Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions

•An inversion method is developed to inverse the optical parameters of VTSS-PCM.•A full-scale experimental platform is built and tested last for a year to collect the dataset.•The hybrid model is a combination of experimental data-driven and mathematical models.•The refractive index and extinction c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 341; s. 121098
Hlavní autoři: Wang, Pengcheng, Liu, Zhongbing, Zhang, Ling, Wang, Zhe, Fan, Jianhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2023
Témata:
ISSN:0306-2619
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An inversion method is developed to inverse the optical parameters of VTSS-PCM.•A full-scale experimental platform is built and tested last for a year to collect the dataset.•The hybrid model is a combination of experimental data-driven and mathematical models.•The refractive index and extinction coefficient are obtained at the same time.•The inversion results are reliable, and the validation meets the ASHRAE Guidelines. The application of phase change materials (PCMs) in transparent building envelopes has received extensive attention. However, most of the studies have simplified the optical parameters of the PCMs in their models. Because the temperature of PCMs cannot be controlled when using the spectrophotometer, it is difficult to measure the changing trend of optical parameters versus temperature. In this study, an inverse approach was developed for the first time, based on a hybrid model, to fit the accurate function expressions between the extinction coefficient and the refractive index of PCM and temperature. The hybrid model was a combination of experimental data-driven, mathematical models, and multi-objective optimization. Firstly, a test platform of the variable transparency solid–solid PCM (VTSS-PCM) window was constructed and tested last for a year to collect the datasets. Secondly, the photo-thermal coupling model of the window was established, in which the hysteresis and the total internal reflection phenomena were considered. Then, taking the unknown coefficients in the function expressions as decision variables, a bi-objective optimization model was built, based on two error statistics of experimental values and simulated values, and solved by genetic algorithm. Finally, the inversion dataset and validation dataset were used to prove the reliability of the inversion results. The results showed that the refractive index and extinction coefficient of the VTSS-PCM were 1.11 and 25.73 m−1 in the transparent phase, and 5.33 and 152.82 m−1 in the opaque phase. Within the phase change temperature range, the function expressions between the refractive index and extinction coefficient and the temperature were obtained respectively. The verification results showed that the function curves obtained by inversion were reliable. No matter whether the inversion dataset or validation dataset was used as input, the values of RMSE and CV(RMSE) met the ASHRAE Guidelines. The inversion method is meaningful to get the optical parameters of PCMs, to accurately evaluate the performance of PCM-built envelope.
AbstractList The application of phase change materials (PCMs) in transparent building envelopes has received extensive attention. However, most of the studies have simplified the optical parameters of the PCMs in their models. Because the temperature of PCMs cannot be controlled when using the spectrophotometer, it is difficult to measure the changing trend of optical parameters versus temperature. In this study, an inverse approach was developed for the first time, based on a hybrid model, to fit the accurate function expressions between the extinction coefficient and the refractive index of PCM and temperature. The hybrid model was a combination of experimental data-driven, mathematical models, and multi-objective optimization. Firstly, a test platform of the variable transparency solid–solid PCM (VTSS-PCM) window was constructed and tested last for a year to collect the datasets. Secondly, the photo-thermal coupling model of the window was established, in which the hysteresis and the total internal reflection phenomena were considered. Then, taking the unknown coefficients in the function expressions as decision variables, a bi-objective optimization model was built, based on two error statistics of experimental values and simulated values, and solved by genetic algorithm. Finally, the inversion dataset and validation dataset were used to prove the reliability of the inversion results. The results showed that the refractive index and extinction coefficient of the VTSS-PCM were 1.11 and 25.73 m⁻¹ in the transparent phase, and 5.33 and 152.82 m⁻¹ in the opaque phase. Within the phase change temperature range, the function expressions between the refractive index and extinction coefficient and the temperature were obtained respectively. The verification results showed that the function curves obtained by inversion were reliable. No matter whether the inversion dataset or validation dataset was used as input, the values of RMSE and CV(RMSE) met the ASHRAE Guidelines. The inversion method is meaningful to get the optical parameters of PCMs, to accurately evaluate the performance of PCM-built envelope.
•An inversion method is developed to inverse the optical parameters of VTSS-PCM.•A full-scale experimental platform is built and tested last for a year to collect the dataset.•The hybrid model is a combination of experimental data-driven and mathematical models.•The refractive index and extinction coefficient are obtained at the same time.•The inversion results are reliable, and the validation meets the ASHRAE Guidelines. The application of phase change materials (PCMs) in transparent building envelopes has received extensive attention. However, most of the studies have simplified the optical parameters of the PCMs in their models. Because the temperature of PCMs cannot be controlled when using the spectrophotometer, it is difficult to measure the changing trend of optical parameters versus temperature. In this study, an inverse approach was developed for the first time, based on a hybrid model, to fit the accurate function expressions between the extinction coefficient and the refractive index of PCM and temperature. The hybrid model was a combination of experimental data-driven, mathematical models, and multi-objective optimization. Firstly, a test platform of the variable transparency solid–solid PCM (VTSS-PCM) window was constructed and tested last for a year to collect the datasets. Secondly, the photo-thermal coupling model of the window was established, in which the hysteresis and the total internal reflection phenomena were considered. Then, taking the unknown coefficients in the function expressions as decision variables, a bi-objective optimization model was built, based on two error statistics of experimental values and simulated values, and solved by genetic algorithm. Finally, the inversion dataset and validation dataset were used to prove the reliability of the inversion results. The results showed that the refractive index and extinction coefficient of the VTSS-PCM were 1.11 and 25.73 m−1 in the transparent phase, and 5.33 and 152.82 m−1 in the opaque phase. Within the phase change temperature range, the function expressions between the refractive index and extinction coefficient and the temperature were obtained respectively. The verification results showed that the function curves obtained by inversion were reliable. No matter whether the inversion dataset or validation dataset was used as input, the values of RMSE and CV(RMSE) met the ASHRAE Guidelines. The inversion method is meaningful to get the optical parameters of PCMs, to accurately evaluate the performance of PCM-built envelope.
ArticleNumber 121098
Author Liu, Zhongbing
Wang, Zhe
Zhang, Ling
Fan, Jianhua
Wang, Pengcheng
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Wang
  fullname: Wang, Pengcheng
  organization: College of Civil Engineering, Hunan University, Changsha, China 410082, P.R. China
– sequence: 2
  givenname: Zhongbing
  surname: Liu
  fullname: Liu, Zhongbing
  email: zhongbingliu@hnu.edu.cn
  organization: College of Civil Engineering, Hunan University, Changsha, China 410082, P.R. China
– sequence: 3
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
  organization: College of Civil Engineering, Hunan University, Changsha, China 410082, P.R. China
– sequence: 4
  givenname: Zhe
  orcidid: 0000-0002-2231-1606
  surname: Wang
  fullname: Wang, Zhe
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 5
  givenname: Jianhua
  surname: Fan
  fullname: Fan, Jianhua
  organization: Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
BookMark eNqFUctuFDEQnEOQSAK_gHzksosfM5MZiQMoAhIpEhc4Wz3tdtYrrz3Y3lX2xj_kN_gqvgRPFi5ccmq5u6q63HXRnIUYqGneCL4WXPTvtmuYKVC6P64ll2otpODjcNacc8X7lezF-LK5yHnLOZdC8vPm1204UMouBhYto4fiApblhZGsdegoFAbBsEQ2QR0diLlg6GGBHyA5mDyxkiDkGRIFPLIcvTO_fz4-VTZvIBPDDYR7YjsoVCmeTbVpWF0DbHOcUsXtoiHP9lU61V0Vgt5VuMPqJBi3eMqvmhcWfKbXf-tl8_3zp2_XN6u7r19urz_erVC1XVkpMw1XrTTDNJoeWjEoJWsPu9YMpBBMT7bt7IiW7ERDp3ozWoW843gFYgR12bw96c4p_thTLnrnMpL3ECjus5aDamXbtVxU6PsTFFPMuR5JoyuwuK03cV4Lrpdg9Fb_C0YvwehTMJXe_0efU_12Oj5P_HAiUr3DwVHSeckKybhEWLSJ7jmJP7LFt2c
CitedBy_id crossref_primary_10_1038_s41598_025_88206_x
crossref_primary_10_1016_j_jobe_2025_112063
crossref_primary_10_1016_j_jmrt_2024_09_011
crossref_primary_10_1016_j_tsep_2024_102991
crossref_primary_10_1016_j_enconman_2023_117907
crossref_primary_10_3390_en17153759
crossref_primary_10_1016_j_renene_2024_121124
crossref_primary_10_1007_s10973_025_14121_y
crossref_primary_10_1016_j_buildenv_2023_111095
crossref_primary_10_1177_17442591241298952
crossref_primary_10_1177_1420326X241244525
crossref_primary_10_1016_j_est_2025_116558
Cites_doi 10.1016/j.solener.2019.12.064
10.1016/j.scs.2021.103035
10.1016/j.enconman.2022.116341
10.1016/j.renene.2020.06.146
10.1016/j.jclepro.2020.120373
10.1016/j.matpr.2021.09.099
10.1016/j.est.2022.104183
10.1016/j.est.2020.101239
10.3390/en15030829
10.1016/j.solener.2004.04.013
10.1016/j.enbuild.2015.05.014
10.1016/j.chemosphere.2022.137100
10.1016/j.buildenv.2022.109436
10.1016/j.enbuild.2014.11.019
10.1016/j.enbuild.2013.02.032
10.1016/j.conbuildmat.2022.129984
10.1016/j.energy.2022.124447
10.1016/j.apenergy.2022.120023
10.1016/j.energy.2020.119390
10.1016/j.enbuild.2021.111403
10.1016/j.apenergy.2017.09.032
10.1016/j.enconman.2022.115567
10.1016/j.enconman.2022.116333
10.1016/j.enbuild.2021.111129
10.1016/j.enbuild.2018.02.054
10.1016/j.enbuild.2022.112030
10.1016/j.enbuild.2022.112477
10.1016/j.enbuild.2012.07.036
10.1016/j.apenergy.2018.05.094
10.1016/S0038-092X(97)00086-8
10.1016/j.scs.2018.01.020
10.1016/j.cesys.2021.100032
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.121098
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Statistics
ExternalDocumentID 10_1016_j_apenergy_2023_121098
S0306261923004622
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-3db8742d8b9d6a4183323dbc54d8e3cad6ef45f9cfefbe8536d9f3c050c7a19a3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984807600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 16:27:02 EDT 2025
Sat Nov 29 07:19:29 EST 2025
Tue Nov 18 21:19:31 EST 2025
Tue Dec 03 03:44:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SL-PCM
NSGA-II
SS-PCM
Optical parameters
Experiment
RMSE
VTSS-PCM
CV
PCM
Time-space effect
Data-driven
TIR
Hysteresis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-3db8742d8b9d6a4183323dbc54d8e3cad6ef45f9cfefbe8536d9f3c050c7a19a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2231-1606
PQID 2834245401
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834245401
crossref_citationtrail_10_1016_j_apenergy_2023_121098
crossref_primary_10_1016_j_apenergy_2023_121098
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_121098
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Liu, Zhang, Zhang, Chen, Zhang (b0060) 2022; 222
Ma, Li, Yang, Zhang, Arıcı, Liu (b0125) 2022; 271
Sun, Wilson, Wu (b0020) 2018; 226
Guldentops, Ardito, Tao, Granados-Focil, Van Dessel (b0135) 2018
Goia, Perino, Haase (b0150) 2012
Wang, Liu, Xi, Zhang, Zhang (b0175) 2022; 263
King, Rao, Sivakumar, Mamidi, Richard, Vijayakumar (b0080) 2022; 50
Li, Ma, Zhang, Yang, Zhang, Liu (b0090) 2022; 262
Khattari, El Rhafiki, Choab, Kousksou, Alaphilippe, Zeraouli (b0180) 2020
Wang, Liu, Chen, Li, Zhang (b0190) 2021; 252
Qi, Zhang, Mu, Zhang, Yu (b0070) 2020
Mohtashami, Fuchs, Fotopoulou, Drosatos, Streblow, Osterhage (b0015) 2022
Kalbasi, Samali, Afrand (b0050) 2023; 311
Xiong, Deng, Liu, Liu, Wu, Zhang (b0185) 2022; 276
Yang, Oliver Gao, You (b0065) 2022; 326
Goia, Zinzi, Carnielo, Serra (b0100) 2015
Zhong, Li, Sun, Li, Zhang (b0110) 2015
Georgiou, Konatzii, Morsink-Georgali, Klumbyte, Christou, Fokaides (b0045) 2023; 364
Manz, Egolf, Suter, Goetzberger (b0115) 1997; 61
Wang, Li, Luo, Wang, Shah (b0025) 2022
Mishra, Stockmal, Ardito, Tao, Van Dessel, Granados-Focil (b0160) 2020
Grazieschi, Asdrubali, Thomas (b0030) 2021; 2
Li, Zou, Sun, Zhang (b0140) 2018; 40
Zhang, Liu, Wang, Li (b0105) 2022; 272
Adilkhanova, Memon, Kim, Sheriyev (b0075) 2021
Wei, Li, Ruan, Qi (b0085) 2022; 49
Wang, Liu, Xi, Zhang, Zhang (b0145) 2022
Gallardo, Berardi (b0055) 2022; 254
Figueiredo, Vicente, Lapa, Cardoso, Rodrigues, Kämpf (b0035) 2017
Wieprzkowicz, Heim (b0165) 2020
ASHRAE Guideline 14-2014. Measurement of Energy, Demand, and Water Savings. ASHRAE Guideline 14-2014 2014.
Liu, Wu, Bian, Li, Liu (b0155) 2018
(b0010) 2021 n.d.
Weinläder, Beck, Fricke (b0130) 2005; 78
Xiao, Mishra, Mahdavi Nejad, Tao, Granados-Focil, Van Dessel (b0120) 2021; 247
Wang, Liu, Liu, Zhang, Zhang (b0040) 2023
Zhang, Hu, Li, Zhang, Arıcı, Yıldız (b0095) 2021
Gowreesunker, Stankovic, Tassou, Kyriacou (b0170) 2013
Wang, Liu, Zhang (b0005) 2021; 72
Zheng, Chen, Xiao, Liu, Zheng, Li (b0200) 2021; 42
King (10.1016/j.apenergy.2023.121098_b0080) 2022; 50
Wieprzkowicz (10.1016/j.apenergy.2023.121098_b0165) 2020
Xiao (10.1016/j.apenergy.2023.121098_b0120) 2021; 247
Manz (10.1016/j.apenergy.2023.121098_b0115) 1997; 61
Adilkhanova (10.1016/j.apenergy.2023.121098_b0075) 2021
Grazieschi (10.1016/j.apenergy.2023.121098_b0030) 2021; 2
Wang (10.1016/j.apenergy.2023.121098_b0005) 2021; 72
Weinläder (10.1016/j.apenergy.2023.121098_b0130) 2005; 78
Guldentops (10.1016/j.apenergy.2023.121098_b0135) 2018
Xiong (10.1016/j.apenergy.2023.121098_b0185) 2022; 276
Li (10.1016/j.apenergy.2023.121098_b0140) 2018; 40
Kalbasi (10.1016/j.apenergy.2023.121098_b0050) 2023; 311
Georgiou (10.1016/j.apenergy.2023.121098_b0045) 2023; 364
Liu (10.1016/j.apenergy.2023.121098_b0155) 2018
Qi (10.1016/j.apenergy.2023.121098_b0070) 2020
Zhong (10.1016/j.apenergy.2023.121098_b0110) 2015
Li (10.1016/j.apenergy.2023.121098_b0090) 2022; 262
Khattari (10.1016/j.apenergy.2023.121098_b0180) 2020
Wang (10.1016/j.apenergy.2023.121098_b0190) 2021; 252
Wei (10.1016/j.apenergy.2023.121098_b0085) 2022; 49
10.1016/j.apenergy.2023.121098_b0195
Zhang (10.1016/j.apenergy.2023.121098_b0105) 2022; 272
Gallardo (10.1016/j.apenergy.2023.121098_b0055) 2022; 254
Figueiredo (10.1016/j.apenergy.2023.121098_b0035) 2017
Mohtashami (10.1016/j.apenergy.2023.121098_b0015) 2022
Goia (10.1016/j.apenergy.2023.121098_b0150) 2012
Wang (10.1016/j.apenergy.2023.121098_b0175) 2022; 263
Yang (10.1016/j.apenergy.2023.121098_b0065) 2022; 326
Goia (10.1016/j.apenergy.2023.121098_b0100) 2015
Sun (10.1016/j.apenergy.2023.121098_b0020) 2018; 226
Wang (10.1016/j.apenergy.2023.121098_b0145) 2022
Mishra (10.1016/j.apenergy.2023.121098_b0160) 2020
(10.1016/j.apenergy.2023.121098_b0010) 2021
Zhang (10.1016/j.apenergy.2023.121098_b0095) 2021
Wang (10.1016/j.apenergy.2023.121098_b0025) 2022
Ma (10.1016/j.apenergy.2023.121098_b0125) 2022; 271
Zheng (10.1016/j.apenergy.2023.121098_b0200) 2021; 42
Wang (10.1016/j.apenergy.2023.121098_b0040) 2023
Wang (10.1016/j.apenergy.2023.121098_b0060) 2022; 222
Gowreesunker (10.1016/j.apenergy.2023.121098_b0170) 2013
References_xml – volume: 311
  year: 2023
  ident: b0050
  article-title: Taking benefits of using PCMs in buildings to meet energy efficiency criteria in net zero by 2050
  publication-title: Chemosphere
– volume: 254
  year: 2022
  ident: b0055
  article-title: Evaluation of the energy flexibility potential of radiant ceiling panels with thermal energy storage
  publication-title: Energy
– year: 2021
  ident: b0075
  article-title: A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime
  publication-title: Energy
– reference: ASHRAE Guideline 14-2014. Measurement of Energy, Demand, and Water Savings. ASHRAE Guideline 14-2014 2014.
– volume: 61
  start-page: 369
  year: 1997
  end-page: 379
  ident: b0115
  article-title: TIM–PCM external wall system for solar space heating and daylighting
  publication-title: Sol Energy
– volume: 252
  year: 2021
  ident: b0190
  article-title: Experimental study and multi-objective optimisation of a novel integral thermoelectric wall
  publication-title: Energy Build
– volume: 262
  year: 2022
  ident: b0090
  article-title: Photothermal and energy performance of an innovative roof based on silica aerogel-PCM glazing systems
  publication-title: Energy Convers Manag
– year: 2020
  ident: b0180
  article-title: Apparent heat capacity method to investigate heat transfer in a composite phase change material
  publication-title: J Energy Storage
– volume: 226
  start-page: 713
  year: 2018
  end-page: 729
  ident: b0020
  article-title: A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort
  publication-title: Appl Energy
– year: 2020
  ident: b0165
  article-title: Modelling of thermal processes in a glazing structure with temperature dependent optical properties - an example of PCM-window
  publication-title: Renew Energy
– year: 2013
  ident: b0170
  article-title: Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit
  publication-title: Energy Build
– volume: 2
  year: 2021
  ident: b0030
  article-title: Embodied energy and carbon of building insulating materials: a critical review
  publication-title: Cleaner Environ Systems
– year: 2015
  ident: b0100
  article-title: Spectral and angular solar properties of a PCM-filled double glazing unit
  publication-title: Energy Build
– volume: 222
  year: 2022
  ident: b0060
  article-title: Adaptive building roof combining variable transparency shape-stabilized phase change material: application potential and adaptability in different climate zones
  publication-title: Build Environ
– volume: 72
  year: 2021
  ident: b0005
  article-title: Sustainability of compact cities: a review of inter-building effect on building energy and solar energy use
  publication-title: Sustain Cities Soc
– volume: 263
  year: 2022
  ident: b0175
  article-title: Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM
  publication-title: Energy Build
– year: 2021
  ident: b0095
  article-title: Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows
  publication-title: Energy
– volume: 49
  year: 2022
  ident: b0085
  article-title: Dynamic coupled heat transfer and energy conservation performance of multilayer glazing window filled with phase change material in summer day
  publication-title: J Energy Storage
– year: 2018
  ident: b0135
  article-title: A numerical study of adaptive building enclosure systems using solid–solid phase change materials with variable transparency
  publication-title: Energy Build
– volume: 276
  year: 2022
  ident: b0185
  article-title: Sustainability and efficient use of building-integrated photovoltaic curtain wall array (BI-PVCWA) systems in building complex scenarios
  publication-title: Energy Build
– year: 2017
  ident: b0035
  article-title: Indoor thermal comfort assessment using different constructive solutions incorporating PCM
  publication-title: Appl Energy
– year: 2023:
  ident: b0040
  article-title: Energy flexibility of PCM-integrated building: combination parameters design and operation control in multi-objective optimization considering different stakeholders
  publication-title: Energy
– year: 2020
  ident: b0160
  article-title: Thermo-optically responsive phase change materials for passive temperature regulation
  publication-title: Sol Energy
– year: 2020
  ident: b0070
  article-title: Enhanced mechanical and thermal properties of hollow wood composites filled with phase-change material
  publication-title: J Clean Prod
– volume: 40
  start-page: 266
  year: 2018
  end-page: 273
  ident: b0140
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain Cities Soc
– year: 2022
  ident: b0015
  article-title: State of the art of technologies in adaptive dynamic building envelopes (ADBEs)
  publication-title: Energies (Basel)
– volume: 364
  year: 2023
  ident: b0045
  article-title: Numerical and environmental analysis of post constructive application of PCM coatings for the improvement of the energy performance of building structures
  publication-title: Constr Build Mater
– volume: 50
  start-page: 1516
  year: 2022
  end-page: 1521
  ident: b0080
  article-title: Thermal performance of a double-glazed window integrated with a phase change material (PCM)
  publication-title: Mater Today Proc
– volume: 42
  year: 2021
  ident: b0200
  article-title: Evaluation of simulation models for predicting the energy performance of aerogel glazing system
  publication-title: J Build Eng
– volume: 271
  year: 2022
  ident: b0125
  article-title: Energy and daylighting performance of a building containing an innovative glazing window with solid-solid phase change material and silica aerogel integration
  publication-title: Energy Convers Manag
– year: 2022
  ident: b0025
  article-title: A critical review on phase change materials (PCM) for sustainable and energy efficient building: design, characteristic, performance and application
  publication-title: Energy Build
– year: 2022:
  ident: b0145
  article-title: Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM
  publication-title: Energy Build
– volume: 272
  year: 2022
  ident: b0105
  article-title: Performance evaluation of a novel rotatable dynamic window integrated with a phase change material and a vacuum layer
  publication-title: Energy Convers Manag
– year: 2021 n.d.
  ident: b0010
  publication-title: International Energy Agency
– volume: 247
  year: 2021
  ident: b0120
  article-title: Thermal optimization of a novel thermo-optically responsive SS-PCM coatings for building enclosures
  publication-title: Energy Build
– volume: 326
  year: 2022
  ident: b0065
  article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics
  publication-title: Appl Energy
– year: 2012
  ident: b0150
  article-title: A numerical model to evaluate the thermal behaviour of PCM glazing system configurations
  publication-title: Energy Build
– year: 2018
  ident: b0155
  article-title: Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof
  publication-title: Appl Energy
– volume: 78
  start-page: 177
  year: 2005
  end-page: 186
  ident: b0130
  article-title: PCM-facade-panel for daylighting and room heating
  publication-title: Sol Energy
– year: 2015
  ident: b0110
  article-title: Simulation study on dynamic heat transfer performance of PCM-filled glass window with different thermophysical parameters of phase change material
  publication-title: Energy Build
– year: 2023
  ident: 10.1016/j.apenergy.2023.121098_b0040
  article-title: Energy flexibility of PCM-integrated building: combination parameters design and operation control in multi-objective optimization considering different stakeholders
  publication-title: Energy
– year: 2020
  ident: 10.1016/j.apenergy.2023.121098_b0160
  article-title: Thermo-optically responsive phase change materials for passive temperature regulation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.12.064
– volume: 72
  year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0005
  article-title: Sustainability of compact cities: a review of inter-building effect on building energy and solar energy use
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103035
– volume: 271
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0125
  article-title: Energy and daylighting performance of a building containing an innovative glazing window with solid-solid phase change material and silica aerogel integration
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.116341
– year: 2020
  ident: 10.1016/j.apenergy.2023.121098_b0165
  article-title: Modelling of thermal processes in a glazing structure with temperature dependent optical properties - an example of PCM-window
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.06.146
– year: 2020
  ident: 10.1016/j.apenergy.2023.121098_b0070
  article-title: Enhanced mechanical and thermal properties of hollow wood composites filled with phase-change material
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120373
– year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0010
  publication-title: International Energy Agency
– ident: 10.1016/j.apenergy.2023.121098_b0195
– volume: 50
  start-page: 1516
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0080
  article-title: Thermal performance of a double-glazed window integrated with a phase change material (PCM)
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.09.099
– volume: 49
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0085
  article-title: Dynamic coupled heat transfer and energy conservation performance of multilayer glazing window filled with phase change material in summer day
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104183
– year: 2020
  ident: 10.1016/j.apenergy.2023.121098_b0180
  article-title: Apparent heat capacity method to investigate heat transfer in a composite phase change material
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101239
– year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0015
  article-title: State of the art of technologies in adaptive dynamic building envelopes (ADBEs)
  publication-title: Energies (Basel)
  doi: 10.3390/en15030829
– volume: 78
  start-page: 177
  year: 2005
  ident: 10.1016/j.apenergy.2023.121098_b0130
  article-title: PCM-facade-panel for daylighting and room heating
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.04.013
– year: 2015
  ident: 10.1016/j.apenergy.2023.121098_b0110
  article-title: Simulation study on dynamic heat transfer performance of PCM-filled glass window with different thermophysical parameters of phase change material
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.05.014
– volume: 311
  year: 2023
  ident: 10.1016/j.apenergy.2023.121098_b0050
  article-title: Taking benefits of using PCMs in buildings to meet energy efficiency criteria in net zero by 2050
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137100
– volume: 222
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0060
  article-title: Adaptive building roof combining variable transparency shape-stabilized phase change material: application potential and adaptability in different climate zones
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2022.109436
– year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0095
  article-title: Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows
  publication-title: Energy
– year: 2015
  ident: 10.1016/j.apenergy.2023.121098_b0100
  article-title: Spectral and angular solar properties of a PCM-filled double glazing unit
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.11.019
– year: 2013
  ident: 10.1016/j.apenergy.2023.121098_b0170
  article-title: Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.02.032
– volume: 42
  year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0200
  article-title: Evaluation of simulation models for predicting the energy performance of aerogel glazing system
  publication-title: J Build Eng
– year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0025
  article-title: A critical review on phase change materials (PCM) for sustainable and energy efficient building: design, characteristic, performance and application
  publication-title: Energy Build
– volume: 364
  year: 2023
  ident: 10.1016/j.apenergy.2023.121098_b0045
  article-title: Numerical and environmental analysis of post constructive application of PCM coatings for the improvement of the energy performance of building structures
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.129984
– volume: 254
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0055
  article-title: Evaluation of the energy flexibility potential of radiant ceiling panels with thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124447
– volume: 326
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0065
  article-title: Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120023
– year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0075
  article-title: A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119390
– volume: 252
  year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0190
  article-title: Experimental study and multi-objective optimisation of a novel integral thermoelectric wall
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111403
– year: 2017
  ident: 10.1016/j.apenergy.2023.121098_b0035
  article-title: Indoor thermal comfort assessment using different constructive solutions incorporating PCM
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.032
– volume: 262
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0090
  article-title: Photothermal and energy performance of an innovative roof based on silica aerogel-PCM glazing systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.115567
– volume: 272
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0105
  article-title: Performance evaluation of a novel rotatable dynamic window integrated with a phase change material and a vacuum layer
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.116333
– volume: 247
  year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0120
  article-title: Thermal optimization of a novel thermo-optically responsive SS-PCM coatings for building enclosures
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111129
– year: 2018
  ident: 10.1016/j.apenergy.2023.121098_b0135
  article-title: A numerical study of adaptive building enclosure systems using solid–solid phase change materials with variable transparency
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.02.054
– volume: 263
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0175
  article-title: Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.112030
– year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0145
  article-title: Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM
  publication-title: Energy Build
– year: 2018
  ident: 10.1016/j.apenergy.2023.121098_b0155
  article-title: Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof
  publication-title: Appl Energy
– volume: 276
  year: 2022
  ident: 10.1016/j.apenergy.2023.121098_b0185
  article-title: Sustainability and efficient use of building-integrated photovoltaic curtain wall array (BI-PVCWA) systems in building complex scenarios
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.112477
– year: 2012
  ident: 10.1016/j.apenergy.2023.121098_b0150
  article-title: A numerical model to evaluate the thermal behaviour of PCM glazing system configurations
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.07.036
– volume: 226
  start-page: 713
  year: 2018
  ident: 10.1016/j.apenergy.2023.121098_b0020
  article-title: A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.094
– volume: 61
  start-page: 369
  year: 1997
  ident: 10.1016/j.apenergy.2023.121098_b0115
  article-title: TIM–PCM external wall system for solar space heating and daylighting
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00086-8
– volume: 40
  start-page: 266
  year: 2018
  ident: 10.1016/j.apenergy.2023.121098_b0140
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.01.020
– volume: 2
  year: 2021
  ident: 10.1016/j.apenergy.2023.121098_b0030
  article-title: Embodied energy and carbon of building insulating materials: a critical review
  publication-title: Cleaner Environ Systems
  doi: 10.1016/j.cesys.2021.100032
SSID ssj0002120
Score 2.4773908
Snippet •An inversion method is developed to inverse the optical parameters of VTSS-PCM.•A full-scale experimental platform is built and tested last for a year to...
The application of phase change materials (PCMs) in transparent building envelopes has received extensive attention. However, most of the studies have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121098
SubjectTerms algorithms
data collection
Data-driven
energy
Experiment
Hysteresis
Optical parameters
PCM
phase transition
refractive index
spectrophotometers
statistics
temperature
Time-space effect
Title Inversion of extinction coefficient and refractive index of variable transparency solid–solid phase change material based on a hybrid model under real climatic conditions
URI https://dx.doi.org/10.1016/j.apenergy.2023.121098
https://www.proquest.com/docview/2834245401
Volume 341
WOSCitedRecordID wos000984807600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKl8NyQFBYsfzJSIhLlKVNnL_jCnUFqCp76KKKS-TYzrarKg3dtureeAceA56KJ2HGjpMILdrlwCVtLTtxNF894_HMN4S8HmRyEMg8dmORMBdB4cYY6xqGAc9i3hdSuwY-j6LxOJ5Ok9NO54fNhdkuoqKId7uk_K-ihjYQNqbO_oO465tCA3wHocMVxA7XWwkemTO0DwztQFh654WpBi6WStNF1EHlKtcZUlukDZFqh923sHPWuVRrzXmOiWLiyoH5wltUURG-_uWUM46B7jo3wQGrV7-ZgzpR4vkDd2ZXmAtmKu3oYrsreCKSkSzmhiUWNuJy3rgLLRNuZRUrnZPYuPvNknSqinNAWaVtMY5ovtHHK7NlcZ7Nm_baDz5qNdq7fJmptrPD8-vA2DrJqx-6uOlrL-CgiJ0SaTKQG_VatWA8FBdHvDSzP8J7VyMaRWgP_8ef0pOz0SidDKeTN-VXF0uU4VF-Va_lDtnzoiCJu2Tv-MNw-rFW_F7FAmrn2EpIv_7Rf7OF_rAKtKkzeUDuV3sUemyw9ZB0VNEj91rMlT1yMGwSJKFrpSEue2Qfdy-G_PsR-VljkS5z2mCRtrBIAYu0wSLVWMTuFou0jUWq0ffr23f9STUKqUEhtSikGoUUHsOpQSHVKKQahRRRSC0KaYPCx-TsZDh5996tyoO4wmfB2vVlFkfMk3GWyJAz0E2-B20iYDJWvuAyVDkL8kTkKs8UmKWhTHJf9IO-iPgg4f4B6RbLQj0h1E9kwBnLBIv7LFc8yUUYZUpyFknpseyQBFZQqai487GEyyK1QZIXqRVwigJOjYAPydt6XGnYY24ckVgcpJUNbGzbFLB849hXFjgpKAk8-eOFWm4uU9hDYIQD6w-e3qLPM7Lf_Peek-56tVEvyF2xBfisXlao_w2RRusJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+of+extinction+coefficient+and+refractive+index+of+variable+transparency+solid%E2%80%93solid+phase+change+material+based+on+a+hybrid+model+under+real+climatic+conditions&rft.jtitle=Applied+energy&rft.au=Wang%2C+Pengcheng&rft.au=Liu%2C+Zhongbing&rft.au=Zhang%2C+Ling&rft.au=Wang%2C+Zhe&rft.date=2023-07-01&rft.issn=0306-2619&rft.volume=341+p.121098-&rft_id=info:doi/10.1016%2Fj.apenergy.2023.121098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon