.09.049 10.1002/ep.11630 10.1016/j.petrol.2019.106720 10.1260/0144-5987.32.2.281 10.1080/10556788.2015.1088850 10.1016/j.compchemeng.2003.10.005 10.1016/j.compchemeng.2014.12.014 10.1016/j.petrol.2021.109257 10.1016/j.psep.2016.09.013 10.1016/j.psep.2014.04.012 10.1016/j.orhc.2018.02.002 10.1080/00207543.2015.1057625 10.1002/er.2993 10.1016/j.apenergy.2016.09.093 10.1021/ie402866d 10.1016/j.ejor.2020.08.057 10.1007/s11750-007-0005-4 10.1016/j.apenergy.2020.115695 10.1002/cjce.23393 10.1021/ie8013549 10.1002/aic.11835 10.1016/j.ijggc.2012.01.013 10.1016/j.apenergy.2018.09.129 10.1016/j.jclepro.2020.120866 10.1016/j.ejor.2009.07.022 10.1007/s10107-006-0715-7 10.1016/j.ejor.2019.01.055 10.1016/j.compenvurbsys.2011.08.002 10.1021/ie202821r 10.1016/j.egyr.2019.04.011 10.1016/j.apenergy.2019.04.025 10.1016/j.apenergy.2017.03.017 10.1002/ghg.1382 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2022.120605 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2022_120605 S0306261922018621 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-3e50a72b5f76e8fa899ee9415cadf5d9a519e03d9097e6f840e8976bbc70641c3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955602000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 14:08:37 EDT 2025 Tue Nov 18 21:17:03 EST 2025 Sat Nov 29 07:25:08 EST 2025 Fri Feb 23 02:36:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-stage stochastic programming Value of stochastic solution Carbon-capture-and-storage Decision-dependent uncertainty Non-anticipativity constraints Enhanced-oil-recovery |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-3e50a72b5f76e8fa899ee9415cadf5d9a519e03d9097e6f840e8976bbc70641c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834270953 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834270953 crossref_citationtrail_10_1016_j_apenergy_2022_120605 crossref_primary_10_1016_j_apenergy_2022_120605 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120605 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang (b0180) 2018; 222 You, Ampomah, Sun (b0185) 2020; 279 Jiang, Rui, Hazlett, Lu (b0090) 2019; 247 Hooshmand, MirHassani, Akhavein (b0080) 2018; 19 Adu, Jhang, Liu (b0005) 2019; 97 Kamali, Cinar (b0105) 2014; 32 Ettehad (b0040) 2014; 4 Khojastehmehr, Madani, Daryasafar (b0115) 2019; 5 Middleton (b0125) 2013; 37 Sha, Zhang, Cao (b0145) 2021; 290 Herzog (b0060) 2009 Kashkooli, Gandomkar, Riazi, Tavallali (b0110) 2022; 208 Goel, Grossmann (b0050) 2006; 108 Jonsbraten T. Optimization models for petroleum field exploitation. s.l.:PhD thesis. Norwegian School of Economics and Business Administration; 1998. Jahangiri, Zhang (b0085) 2012; 8 Jiang (b0095) 2022; 210 Tarhan, Grossmann, Goel (b0175) 2009; 48 Middleton, Bielicki (b0130) 2009; 37 Tapia, Tan (b0165) 2014; 92 You (b0190) 2020; 260 Tan, Aviso, Bandyopadhyay, Ng (b0150) 2012; 51 Tapia (b0170) 2016; 104 Tan, Aviso, Bandyopadhyay, Ng (b0155) 2013; 32 Goel, Grossmann (b0045) 2004; 28 Hooshmand, MirHassani (b0075) 2016; 54 Zhang (b0195) 2018; 231 Escudero, Garín, Merino, Pérez (b0035) 2007; 15 Elkamel, Hashim, Douglas, Croiset (b0030) 2009; 55 Tapia (b0160) 2016; 184 Guo, Huang, Wang, Meng (b0055) 2020; 186 Mayer, Pflug, Polak (b0120) 2020; 285 Christian, Cremaschi (b0020) 2015; 74 He (b0065) 2014; 53 Safarzadeh, Motahhari (b0140) 2014; 11 Hooshmand, MirHassani (b0070) 2016; 31 Ampomah (b0010) 2017; 195 Colvin, Maravelias (b0025) 2010; 203 Middleton, Kuby, Bielicki (b0135) 2012; 36 Birge, Louveaux (b0015) 2011 Birge (10.1016/j.apenergy.2022.120605_b0015) 2011 Tapia (10.1016/j.apenergy.2022.120605_b0170) 2016; 104 Safarzadeh (10.1016/j.apenergy.2022.120605_b0140) 2014; 11 Tan (10.1016/j.apenergy.2022.120605_b0155) 2013; 32 Jahangiri (10.1016/j.apenergy.2022.120605_b0085) 2012; 8 Tan (10.1016/j.apenergy.2022.120605_b0150) 2012; 51 Adu (10.1016/j.apenergy.2022.120605_b0005) 2019; 97 Jiang (10.1016/j.apenergy.2022.120605_b0090) 2019; 247 Goel (10.1016/j.apenergy.2022.120605_b0050) 2006; 108 Zhang (10.1016/j.apenergy.2022.120605_b0195) 2018; 231 Ampomah (10.1016/j.apenergy.2022.120605_b0010) 2017; 195 Tapia (10.1016/j.apenergy.2022.120605_b0160) 2016; 184 Hooshmand (10.1016/j.apenergy.2022.120605_b0070) 2016; 31 Goel (10.1016/j.apenergy.2022.120605_b0045) 2004; 28 Sha (10.1016/j.apenergy.2022.120605_b0145) 2021; 290 Hooshmand (10.1016/j.apenergy.2022.120605_b0080) 2018; 19 Kashkooli (10.1016/j.apenergy.2022.120605_b0110) 2022; 208 Hooshmand (10.1016/j.apenergy.2022.120605_b0075) 2016; 54 Middleton (10.1016/j.apenergy.2022.120605_b0130) 2009; 37 You (10.1016/j.apenergy.2022.120605_b0190) 2020; 260 Khojastehmehr (10.1016/j.apenergy.2022.120605_b0115) 2019; 5 10.1016/j.apenergy.2022.120605_b0100 Elkamel (10.1016/j.apenergy.2022.120605_b0030) 2009; 55 Tapia (10.1016/j.apenergy.2022.120605_b0165) 2014; 92 Christian (10.1016/j.apenergy.2022.120605_b0020) 2015; 74 Middleton (10.1016/j.apenergy.2022.120605_b0125) 2013; 37 Ettehad (10.1016/j.apenergy.2022.120605_b0040) 2014; 4 Tarhan (10.1016/j.apenergy.2022.120605_b0175) 2009; 48 Herzog (10.1016/j.apenergy.2022.120605_b0060) 2009 You (10.1016/j.apenergy.2022.120605_b0185) 2020; 279 Guo (10.1016/j.apenergy.2022.120605_b0055) 2020; 186 Wang (10.1016/j.apenergy.2022.120605_b0180) 2018; 222 Kamali (10.1016/j.apenergy.2022.120605_b0105) 2014; 32 Mayer (10.1016/j.apenergy.2022.120605_b0120) 2020; 285 Middleton (10.1016/j.apenergy.2022.120605_b0135) 2012; 36 Jiang (10.1016/j.apenergy.2022.120605_b0095) 2022; 210 Escudero (10.1016/j.apenergy.2022.120605_b0035) 2007; 15 Colvin (10.1016/j.apenergy.2022.120605_b0025) 2010; 203 He (10.1016/j.apenergy.2022.120605_b0065) 2014; 53 |
| References_xml | – volume: 15 start-page: 48 year: 2007 end-page: 64 ident: b0035 article-title: The value of the stochastic solution in multistage problems publication-title: TOP – volume: 4 start-page: 66 year: 2014 end-page: 80 ident: b0040 article-title: Storage compliance in coupled CO publication-title: Greenhouse Gases Sci Technol – volume: 97 start-page: 1048 year: 2019 end-page: 1076 ident: b0005 article-title: Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry publication-title: Can J Chem Eng – volume: 186 year: 2020 ident: b0055 article-title: Integrated operation for the planning of CO publication-title: J Pet Sci Eng – volume: 37 start-page: 1052 year: 2009 end-page: 1060 ident: b0130 article-title: A scalable infrastructure model for carbon capture and storage: SimCCS publication-title: Energy Policy – volume: 53 start-page: 778 year: 2014 end-page: 785 ident: b0065 article-title: Optimal source–sink matching in carbon capture and storage systems under uncertainty publication-title: Ind Eng Chem Res – reference: Jonsbraten T. Optimization models for petroleum field exploitation. s.l.:PhD thesis. Norwegian School of Economics and Business Administration; 1998. – volume: 260 year: 2020 ident: b0190 article-title: Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO publication-title: J Clean Prod – volume: 28 start-page: 1409 year: 2004 end-page: 1429 ident: b0045 article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves publication-title: Comput Chem Eng – volume: 54 start-page: 579 year: 2016 end-page: 590 ident: b0075 article-title: A mathematical model for vehicle routing problem under endogenous uncertainty publication-title: Int J Prod Res – volume: 279 year: 2020 ident: b0185 article-title: Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework publication-title: Appl Energy – volume: 231 start-page: 194 year: 2018 end-page: 206 ident: b0195 article-title: An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China publication-title: Appl Energy – volume: 210 year: 2022 ident: b0095 article-title: A state-of-the-art review of CO publication-title: Environ Res – year: 2011 ident: b0015 article-title: Introduction to stochastic programming – volume: 48 start-page: 3078 year: 2009 end-page: 3097 ident: b0175 article-title: Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty publication-title: Ind Eng Chem Res – volume: 222 start-page: 132 year: 2018 end-page: 147 ident: b0180 article-title: Economic co-optimization of oil recovery and CO publication-title: Appl Energy – volume: 208 year: 2022 ident: b0110 article-title: Coupled optimization of carbon dioxide sequestration and CO publication-title: J Pet Sci Eng – volume: 55 start-page: 3168 year: 2009 end-page: 3190 ident: b0030 article-title: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options publication-title: AIChE J – volume: 11 start-page: 460 year: 2014 end-page: 468 ident: b0140 article-title: Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II) publication-title: Pet Sci – volume: 290 start-page: 886 year: 2021 end-page: 900 ident: b0145 article-title: Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties publication-title: Eur J Oper Res – volume: 36 start-page: 18 year: 2012 end-page: 29 ident: b0135 article-title: Generating candidate networks for optimization: the CO publication-title: Comput Environ Urban Syst – volume: 195 start-page: 80 year: 2017 end-page: 92 ident: b0010 article-title: Optimum design of CO publication-title: Appl Energy – volume: 247 start-page: 190 year: 2019 end-page: 211 ident: b0090 article-title: An integrated technical-economic model for evaluating CO publication-title: Appl Energy – volume: 32 start-page: 411 year: 2013 end-page: 416 ident: b0155 article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints publication-title: Environ Prog Sustain Energy – volume: 203 start-page: 205 year: 2010 end-page: 215 ident: b0025 article-title: Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming publication-title: Eur J Oper Res – volume: 19 start-page: 26 year: 2018 end-page: 43 ident: b0080 article-title: Adapting GA to solve a novel model for operating room scheduling problem with endogenous uncertainty publication-title: Operations Res Health Care – volume: 5 start-page: 529 year: 2019 end-page: 544 ident: b0115 article-title: Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm publication-title: Energy Rep – volume: 74 start-page: 34 year: 2015 end-page: 47 ident: b0020 article-title: Heuristic solution approaches to the pharmaceutical R&D pipeline management problem publication-title: Comput Chem Eng – volume: 184 start-page: 337 year: 2016 end-page: 345 ident: b0160 article-title: Optimal CO publication-title: Appl Energy – volume: 285 start-page: 133 year: 2020 end-page: 147 ident: b0120 article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties publication-title: Eur J Oper Res – volume: 92 start-page: 545 year: 2014 end-page: 554 ident: b0165 article-title: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties publication-title: Process Saf Environ Prot – volume: 32 start-page: 281 year: 2014 end-page: 300 ident: b0105 article-title: Co-optimizing enhanced oil recovery and CO2 storage by simultaneous water and CO publication-title: Energy Explor Exploit – volume: 104 start-page: 358 year: 2016 end-page: 372 ident: b0170 article-title: Planning and scheduling of CO publication-title: Process Saf Environ Prot – volume: 8 start-page: 22 year: 2012 end-page: 33 ident: b0085 article-title: Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery publication-title: Int J Greenhouse Gas Control – volume: 51 start-page: 10015 year: 2012 end-page: 10020 ident: b0150 article-title: Continuous-time optimization model for source–sink matching in carbon capture and storage systems publication-title: Ind Eng Chem Res – volume: 108 start-page: 355 year: 2006 end-page: 394 ident: b0050 article-title: A class of stochastic programs with decision dependent uncertainty publication-title: Mathematical Programming, Ser B – volume: 37 start-page: 1794 year: 2013 end-page: 1810 ident: b0125 article-title: A new optimization approach to energy network modeling: anthropogenic CO publication-title: Int J Energy Res – year: 2009 ident: b0060 article-title: Dioxide Capture and Storage – volume: 31 start-page: 359 year: 2016 end-page: 376 ident: b0070 article-title: Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty publication-title: Optim Methods Softw – volume: 11 start-page: 460 year: 2014 ident: 10.1016/j.apenergy.2022.120605_b0140 article-title: Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II) publication-title: Pet Sci doi: 10.1007/s12182-014-0362-1 – volume: 210 year: 2022 ident: 10.1016/j.apenergy.2022.120605_b0095 article-title: A state-of-the-art review of CO2 enhanced oil recovery as a promising technology to achieve carbon neutrality in China publication-title: Environ Res doi: 10.1016/j.envres.2022.112986 – volume: 222 start-page: 132 year: 2018 ident: 10.1016/j.apenergy.2022.120605_b0180 article-title: Economic co-optimization of oil recovery and CO2 sequestration publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.166 – volume: 37 start-page: 1052 issue: 3 year: 2009 ident: 10.1016/j.apenergy.2022.120605_b0130 article-title: A scalable infrastructure model for carbon capture and storage: SimCCS publication-title: Energy Policy doi: 10.1016/j.enpol.2008.09.049 – volume: 32 start-page: 411 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2022.120605_b0155 article-title: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.11630 – volume: 186 year: 2020 ident: 10.1016/j.apenergy.2022.120605_b0055 article-title: Integrated operation for the planning of CO2 capture path in CCS–EOR project publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2019.106720 – volume: 32 start-page: 281 year: 2014 ident: 10.1016/j.apenergy.2022.120605_b0105 article-title: Co-optimizing enhanced oil recovery and CO2 storage by simultaneous water and CO2 injection publication-title: Energy Explor Exploit doi: 10.1260/0144-5987.32.2.281 – volume: 31 start-page: 359 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2022.120605_b0070 article-title: Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty publication-title: Optim Methods Softw doi: 10.1080/10556788.2015.1088850 – volume: 28 start-page: 1409 issue: 8 year: 2004 ident: 10.1016/j.apenergy.2022.120605_b0045 article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2003.10.005 – volume: 74 start-page: 34 year: 2015 ident: 10.1016/j.apenergy.2022.120605_b0020 article-title: Heuristic solution approaches to the pharmaceutical R&D pipeline management problem publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2014.12.014 – volume: 208 year: 2022 ident: 10.1016/j.apenergy.2022.120605_b0110 article-title: Coupled optimization of carbon dioxide sequestration and CO2 enhanced oil recovery publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2021.109257 – volume: 104 start-page: 358 year: 2016 ident: 10.1016/j.apenergy.2022.120605_b0170 article-title: Planning and scheduling of CO2 capture, utilization and storage (CCUS) operations as a strip packing problem publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.09.013 – volume: 92 start-page: 545 issue: 6 year: 2014 ident: 10.1016/j.apenergy.2022.120605_b0165 article-title: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2014.04.012 – volume: 19 start-page: 26 year: 2018 ident: 10.1016/j.apenergy.2022.120605_b0080 article-title: Adapting GA to solve a novel model for operating room scheduling problem with endogenous uncertainty publication-title: Operations Res Health Care doi: 10.1016/j.orhc.2018.02.002 – volume: 54 start-page: 579 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2022.120605_b0075 article-title: A mathematical model for vehicle routing problem under endogenous uncertainty publication-title: Int J Prod Res doi: 10.1080/00207543.2015.1057625 – volume: 37 start-page: 1794 issue: 14 year: 2013 ident: 10.1016/j.apenergy.2022.120605_b0125 article-title: A new optimization approach to energy network modeling: anthropogenic CO2 capture coupled with enhanced oil recovery publication-title: Int J Energy Res doi: 10.1002/er.2993 – volume: 184 start-page: 337 year: 2016 ident: 10.1016/j.apenergy.2022.120605_b0160 article-title: Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.093 – volume: 53 start-page: 778 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2022.120605_b0065 article-title: Optimal source–sink matching in carbon capture and storage systems under uncertainty publication-title: Ind Eng Chem Res doi: 10.1021/ie402866d – volume: 290 start-page: 886 issue: 3 year: 2021 ident: 10.1016/j.apenergy.2022.120605_b0145 article-title: Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.08.057 – volume: 15 start-page: 48 year: 2007 ident: 10.1016/j.apenergy.2022.120605_b0035 article-title: The value of the stochastic solution in multistage problems publication-title: TOP doi: 10.1007/s11750-007-0005-4 – volume: 279 year: 2020 ident: 10.1016/j.apenergy.2022.120605_b0185 article-title: Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115695 – volume: 97 start-page: 1048 issue: 5 year: 2019 ident: 10.1016/j.apenergy.2022.120605_b0005 article-title: Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry publication-title: Can J Chem Eng doi: 10.1002/cjce.23393 – volume: 48 start-page: 3078 issue: 6 year: 2009 ident: 10.1016/j.apenergy.2022.120605_b0175 article-title: Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty publication-title: Ind Eng Chem Res doi: 10.1021/ie8013549 – volume: 55 start-page: 3168 issue: 12 year: 2009 ident: 10.1016/j.apenergy.2022.120605_b0030 article-title: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options publication-title: AIChE J doi: 10.1002/aic.11835 – volume: 8 start-page: 22 year: 2012 ident: 10.1016/j.apenergy.2022.120605_b0085 article-title: Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.01.013 – year: 2009 ident: 10.1016/j.apenergy.2022.120605_b0060 – volume: 231 start-page: 194 year: 2018 ident: 10.1016/j.apenergy.2022.120605_b0195 article-title: An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.129 – volume: 260 year: 2020 ident: 10.1016/j.apenergy.2022.120605_b0190 article-title: Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120866 – volume: 203 start-page: 205 issue: 1 year: 2010 ident: 10.1016/j.apenergy.2022.120605_b0025 article-title: Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.07.022 – volume: 108 start-page: 355 issue: 2–3 year: 2006 ident: 10.1016/j.apenergy.2022.120605_b0050 article-title: A class of stochastic programs with decision dependent uncertainty publication-title: Mathematical Programming, Ser B doi: 10.1007/s10107-006-0715-7 – ident: 10.1016/j.apenergy.2022.120605_b0100 – volume: 285 start-page: 133 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2022.120605_b0120 article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.01.055 – volume: 36 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2022.120605_b0135 article-title: Generating candidate networks for optimization: the CO2 capture and storage optimization problem publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2011.08.002 – volume: 51 start-page: 10015 issue: 30 year: 2012 ident: 10.1016/j.apenergy.2022.120605_b0150 article-title: Continuous-time optimization model for source–sink matching in carbon capture and storage systems publication-title: Ind Eng Chem Res doi: 10.1021/ie202821r – volume: 5 start-page: 529 year: 2019 ident: 10.1016/j.apenergy.2022.120605_b0115 article-title: Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm publication-title: Energy Rep doi: 10.1016/j.egyr.2019.04.011 – volume: 247 start-page: 190 year: 2019 ident: 10.1016/j.apenergy.2022.120605_b0090 article-title: An integrated technical-economic model for evaluating CO2 enhanced oil recovery development publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.025 – volume: 195 start-page: 80 year: 2017 ident: 10.1016/j.apenergy.2022.120605_b0010 article-title: Optimum design of CO2 storage and oil recovery under geological uncertainty publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.017 – volume: 4 start-page: 66 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2022.120605_b0040 article-title: Storage compliance in coupled CO2-EOR and storage publication-title: Greenhouse Gases Sci Technol doi: 10.1002/ghg.1382 – year: 2011 ident: 10.1016/j.apenergy.2022.120605_b0015 |
| SSID | ssj0002120 |
| Score | 2.4246554 |
| Snippet | •Joint CCS-EOR planning in a multi-reservoir EOR system and a long-term horizon is studied.•The deterministic model proposed in the literature is improved by... Carbon-capture-and-storage (CCS) is one of the leading technologies to reduce CO₂ emissions. A commercial way to deploy CCS on a large scale is to sequestrate... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120605 |
| SubjectTerms | carbon dioxide Carbon-capture-and-storage case studies cost effectiveness Decision-dependent uncertainty deterministic models energy Enhanced-oil-recovery Multi-stage stochastic programming Non-anticipativity constraints oils stochastic processes uncertainty Value of stochastic solution |
| Title | A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.120605 https://www.proquest.com/docview/2834270953 |
| Volume | 338 |
| WOSCitedRecordID | wos000955602000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZQxwM8IBhMjJuMxFuVkDpxbD-GqtNAMBAdUt8iO3G0TSyp2jLt53N8SyIuGgjxElVWnaT5vvp8xzkXhF5VXCsFMj9iiTZFtQmNOJidSAkpwZzmKpUW6ffs5ISvVuKTD2Lf2nYCrG359bVY_1eoYQzANqmzfwF3f1IYgM8AOhwBdjj-EfDFtO2utMkC6aozacowhyCsS7MtYFvf2O63m6lu684XaQXz5oIDfASn0aPz-TJafPxsOk3bxkZT331mLGiDitU2h3B4mVR3Lu_6TdwTp-u2Z5c-jvKoH_5wvjkGAe9aS02XcRGPNyKIDftzqZhudyxkyAzhSDYrK8kj46U5e-MWWc6IWWT5eBVOXZGXn1Z0t7lwEcu1-yHg0hMSz0iSJ3SwYX1k4dJc0HqFoGzAWwPHeI8wKvgE7RVvF6t3vZkmvmZnuMFR-vivr_Y75fKDDbfC5PQ-uuc9Clw4JjxAt3S7j-6O6kzuo4PFkM4IX_Xr-fYhUgW2ZMEDWfCILNiSBVuy4IEseEQWDGTBQBbsyYIDWbAnyyP05WhxOj-OfNeNqEozuotSTRPJiKINyzVvJDjkWgvQeZWsG1oLCZpfJ2ktEsF03vAs0Rw0rVIVA3k7q9IDNGm7Vj9GmGvaiCRl9WwmslqBMwfuOJiQvBFNBlMOEQ1PtKx8SXrTGeVrGWIPL8qARGmQKB0Sh-h1P2_tirLcOEMEwEovLZ1kLIFnN859GRAuYe01L9Rkq-FplyDNM8JMxcYn_3D-p-jO8Hd6hia7zTf9HN2urnbn280LT9vvh5atkg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+stochastic+programming+model+under+endogenous+uncertainty+for+the+CCS-EOR+planning+problem&rft.jtitle=Applied+energy&rft.au=Abdoli%2C+B.&rft.au=Hooshmand%2C+F.&rft.au=MirHassani%2C+S.A.&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=338&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120605&rft.externalDocID=S0306261922018621 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |